| Index: src/store-buffer.cc
|
| diff --git a/src/store-buffer.cc b/src/store-buffer.cc
|
| deleted file mode 100644
|
| index 7f1065083a4b75e0d54515ef36cb353eaf35ff6d..0000000000000000000000000000000000000000
|
| --- a/src/store-buffer.cc
|
| +++ /dev/null
|
| @@ -1,601 +0,0 @@
|
| -// Copyright 2011 the V8 project authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include "src/store-buffer.h"
|
| -
|
| -#include <algorithm>
|
| -
|
| -#include "src/v8.h"
|
| -
|
| -#include "src/base/atomicops.h"
|
| -#include "src/counters.h"
|
| -#include "src/store-buffer-inl.h"
|
| -
|
| -namespace v8 {
|
| -namespace internal {
|
| -
|
| -StoreBuffer::StoreBuffer(Heap* heap)
|
| - : heap_(heap),
|
| - start_(NULL),
|
| - limit_(NULL),
|
| - old_start_(NULL),
|
| - old_limit_(NULL),
|
| - old_top_(NULL),
|
| - old_reserved_limit_(NULL),
|
| - old_buffer_is_sorted_(false),
|
| - old_buffer_is_filtered_(false),
|
| - during_gc_(false),
|
| - store_buffer_rebuilding_enabled_(false),
|
| - callback_(NULL),
|
| - may_move_store_buffer_entries_(true),
|
| - virtual_memory_(NULL),
|
| - hash_set_1_(NULL),
|
| - hash_set_2_(NULL),
|
| - hash_sets_are_empty_(true) {
|
| -}
|
| -
|
| -
|
| -void StoreBuffer::SetUp() {
|
| - virtual_memory_ = new base::VirtualMemory(kStoreBufferSize * 3);
|
| - uintptr_t start_as_int =
|
| - reinterpret_cast<uintptr_t>(virtual_memory_->address());
|
| - start_ =
|
| - reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize * 2));
|
| - limit_ = start_ + (kStoreBufferSize / kPointerSize);
|
| -
|
| - old_virtual_memory_ =
|
| - new base::VirtualMemory(kOldStoreBufferLength * kPointerSize);
|
| - old_top_ = old_start_ =
|
| - reinterpret_cast<Address*>(old_virtual_memory_->address());
|
| - // Don't know the alignment requirements of the OS, but it is certainly not
|
| - // less than 0xfff.
|
| - DCHECK((reinterpret_cast<uintptr_t>(old_start_) & 0xfff) == 0);
|
| - int initial_length =
|
| - static_cast<int>(base::OS::CommitPageSize() / kPointerSize);
|
| - DCHECK(initial_length > 0);
|
| - DCHECK(initial_length <= kOldStoreBufferLength);
|
| - old_limit_ = old_start_ + initial_length;
|
| - old_reserved_limit_ = old_start_ + kOldStoreBufferLength;
|
| -
|
| - CHECK(old_virtual_memory_->Commit(
|
| - reinterpret_cast<void*>(old_start_),
|
| - (old_limit_ - old_start_) * kPointerSize,
|
| - false));
|
| -
|
| - DCHECK(reinterpret_cast<Address>(start_) >= virtual_memory_->address());
|
| - DCHECK(reinterpret_cast<Address>(limit_) >= virtual_memory_->address());
|
| - Address* vm_limit = reinterpret_cast<Address*>(
|
| - reinterpret_cast<char*>(virtual_memory_->address()) +
|
| - virtual_memory_->size());
|
| - DCHECK(start_ <= vm_limit);
|
| - DCHECK(limit_ <= vm_limit);
|
| - USE(vm_limit);
|
| - DCHECK((reinterpret_cast<uintptr_t>(limit_) & kStoreBufferOverflowBit) != 0);
|
| - DCHECK((reinterpret_cast<uintptr_t>(limit_ - 1) & kStoreBufferOverflowBit) ==
|
| - 0);
|
| -
|
| - CHECK(virtual_memory_->Commit(reinterpret_cast<Address>(start_),
|
| - kStoreBufferSize,
|
| - false)); // Not executable.
