Index: test/mjsunit/es6/math-expm1.js |
diff --git a/test/mjsunit/es6/math-expm1.js b/test/mjsunit/es6/math-expm1.js |
index b4e31a959b10bf2d746d0a393ac0a85e307ccd73..7cbb1b485f241521e5428d3e11339a5b55a4adb4 100644 |
--- a/test/mjsunit/es6/math-expm1.js |
+++ b/test/mjsunit/es6/math-expm1.js |
@@ -8,19 +8,22 @@ assertTrue(isNaN(Math.expm1(NaN))); |
assertTrue(isNaN(Math.expm1(function() {}))); |
assertTrue(isNaN(Math.expm1({ toString: function() { return NaN; } }))); |
assertTrue(isNaN(Math.expm1({ valueOf: function() { return "abc"; } }))); |
-assertEquals("Infinity", String(1/Math.expm1(0))); |
-assertEquals("-Infinity", String(1/Math.expm1(-0))); |
-assertEquals("Infinity", String(Math.expm1(Infinity))); |
+assertEquals(Infinity, 1/Math.expm1(0)); |
+assertEquals(-Infinity, 1/Math.expm1(-0)); |
+assertEquals(Infinity, Math.expm1(Infinity)); |
assertEquals(-1, Math.expm1(-Infinity)); |
-for (var x = 0.1; x < 700; x += 0.1) { |
+ |
+// Sanity check: |
+// Math.expm1(x) stays reasonably close to Math.exp(x) - 1 for large values. |
+for (var x = 1; x < 700; x += 0.25) { |
var expected = Math.exp(x) - 1; |
- assertEqualsDelta(expected, Math.expm1(x), expected * 1E-14); |
+ assertEqualsDelta(expected, Math.expm1(x), expected * 1E-15); |
expected = Math.exp(-x) - 1; |
- assertEqualsDelta(expected, Math.expm1(-x), -expected * 1E-14); |
+ assertEqualsDelta(expected, Math.expm1(-x), -expected * 1E-15); |
} |
Raymond Toy
2014/08/13 16:25:17
For an additional sanity check, why not use the ma
Yang
2014/08/20 14:18:24
I like the suggestion. However, n*Math.LN2 is less
Raymond Toy
2014/08/20 16:18:20
It has the great advantage that the test is indepe
|
-// Values close to 0: |
+// Approximation for values close to 0: |
// Use six terms of Taylor expansion at 0 for exp(x) as test expectation: |
// exp(x) - 1 == exp(0) + exp(0) * x + x * x / 2 + ... - 1 |
// == x + x * x / 2 + x * x * x / 6 + ... |
@@ -32,7 +35,44 @@ function expm1(x) { |
1/362880 + x * (1/3628800)))))))))); |
} |
+// Sanity check: |
+// Math.expm1(x) stays reasonabliy close to the Taylor series for small values. |
for (var x = 1E-1; x > 1E-300; x *= 0.8) { |
var expected = expm1(x); |
- assertEqualsDelta(expected, Math.expm1(x), expected * 1E-14); |
+ assertEqualsDelta(expected, Math.expm1(x), expected * 1E-15); |
} |
+ |
+ |
+// Tests related to the fdlibm implementation. |
+// Test overflow. |
+assertEquals(Infinity, Math.expm1(709.8)); |
+// Test largest double value. |
+assertEquals(Infinity, Math.exp(1.7976931348623157e308)); |
+// Cover various code paths. |
+assertEquals(-1, Math.expm1(-56 * Math.LN2)); |
+assertEquals(-1, Math.expm1(-50)); |
+// Test most negative double value. |
+assertEquals(-1, Math.expm1(-1.7976931348623157e308)); |
+// Test argument reduction. |
+// Cases for 0.5*log(2) < |x| < 1.5*log(2). |
+assertEquals(Math.E - 1, Math.expm1(1)); |
+assertEquals(1/Math.E - 1, Math.expm1(-1)); |
+// Cases for 1.5*log(2) < |x|. |
+assertEquals(6.38905609893065, Math.expm1(2)); |
+assertEquals(-0.8646647167633873, Math.expm1(-2)); |
+// Cases where Math.expm1(x) = x. |
+assertEquals(0, Math.expm1(0)); |
+assertEquals(Math.pow(2,-55), Math.expm1(Math.pow(2,-55))); |
+// Tests for the case where argument reduction has x in the primary range. |
+// Test branch for k = 0. |
+assertEquals(0.18920711500272105, Math.expm1(0.25 * Math.LN2)); |
+// Test branch for k = -1. |
+assertEquals(-0.5, Math.expm1(-Math.LN2)); |
+// Test branch for k = 1. |
+assertEquals(1, Math.expm1(Math.LN2)); |
+// Test branch for k <= -2 || k > 56. k = -3. |
+assertEquals(1.4411518807585582e17, Math.expm1(57 * Math.LN2)); |
+// Test last branch for k < 20, k = 19. |
+assertEquals(524286.99999999994, Math.expm1(19 * Math.LN2)); |
+// Test the else branch, k = 20. |
+assertEquals(1048575, Math.expm1(20 * Math.LN2)); |