Index: third_party/fdlibm/fdlibm.js |
diff --git a/third_party/fdlibm/fdlibm.js b/third_party/fdlibm/fdlibm.js |
index a55b7c70c8a0f11e4a8721f52a6a78ca65ad8147..9bdd97923317cd8c316819529c7c008e359005ff 100644 |
--- a/third_party/fdlibm/fdlibm.js |
+++ b/third_party/fdlibm/fdlibm.js |
@@ -1,7 +1,7 @@ |
// The following is adapted from fdlibm (http://www.netlib.org/fdlibm), |
// |
// ==================================================== |
-// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
+// Copyright (C) 1993-2004 by Sun Microsystems, Inc. All rights reserved. |
// |
// Developed at SunSoft, a Sun Microsystems, Inc. business. |
// Permission to use, copy, modify, and distribute this |
@@ -16,8 +16,11 @@ |
// The following is a straightforward translation of fdlibm routines |
// by Raymond Toy (rtoy@google.com). |
- |
-var kMath; // Initialized to a Float64Array during genesis and is not writable. |
+// Double constants that do not have empty lower 32 bits are found in fdlibm.cc |
+// and exposed through kMath as typed array. We assume the compiler to convert |
+// from decimal to binary accurately enough to produce the intended values. |
+// kMath is initialized to a Float64Array during genesis and not writable. |
+var kMath; |
const INVPIO2 = kMath[0]; |
const PIO2_1 = kMath[1]; |
@@ -407,10 +410,8 @@ function MathTan(x) { |
// 1 ulp (unit in the last place). |
// |
// Constants: |
-// The hexadecimal values are the intended ones for the following |
-// constants. The decimal values may be used, provided that the |
-// compiler will convert from decimal to binary accurately enough |
-// to produce the hexadecimal values shown. |
+// Constants are found in fdlibm.cc. We assume the C++ compiler to convert |
+// from decimal to binary accurately enough to produce the intended values. |
// |
// Note: Assuming log() return accurate answer, the following |
// algorithm can be used to compute log1p(x) to within a few ULP: |
@@ -425,7 +426,7 @@ const LN2_HI = kMath[34]; |
const LN2_LO = kMath[35]; |
const TWO54 = kMath[36]; |
const TWO_THIRD = kMath[37]; |
-macro KLOGP1(x) |
+macro KLOG1P(x) |
Raymond Toy
2014/08/13 16:25:17
What changed here? And how is this related to expm
|
(kMath[38+x]) |
endmacro |
@@ -507,12 +508,205 @@ function MathLog1p(x) { |
var s = f / (2 + f); |
var z = s * s; |
- var R = z * (KLOGP1(0) + z * (KLOGP1(1) + z * |
- (KLOGP1(2) + z * (KLOGP1(3) + z * |
- (KLOGP1(4) + z * (KLOGP1(5) + z * KLOGP1(6))))))); |
+ var R = z * (KLOG1P(0) + z * (KLOG1P(1) + z * |
+ (KLOG1P(2) + z * (KLOG1P(3) + z * |
+ (KLOG1P(4) + z * (KLOG1P(5) + z * KLOG1P(6))))))); |
Raymond Toy
2014/08/13 16:25:17
This seems unrelated to expm1. And I can't see wha
Yang
2014/08/20 14:18:24
it used to be KLOGP1. I realized that it should be
Raymond Toy
2014/08/20 16:18:20
Sounds good. Sorry I missed that in the review of
|
if (k === 0) { |
return f - (hfsq - s * (hfsq + R)); |
} else { |
return k * LN2_HI - ((hfsq - (s * (hfsq + R) + (k * LN2_LO + c))) - f); |
} |
} |
+ |
+// ES6 draft 09-27-13, section 20.2.2.14. |
+// Math.expm1 |
+// Returns exp(x)-1, the exponential of x minus 1. |
+// |
+// Method |
+// 1. Argument reduction: |
+// Given x, find r and integer k such that |
+// |
+// x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 |
+// |
+// Here a correction term c will be computed to compensate |
+// the error in r when rounded to a floating-point number. |
+// |
+// 2. Approximating expm1(r) by a special rational function on |
+// the interval [0,0.34658]: |
+// Since |
+// r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... |
+// we define R1(r*r) by |
+// r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) |
+// That is, |
+// R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) |
+// = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) |
+// = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... |
+// We use a special Remes algorithm on [0,0.347] to generate |
+// a polynomial of degree 5 in r*r to approximate R1. The |
+// maximum error of this polynomial approximation is bounded |
+// by 2**-61. In other words, |
+// R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 |
+// where Q1 = -1.6666666666666567384E-2, |
+// Q2 = 3.9682539681370365873E-4, |
+// Q3 = -9.9206344733435987357E-6, |
+// Q4 = 2.5051361420808517002E-7, |
+// Q5 = -6.2843505682382617102E-9; |
+// (where z=r*r, and the values of Q1 to Q5 are listed below) |
+// with error bounded by |
+// | 5 | -61 |
+// | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 |
+// | | |