|
| - heap_->public_set_store_buffer_top(start_);
|
| -
|
| - hash_set_1_ = new uintptr_t[kHashSetLength];
|
| - hash_set_2_ = new uintptr_t[kHashSetLength];
|
| - hash_sets_are_empty_ = false;
|
| -
|
| - ClearFilteringHashSets();
|
| -}
|
| -
|
| -
|
| -void StoreBuffer::TearDown() {
|
| - delete virtual_memory_;
|
| - delete old_virtual_memory_;
|
| - delete[] hash_set_1_;
|
| - delete[] hash_set_2_;
|
| - old_start_ = old_top_ = old_limit_ = old_reserved_limit_ = NULL;
|
| - start_ = limit_ = NULL;
|
| - heap_->public_set_store_buffer_top(start_);
|
| -}
|
| -
|
| -
|
| -void StoreBuffer::StoreBufferOverflow(Isolate* isolate) {
|
| - isolate->heap()->store_buffer()->Compact();
|
| - isolate->counters()->store_buffer_overflows()->Increment();
|
| -}
|
| -
|
| -
|
| -void StoreBuffer::Uniq() {
|
| - // Remove adjacent duplicates and cells that do not point at new space.
|
| - Address previous = NULL;
|
| - Address* write = old_start_;
|
| - DCHECK(may_move_store_buffer_entries_);
|
| - for (Address* read = old_start_; read < old_top_; read++) {
|
| - Address current = *read;
|
| - if (current != previous) {
|
| - if (heap_->InNewSpace(*reinterpret_cast<Object**>(current))) {
|
| - *write++ = current;
|
| - }
|
| - }
|
| - previous = current;
|
| - }
|
| - old_top_ = write;
|
| -}
|
| -
|
| -
|
| -bool StoreBuffer::SpaceAvailable(intptr_t space_needed) {
|
| - return old_limit_ - old_top_ >= space_needed;
|
| -}
|
| -
|
| -
|
| -void StoreBuffer::EnsureSpace(intptr_t space_needed) {
|
| - while (old_limit_ - old_top_ < space_needed &&
|
| - old_limit_ < old_reserved_limit_) {
|
| - size_t grow = old_limit_ - old_start_; // Double size.
|
| - CHECK(old_virtual_memory_->Commit(reinterpret_cast<void*>(old_limit_),
|
| - grow * kPointerSize,
|
| - false));
|
| - old_limit_ += grow;
|
| - }
|
| -
|
| - if (SpaceAvailable(space_needed)) return;
|
| -
|
| - if (old_buffer_is_filtered_) return;
|
| - DCHECK(may_move_store_buffer_entries_);
|
| - Compact();
|
| -
|
| - old_buffer_is_filtered_ = true;
|
| - bool page_has_scan_on_scavenge_flag = false;
|
| -
|
| - PointerChunkIterator it(heap_);
|
| - MemoryChunk* chunk;
|
| - while ((chunk = it.next()) != NULL) {
|
| - if (chunk->scan_on_scavenge()) {
|
| - page_has_scan_on_scavenge_flag = true;
|
| - break;
|
| - }
|
| - }
|
| -
|
| - if (page_has_scan_on_scavenge_flag) {
|
| - Filter(MemoryChunk::SCAN_ON_SCAVENGE);
|
| - }
|
| -
|
| - if (SpaceAvailable(space_needed)) return;
|
| -
|
| - // Sample 1 entry in 97 and filter out the pages where we estimate that more
|
| - // than 1 in 8 pointers are to new space.
|
| - static const int kSampleFinenesses = 5;
|
| - static const struct Samples {
|
| - int prime_sample_step;
|
| - int threshold;
|
| - } samples[kSampleFinenesses] = {
|
| - { 97, ((Page::kPageSize / kPointerSize) / 97) / 8 },
|
| - { 23, ((Page::kPageSize / kPointerSize) / 23) / 16 },
|
| - { 7, ((Page::kPageSize / kPointerSize) / 7) / 32 },
|
| - { 3, ((Page::kPageSize / kPointerSize) / 3) / 256 },
|
| - { 1, 0}
|
| - };
|
| - for (int i = 0; i < kSampleFinenesses; i++) {
|
| - ExemptPopularPages(samples[i].prime_sample_step, samples[i].threshold);
|
| - // As a last resort we mark all pages as being exempt from the store buffer.
|
| - DCHECK(i != (kSampleFinenesses - 1) || old_top_ == old_start_);
|
| - if (SpaceAvailable(space_needed)) return;
|
| - }
|
| - UNREACHABLE();
|
| -}
|
| -
|
| -
|
| -// Sample the store buffer to see if some pages are taking up a lot of space
|
| -// in the store buffer.
