Chromium Code Reviews| Index: third_party/fdlibm/fdlibm.js |
| diff --git a/third_party/fdlibm/fdlibm.js b/third_party/fdlibm/fdlibm.js |
| index a55b7c70c8a0f11e4a8721f52a6a78ca65ad8147..9bdd97923317cd8c316819529c7c008e359005ff 100644 |
| --- a/third_party/fdlibm/fdlibm.js |
| +++ b/third_party/fdlibm/fdlibm.js |
| @@ -1,7 +1,7 @@ |
| // The following is adapted from fdlibm (http://www.netlib.org/fdlibm), |
| // |
| // ==================================================== |
| -// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| +// Copyright (C) 1993-2004 by Sun Microsystems, Inc. All rights reserved. |
| // |
| // Developed at SunSoft, a Sun Microsystems, Inc. business. |
| // Permission to use, copy, modify, and distribute this |
| @@ -16,8 +16,11 @@ |
| // The following is a straightforward translation of fdlibm routines |
| // by Raymond Toy (rtoy@google.com). |
| - |
| -var kMath; // Initialized to a Float64Array during genesis and is not writable. |
| +// Double constants that do not have empty lower 32 bits are found in fdlibm.cc |
| +// and exposed through kMath as typed array. We assume the compiler to convert |
| +// from decimal to binary accurately enough to produce the intended values. |
| +// kMath is initialized to a Float64Array during genesis and not writable. |
| +var kMath; |
| const INVPIO2 = kMath[0]; |
| const PIO2_1 = kMath[1]; |
| @@ -407,10 +410,8 @@ function MathTan(x) { |
| // 1 ulp (unit in the last place). |
| // |
| // Constants: |
| -// The hexadecimal values are the intended ones for the following |
| -// constants. The decimal values may be used, provided that the |
| -// compiler will convert from decimal to binary accurately enough |
| -// to produce the hexadecimal values shown. |
| +// Constants are found in fdlibm.cc. We assume the C++ compiler to convert |
| +// from decimal to binary accurately enough to produce the intended values. |
| // |
| // Note: Assuming log() return accurate answer, the following |
| // algorithm can be used to compute log1p(x) to within a few ULP: |
| @@ -425,7 +426,7 @@ const LN2_HI = kMath[34]; |
| const LN2_LO = kMath[35]; |
| const TWO54 = kMath[36]; |
| const TWO_THIRD = kMath[37]; |
| -macro KLOGP1(x) |
| +macro KLOG1P(x) |
|
Raymond Toy
2014/08/13 16:25:17
What changed here? And how is this related to expm
|
| (kMath[38+x]) |
| endmacro |
| @@ -507,12 +508,205 @@ function MathLog1p(x) { |
| var s = f / (2 + f); |
| var z = s * s; |
| - var R = z * (KLOGP1(0) + z * (KLOGP1(1) + z * |
| - (KLOGP1(2) + z * (KLOGP1(3) + z * |
| - (KLOGP1(4) + z * (KLOGP1(5) + z * KLOGP1(6))))))); |
| + var R = z * (KLOG1P(0) + z * (KLOG1P(1) + z * |
| + (KLOG1P(2) + z * (KLOG1P(3) + z * |
| + (KLOG1P(4) + z * (KLOG1P(5) + z * KLOG1P(6))))))); |
|
Raymond Toy
2014/08/13 16:25:17
This seems unrelated to expm1. And I can't see wha
Yang
2014/08/20 14:18:24
it used to be KLOGP1. I realized that it should be
Raymond Toy
2014/08/20 16:18:20
Sounds good. Sorry I missed that in the review of
|
| if (k === 0) { |
| return f - (hfsq - s * (hfsq + R)); |
| } else { |
| return k * LN2_HI - ((hfsq - (s * (hfsq + R) + (k * LN2_LO + c))) - f); |
| } |
| } |
| + |
| +// ES6 draft 09-27-13, section 20.2.2.14. |
| +// Math.expm1 |
| +// Returns exp(x)-1, the exponential of x minus 1. |
| +// |
| +// Method |
| +// 1. Argument reduction: |
| +// Given x, find r and integer k such that |
| +// |
| +// x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 |
| +// |
| +// Here a correction term c will be computed to compensate |
| +// the error in r when rounded to a floating-point number. |
| +// |
| +// 2. Approximating expm1(r) by a special rational function on |
| +// the interval [0,0.34658]: |
| +// Since |
| +// r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... |
| +// we define R1(r*r) by |
| +// r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) |
| +// That is, |
| +// R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) |
| +// = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) |
| +// = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... |
| +// We use a special Remes algorithm on [0,0.347] to generate |
| +// a polynomial of degree 5 in r*r to approximate R1. The |
| +// maximum error of this polynomial approximation is bounded |
| +// by 2**-61. In other words, |
| +// R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 |
| +// where Q1 = -1.6666666666666567384E-2, |
| +// Q2 = 3.9682539681370365873E-4, |
| +// Q3 = -9.9206344733435987357E-6, |
| +// Q4 = 2.5051361420808517002E-7, |
| +// Q5 = -6.2843505682382617102E-9; |
| +// (where z=r*r, and the values of Q1 to Q5 are listed below) |
| +// with error bounded by |
| +// | 5 | -61 |
| +// | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 |
| +// | | |
| +// |