+// |
+// expm1(r) = exp(r)-1 is then computed by the following |
+// specific way which minimize the accumulation rounding error: |
+// 2 3 |
+// r r [ 3 - (R1 + R1*r/2) ] |
+// expm1(r) = r + --- + --- * [--------------------] |
+// 2 2 [ 6 - r*(3 - R1*r/2) ] |
+// |
+// To compensate the error in the argument reduction, we use |
+// expm1(r+c) = expm1(r) + c + expm1(r)*c |
+// ~ expm1(r) + c + r*c |
+// Thus c+r*c will be added in as the correction terms for |
+// expm1(r+c). Now rearrange the term to avoid optimization |
+// screw up: |
+// ( 2 2 ) |
+// ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) |
+// expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) |
+// ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) |
+// ( ) |
+// |
+// = r - E |
+// 3. Scale back to obtain expm1(x): |
+// From step 1, we have |
+// expm1(x) = either 2^k*[expm1(r)+1] - 1 |
+// = or 2^k*[expm1(r) + (1-2^-k)] |
+// 4. Implementation notes: |
+// (A). To save one multiplication, we scale the coefficient Qi |
+// to Qi*2^i, and replace z by (x^2)/2. |
+// (B). To achieve maximum accuracy, we compute expm1(x) by |
+// (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) |
+// (ii) if k=0, return r-E |
+// (iii) if k=-1, return 0.5*(r-E)-0.5 |
+// (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) |
+// else return 1.0+2.0*(r-E); |
+// (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) |
+// (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else |
+// (vii) return 2^k(1-((E+2^-k)-r)) |
+// |
+// Special cases: |
+// expm1(INF) is INF, expm1(NaN) is NaN; |
+// expm1(-INF) is -1, and |
+// for finite argument, only expm1(0)=0 is exact. |
+// |
+// Accuracy: |
+// according to an error analysis, the error is always less than |
+// 1 ulp (unit in the last place). |
+// |
+// Misc. info. |
+// For IEEE double |
+// if x > 7.09782712893383973096e+02 then expm1(x) overflow |
+// |
+const KEXPM1_OVERFLOW = kMath[45]; |
+const INVLN2 = kMath[46]; |
+macro KEXPM1(x) |
+(kMath[47+x]) |
+endmacro |
+ |
+function MathExpm1(x) { |
+ x = x * 1; // Convert to number. |
+ var y; |
+ var hi; |
+ var lo; |
+ var k; |
+ var t; |
+ var c; |
+ |
+ var hx = %_DoubleHi(x); |
+ var xsb = hx & 0x80000000; // Sign bit of x |
+ var y = (xsb === 0) ? x : -x; // y = |x| |
+ hx &= 0x7fffffff; // High word of |x| |
+ |
+ // Filter out huge and non-finite argument |
+ if (hx >= 0x4043687a) { // if |x| ~=> 56 * ln2 |
+ if (hx >= 0x40862e42) { // if |x| >= 709.78 |
+ if (hx >= 0x7ff00000) { |
+ // expm1(inf) = inf; expm1(-inf) = -1; expm1(nan) = nan; |
+ return (x === -INFINITY) ? -1 : x; |
+ } |
+ if (x > KEXPM1_OVERFLOW) return INFINITY; // Overflow |
+ } |
+ if (xsb != 0) return -1; // x < -56 * ln2, return -1. |
+ } |
+ |
+ // Argument reduction |
+ if (hx > 0x3fd62e42) { // if |x| > 0.5 * ln2 |
+ if (hx < 0x3ff0a2b2) { // and |x| < 1.5 * ln2 |
+ if (xsb === 0) { |
+ hi = x - LN2_HI; |
+ lo = LN2_LO; |
+ k = 1; |
+ } else { |
+ hi = x + LN2_HI; |
+ lo = -LN2_LO; |
+ k = -1; |
+ } |
+ } else { |
+ k = (INVLN2 * x + ((xsb === 0) ? 0.5 : -0.5)) | 0; |
+ t = k; |
+ // t * ln2_hi is exact here. |
+ hi = x - t * LN2_HI; |
+ lo = t * LN2_LO; |
+ } |
+ x = hi - lo; |
+ c = (hi - x) - lo; |
+ } else if (hx < 0x3c900000) { |
+ // When |x| < 2^-54, we can return x. |
+ return x; |
+ } else { |
+ // Fall through. |
+ k = 0; |
+ } |
+ |
+ // x is now in primary range |
+ var hfx = 0.5 * x; |
+ var hxs = x * hfx; |
+ var r1 = 1 + hxs * (KEXPM1(0) + hxs * (KEXPM1(1) + hxs * |
+ (KEXPM1(2) + hxs * (KEXPM1(3) + hxs * KEXPM1(4))))); |
+ t = 3 - r1 * hfx; |
+ var e = hxs * ((r1 - t) / (6 - x * t)); |
+ if (k === 0) { // c is 0 |
+ return x - (x*e - hxs); |
+ } else { |
+ e = (x * (e - c) - c); |
+ e -= hxs; |
+ if (k === -1) return 0.5 * (x - e) - 0.5; |
+ if (k === 1) { |
+ if (x < -0.25) return -2 * (e - (x + 0.5)); |
+ return 1 + 2 * (x - e); |
+ } |
+ |
+ if (k <= -2 || k > 56) { |
+ // suffice to return exp(x) + 1 |
+ y = 1 - (e - x); |
+ // Add k to y's exponent |
+ y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y)); |
+ return y - 1; |
+ } |
+ if (k < 20) { |
+ // t = 1 - 2^k |
+ t = %_ConstructDouble(0x3ff00000 - (0x200000 >> k), 0); |
+ y = t - (e - x); |
+ // Add k to y's exponent |
+ y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y)); |
+ } else { |
+ // t = 2^-k |
+ t = %_ConstructDouble((0x3ff - k) << 20, 0); |
+ y = x - (e + t); |
+ y += 1; |
+ // Add k to y's exponent |
+ y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y)); |
+ } |
+ } |
+ return y; |
+} |