|
| -void StoreBuffer::ExemptPopularPages(int prime_sample_step, int threshold) {
|
| - PointerChunkIterator it(heap_);
|
| - MemoryChunk* chunk;
|
| - while ((chunk = it.next()) != NULL) {
|
| - chunk->set_store_buffer_counter(0);
|
| - }
|
| - bool created_new_scan_on_scavenge_pages = false;
|
| - MemoryChunk* previous_chunk = NULL;
|
| - for (Address* p = old_start_; p < old_top_; p += prime_sample_step) {
|
| - Address addr = *p;
|
| - MemoryChunk* containing_chunk = NULL;
|
| - if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
|
| - containing_chunk = previous_chunk;
|
| - } else {
|
| - containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr);
|
| - }
|
| - int old_counter = containing_chunk->store_buffer_counter();
|
| - if (old_counter >= threshold) {
|
| - containing_chunk->set_scan_on_scavenge(true);
|
| - created_new_scan_on_scavenge_pages = true;
|
| - }
|
| - containing_chunk->set_store_buffer_counter(old_counter + 1);
|
| - previous_chunk = containing_chunk;
|
| - }
|
| - if (created_new_scan_on_scavenge_pages) {
|
| - Filter(MemoryChunk::SCAN_ON_SCAVENGE);
|
| - }
|
| - old_buffer_is_filtered_ = true;
|
| -}
|
| -
|
| -
|
| -void StoreBuffer::Filter(int flag) {
|
| - Address* new_top = old_start_;
|
| - MemoryChunk* previous_chunk = NULL;
|
| - for (Address* p = old_start_; p < old_top_; p++) {
|
| - Address addr = *p;
|
| - MemoryChunk* containing_chunk = NULL;
|
| - if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
|
| - containing_chunk = previous_chunk;
|
| - } else {
|
| - containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr);
|
| - previous_chunk = containing_chunk;
|
| - }
|
| - if (!containing_chunk->IsFlagSet(flag)) {
|
| - *new_top++ = addr;
|
| - }
|
| - }
|
| - old_top_ = new_top;
|
| -
|
| - // Filtering hash sets are inconsistent with the store buffer after this
|
| - // operation.
|
| - ClearFilteringHashSets();
|
| -}
|
| -
|
| -
|
| -void StoreBuffer::SortUniq() {
|
| - Compact();
|
| - if (old_buffer_is_sorted_) return;
|
| - std::sort(old_start_, old_top_);
|
| - Uniq();
|
| -
|
| - old_buffer_is_sorted_ = true;
|
| -
|
| - // Filtering hash sets are inconsistent with the store buffer after this
|
| - // operation.
|
| - ClearFilteringHashSets();
|
| -}
|
| -
|
| -
|
| -bool StoreBuffer::PrepareForIteration() {
|
| - Compact();
|
| - PointerChunkIterator it(heap_);
|
| - MemoryChunk* chunk;
|
| - bool page_has_scan_on_scavenge_flag = false;
|
| - while ((chunk = it.next()) != NULL) {
|
| - if (chunk->scan_on_scavenge()) {
|
| - page_has_scan_on_scavenge_flag = true;
|
| - break;
|
| - }
|
| - }
|
| -
|
| - if (page_has_scan_on_scavenge_flag) {
|
| - Filter(MemoryChunk::SCAN_ON_SCAVENGE);
|
| - }
|
| -
|
| - // Filtering hash sets are inconsistent with the store buffer after
|
| - // iteration.
|
| - ClearFilteringHashSets();
|
| -
|
| - return page_has_scan_on_scavenge_flag;
|
| -}
|
| -
|
| -
|
| -#ifdef DEBUG
|
| -void StoreBuffer::Clean() {
|
| - ClearFilteringHashSets();
|
| - Uniq(); // Also removes things that no longer point to new space.