| +// expm1(r) = exp(r)-1 is then computed by the following |
| +// specific way which minimize the accumulation rounding error: |
| +// 2 3 |
| +// r r [ 3 - (R1 + R1*r/2) ] |
| +// expm1(r) = r + --- + --- * [--------------------] |
| +// 2 2 [ 6 - r*(3 - R1*r/2) ] |
| +// |
| +// To compensate the error in the argument reduction, we use |
| +// expm1(r+c) = expm1(r) + c + expm1(r)*c |
| +// ~ expm1(r) + c + r*c |
| +// Thus c+r*c will be added in as the correction terms for |
| +// expm1(r+c). Now rearrange the term to avoid optimization |
| +// screw up: |
| +// ( 2 2 ) |
| +// ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) |
| +// expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) |
| +// ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) |
| +// ( ) |
| +// |
| +// = r - E |
| +// 3. Scale back to obtain expm1(x): |
| +// From step 1, we have |
| +// expm1(x) = either 2^k*[expm1(r)+1] - 1 |
| +// = or 2^k*[expm1(r) + (1-2^-k)] |
| +// 4. Implementation notes: |
| +// (A). To save one multiplication, we scale the coefficient Qi |
| +// to Qi*2^i, and replace z by (x^2)/2. |
| +// (B). To achieve maximum accuracy, we compute expm1(x) by |
| +// (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) |
| +// (ii) if k=0, return r-E |
| +// (iii) if k=-1, return 0.5*(r-E)-0.5 |
| +// (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) |
| +// else return 1.0+2.0*(r-E); |
| +// (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) |
| +// (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else |
| +// (vii) return 2^k(1-((E+2^-k)-r)) |
| +// |
| +// Special cases: |
| +// expm1(INF) is INF, expm1(NaN) is NaN; |
| +// expm1(-INF) is -1, and |
| +// for finite argument, only expm1(0)=0 is exact. |
| +// |
| +// Accuracy: |
| +// according to an error analysis, the error is always less than |
| +// 1 ulp (unit in the last place). |
| +// |
| +// Misc. info. |
| +// For IEEE double |
| +// if x > 7.09782712893383973096e+02 then expm1(x) overflow |
| +// |
| +const KEXPM1_OVERFLOW = kMath[45]; |
| +const INVLN2 = kMath[46]; |
| +macro KEXPM1(x) |
| +(kMath[47+x]) |
| +endmacro |
| + |
| +function MathExpm1(x) { |
| + x = x * 1; // Convert to number. |
| + var y; |
| + var hi; |
| + var lo; |
| + var k; |
| + var t; |
| + var c; |
| + |
| + var hx = %_DoubleHi(x); |
| + var xsb = hx & 0x80000000; // Sign bit of x |
| + var y = (xsb === 0) ? x : -x; // y = |x| |
| + hx &= 0x7fffffff; // High word of |x| |
| + |
| + // Filter out huge and non-finite argument |
| + if (hx >= 0x4043687a) { // if |x| ~=> 56 * ln2 |
| + if (hx >= 0x40862e42) { // if |x| >= 709.78 |
| + if (hx >= 0x7ff00000) { |
| + // expm1(inf) = inf; expm1(-inf) = -1; expm1(nan) = nan; |
| + return (x === -INFINITY) ? -1 : x; |
| + } |
| + if (x > KEXPM1_OVERFLOW) return INFINITY; // Overflow |
| + } |
| + if (xsb != 0) return -1; // x < -56 * ln2, return -1. |
| + } |
| + |
| + // Argument reduction |
| + if (hx > 0x3fd62e42) { // if |x| > 0.5 * ln2 |
| + if (hx < 0x3ff0a2b2) { // and |x| < 1.5 * ln2 |
| + if (xsb === 0) { |
| + hi = x - LN2_HI; |
| + lo = LN2_LO; |
| + k = 1; |
| + } else { |
| + hi = x + LN2_HI; |
| + lo = -LN2_LO; |
| + k = -1; |
| + } |
| + } else { |
| + k = (INVLN2 * x + ((xsb === 0) ? 0.5 : -0.5)) | 0; |
| + t = k; |
| + // t * ln2_hi is exact here. |
| + hi = x - t * LN2_HI; |
| + lo = t * LN2_LO; |
| + } |
| + x = hi - lo; |
| + c = (hi - x) - lo; |
| + } else if (hx < 0x3c900000) { |
| + // When |x| < 2^-54, we can return x. |
| + return x; |
| + } else { |
| + // Fall through. |
| + k = 0; |
| + } |
| + |
| + // x is now in primary range |
| + var hfx = 0.5 * x; |
| + var hxs = x * hfx; |
| + var r1 = 1 + hxs * (KEXPM1(0) + hxs * (KEXPM1(1) + hxs * |
| + (KEXPM1(2) + hxs * (KEXPM1(3) + hxs * KEXPM1(4))))); |
| + t = 3 - r1 * hfx; |
| + var e = hxs * ((r1 - t) / (6 - x * t)); |
| + if (k === 0) { // c is 0 |
| + return x - (x*e - hxs); |
| + } else { |
| + e = (x * (e - c) - c); |
| + e -= hxs; |
| + if (k === -1) return 0.5 * (x - e) - 0.5; |
| + if (k === 1) { |
| + if (x < -0.25) return -2 * (e - (x + 0.5)); |
| + return 1 + 2 * (x - e); |
| + } |
| + |
| + if (k <= -2 || k > 56) { |
| + // suffice to return exp(x) + 1 |
| + y = 1 - (e - x); |
| + // Add k to y's exponent |
| + y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y)); |
| + return y - 1; |
| + } |
| + if (k < 20) { |
| + // t = 1 - 2^k |
| + t = %_ConstructDouble(0x3ff00000 - (0x200000 >> k), 0); |
| + y = t - (e - x); |
| + // Add k to y's exponent |
| + y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y)); |
| + } else { |
| + // t = 2^-k |
| + t = %_ConstructDouble((0x3ff - k) << 20, 0); |
| + y = x - (e + t); |
| + y += 1; |
| + // Add k to y's exponent |
| + y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y)); |
| + } |
| + } |
| + return y; |
| +} |