|
| - EnsureSpace(kStoreBufferSize / 2);
|
| -}
|
| -
|
| -
|
| -static Address* in_store_buffer_1_element_cache = NULL;
|
| -
|
| -
|
| -bool StoreBuffer::CellIsInStoreBuffer(Address cell_address) {
|
| - if (!FLAG_enable_slow_asserts) return true;
|
| - if (in_store_buffer_1_element_cache != NULL &&
|
| - *in_store_buffer_1_element_cache == cell_address) {
|
| - return true;
|
| - }
|
| - Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
|
| - for (Address* current = top - 1; current >= start_; current--) {
|
| - if (*current == cell_address) {
|
| - in_store_buffer_1_element_cache = current;
|
| - return true;
|
| - }
|
| - }
|
| - for (Address* current = old_top_ - 1; current >= old_start_; current--) {
|
| - if (*current == cell_address) {
|
| - in_store_buffer_1_element_cache = current;
|
| - return true;
|
| - }
|
| - }
|
| - return false;
|
| -}
|
| -#endif
|
| -
|
| -
|
| -void StoreBuffer::ClearFilteringHashSets() {
|
| - if (!hash_sets_are_empty_) {
|
| - memset(reinterpret_cast<void*>(hash_set_1_),
|
| - 0,
|
| - sizeof(uintptr_t) * kHashSetLength);
|
| - memset(reinterpret_cast<void*>(hash_set_2_),
|
| - 0,
|
| - sizeof(uintptr_t) * kHashSetLength);
|
| - hash_sets_are_empty_ = true;
|
| - }
|
| -}
|
| -
|
| -
|
| -void StoreBuffer::GCPrologue() {
|
| - ClearFilteringHashSets();
|
| - during_gc_ = true;
|
| -}
|
| -
|
| -
|
| -#ifdef VERIFY_HEAP
|
| -void StoreBuffer::VerifyPointers(LargeObjectSpace* space) {
|
| - LargeObjectIterator it(space);
|
| - for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
|
| - if (object->IsFixedArray()) {
|
| - Address slot_address = object->address();
|
| - Address end = object->address() + object->Size();
|
| -
|
| - while (slot_address < end) {
|
| - HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address);
|
| - // When we are not in GC the Heap::InNewSpace() predicate
|
| - // checks that pointers which satisfy predicate point into
|
| - // the active semispace.
|
| - Object* object = reinterpret_cast<Object*>(
|
| - base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
|
| - heap_->InNewSpace(object);
|
| - slot_address += kPointerSize;
|
| - }
|
| - }
|
| - }
|
| -}
|
| -#endif
|
| -
|
| -
|
| -void StoreBuffer::Verify() {
|
| -#ifdef VERIFY_HEAP
|
| - VerifyPointers(heap_->lo_space());
|
| -#endif
|
| -}
|
| -
|
| -
|
| -void StoreBuffer::GCEpilogue() {
|
| - during_gc_ = false;
|
| -#ifdef VERIFY_HEAP
|
| - if (FLAG_verify_heap) {
|
| - Verify();
|
| - }
|
| -#endif
|
| -}
|
| -
|
| -
|
| -void StoreBuffer::FindPointersToNewSpaceInRegion(
|
| - Address start,
|
| - Address end,
|
| - ObjectSlotCallback slot_callback,
|
| - bool clear_maps) {
|
| - for (Address slot_address = start;
|
| - slot_address < end;
|
| - slot_address += kPointerSize) {
|
| - Object** slot = reinterpret_cast<Object**>(slot_address);
|
| - Object* object = reinterpret_cast<Object*>(
|
| - base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
|
| - if (heap_->InNewSpace(object)) {
|
| - HeapObject* heap_object = reinterpret_cast<HeapObject*>(object);
|
| - DCHECK(heap_object->IsHeapObject());
|
| - // The new space object was not promoted if it still contains a map
|
| - // pointer. Clear the map field now lazily.
|
| - if (clear_maps) ClearDeadObject(heap_object);
|
| - slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object);
|
| - object = reinterpret_cast<Object*>(
|
| - base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
|
| - if (heap_->InNewSpace(object)) {
|
| - EnterDirectlyIntoStoreBuffer(slot_address);
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void StoreBuffer::IteratePointersInStoreBuffer(
|
| - ObjectSlotCallback slot_callback,
|
| - bool clear_maps) {
|
| - Address* limit = old_top_;
|
| - old_top_ = old_start_;
|
| - {
|
| - DontMoveStoreBufferEntriesScope scope(this);
|
| - for (Address* current = old_start_; current < limit; current++) {
|
| -#ifdef DEBUG
|
| - Address* saved_top = old_top_;
|
| -#endif
|
| - Object** slot = reinterpret_cast<Object**>(*current);
|
| - Object* object = reinterpret_cast<Object*>(
|
| - base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
|
| - if (heap_->InFromSpace(object)) {
|
| - HeapObject* heap_object = reinterpret_cast<HeapObject*>(object);
|
| - // The new space object was not promoted if it still contains a map
|
| - // pointer. Clear the map field now lazily.
|
| - if (clear_maps) ClearDeadObject(heap_object);
|
| - slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object);
|
| - object = reinterpret_cast<Object*>(
|
| - base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
|
| - if (heap_->InNewSpace(object)) {
|
| - EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot));
|
| - }
|
| - }
|
| - DCHECK(old_top_ == saved_top + 1 || old_top_ == saved_top);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) {
|
| - IteratePointersToNewSpace(slot_callback, false);
|
| -}
|
| -
|
| -
|
| -void StoreBuffer::IteratePointersToNewSpaceAndClearMaps(
|
| - ObjectSlotCallback slot_callback) {
|
| - IteratePointersToNewSpace(slot_callback, true);
|
| -}
|
| -
|
| -
|
| -void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback,
|
| - bool clear_maps) {
|
| - // We do not sort or remove duplicated entries from the store buffer because
|
| - // we expect that callback will rebuild the store buffer thus removing
|
| - // all duplicates and pointers to old space.
|
| - bool some_pages_to_scan = PrepareForIteration();
|
| -
|
| - // TODO(gc): we want to skip slots on evacuation candidates
|
| - // but we can't simply figure that out from slot address
|
| - // because slot can belong to a large object.
|
| - IteratePointersInStoreBuffer(slot_callback, clear_maps);
|
| -
|
| - // We are done scanning all the pointers that were in the store buffer, but
|
| - // there may be some pages marked scan_on_scavenge that have pointers to new
|
| - // space that are not in the store buffer. We must scan them now. As we
|
| - // scan, the surviving pointers to new space will be added to the store
|
| - // buffer. If there are still a lot of pointers to new space then we will
|
| - // keep the scan_on_scavenge flag on the page and discard the pointers that
|
| - // were added to the store buffer. If there are not many pointers to new
|
| - // space left on the page we will keep the pointers in the store buffer and
|
| - // remove the flag from the page.
|
| - if (some_pages_to_scan) {
|
| - if (callback_ != NULL) {
|
| - (*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent);
|
| - }
|
| - PointerChunkIterator it(heap_);
|
| - MemoryChunk* chunk;
|
| - while ((chunk = it.next()) != NULL) {
|
| - if (chunk->scan_on_scavenge()) {
|
| - chunk->set_scan_on_scavenge(false);
|
| - if (callback_ != NULL) {
|
| - (*callback_)(heap_, chunk, kStoreBufferScanningPageEvent);
|
| - }
|
| - if (chunk->owner() == heap_->lo_space()) {
|
| - LargePage* large_page = reinterpret_cast<LargePage*>(chunk);
|
| - HeapObject* array = large_page->GetObject();
|
| - DCHECK(array->IsFixedArray());
|
| - Address start = array->address();
|
| - Address end = start + array->Size();
|
| - FindPointersToNewSpaceInRegion(start, end, slot_callback, clear_maps);
|
| - } else {
|
| - Page* page = reinterpret_cast<Page*>(chunk);
|
| - PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner());
|
| - Address start = page->area_start();
|
| - Address end = page->area_end();
|
| - if (owner == heap_->map_space()) {
|
| - DCHECK(page->WasSweptPrecisely());
|
| - HeapObjectIterator iterator(page, NULL);
|
| - for (HeapObject* heap_object = iterator.Next(); heap_object != NULL;
|
| - heap_object = iterator.Next()) {
|
| - // We skip free space objects.
|
| - if (!heap_object->IsFiller()) {
|
| - FindPointersToNewSpaceInRegion(
|
| - heap_object->address() + HeapObject::kHeaderSize,
|
| - heap_object->address() + heap_object->Size(), slot_callback,
|
| - clear_maps);
|
| - }
|
| - }
|
| - } else {
|
| - if (!page->SweepingCompleted()) {
|
| - heap_->mark_compact_collector()->SweepInParallel(page, owner);
|
| - if (!page->SweepingCompleted()) {
|
| - // We were not able to sweep that page, i.e., a concurrent
|
| - // sweeper thread currently owns this page.
|
| - // TODO(hpayer): This may introduce a huge pause here. We
|
| - // just care about finish sweeping of the scan on scavenge page.
|
| - heap_->mark_compact_collector()->EnsureSweepingCompleted();
|
| - }
|
| - }
|
| - // TODO(hpayer): remove the special casing and merge map and pointer
|
| - // space handling as soon as we removed conservative sweeping.
|
| - CHECK(page->owner() == heap_->old_pointer_space());
|
| - if (heap_->old_pointer_space()->swept_precisely()) {
|
| - HeapObjectIterator iterator(page, NULL);
|
| - for (HeapObject* heap_object = iterator.Next();
|
| - heap_object != NULL; heap_object = iterator.Next()) {
|
| - // We iterate over objects that contain new space pointers only.
|
| - if (heap_object->MayContainNewSpacePointers()) {
|
| - FindPointersToNewSpaceInRegion(
|
| - heap_object->address() + HeapObject::kHeaderSize,
|
| - heap_object->address() + heap_object->Size(),
|
| - slot_callback, clear_maps);
|
| - }
|
| - }
|
| - } else {
|
| - FindPointersToNewSpaceInRegion(start, end, slot_callback,
|
| - clear_maps);
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| - if (callback_ != NULL) {
|
| - (*callback_)(heap_, NULL, kStoreBufferScanningPageEvent);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void StoreBuffer::Compact() {
|
| - Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
|
| -
|
| - if (top == start_) return;
|
| -
|
| - // There's no check of the limit in the loop below so we check here for
|
| - // the worst case (compaction doesn't eliminate any pointers).
|
| - DCHECK(top <= limit_);
|
| - heap_->public_set_store_buffer_top(start_);
|
| - EnsureSpace(top - start_);
|
| - DCHECK(may_move_store_buffer_entries_);
|
| - // Goes through the addresses in the store buffer attempting to remove
|
| - // duplicates. In the interest of speed this is a lossy operation. Some
|
| - // duplicates will remain. We have two hash sets with different hash
|
| - // functions to reduce the number of unnecessary clashes.
|
| - hash_sets_are_empty_ = false; // Hash sets are in use.
|
| - for (Address* current = start_; current < top; current++) {
|
| - DCHECK(!heap_->cell_space()->Contains(*current));
|
| - DCHECK(!heap_->code_space()->Contains(*current));
|
| - DCHECK(!heap_->old_data_space()->Contains(*current));
|
| - uintptr_t int_addr = reinterpret_cast<uintptr_t>(*current);
|
| - // Shift out the last bits including any tags.
|
| - int_addr >>= kPointerSizeLog2;
|
| - // The upper part of an address is basically random because of ASLR and OS
|
| - // non-determinism, so we use only the bits within a page for hashing to
|
| - // make v8's behavior (more) deterministic.
|
| - uintptr_t hash_addr =
|
| - int_addr & (Page::kPageAlignmentMask >> kPointerSizeLog2);
|
| - int hash1 = ((hash_addr ^ (hash_addr >> kHashSetLengthLog2)) &
|
| - (kHashSetLength - 1));
|
| - if (hash_set_1_[hash1] == int_addr) continue;
|
| - uintptr_t hash2 = (hash_addr - (hash_addr >> kHashSetLengthLog2));
|
| - hash2 ^= hash2 >> (kHashSetLengthLog2 * 2);
|
| - hash2 &= (kHashSetLength - 1);
|
| - if (hash_set_2_[hash2] == int_addr) continue;
|
| - if (hash_set_1_[hash1] == 0) {
|
| - hash_set_1_[hash1] = int_addr;
|
| - } else if (hash_set_2_[hash2] == 0) {
|
| - hash_set_2_[hash2] = int_addr;
|
| - } else {
|
| - // Rather than slowing down we just throw away some entries. This will
|
| - // cause some duplicates to remain undetected.
|
| - hash_set_1_[hash1] = int_addr;
|
| - hash_set_2_[hash2] = 0;
|
| - }
|
| - old_buffer_is_sorted_ = false;
|
| - old_buffer_is_filtered_ = false;
|
| - *old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2);
|
| - DCHECK(old_top_ <= old_limit_);
|
| - }
|
| - heap_->isolate()->counters()->store_buffer_compactions()->Increment();
|
| -}
|
| -
|
| -} } // namespace v8::internal
|
|
|