Index: src/store-buffer.cc |
diff --git a/src/store-buffer.cc b/src/store-buffer.cc |
deleted file mode 100644 |
index 7f1065083a4b75e0d54515ef36cb353eaf35ff6d..0000000000000000000000000000000000000000 |
--- a/src/store-buffer.cc |
+++ /dev/null |
@@ -1,601 +0,0 @@ |
-// Copyright 2011 the V8 project authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#include "src/store-buffer.h" |
- |
-#include <algorithm> |
- |
-#include "src/v8.h" |
- |
-#include "src/base/atomicops.h" |
-#include "src/counters.h" |
-#include "src/store-buffer-inl.h" |
- |
-namespace v8 { |
-namespace internal { |
- |
-StoreBuffer::StoreBuffer(Heap* heap) |
- : heap_(heap), |
- start_(NULL), |
- limit_(NULL), |
- old_start_(NULL), |
- old_limit_(NULL), |
- old_top_(NULL), |
- old_reserved_limit_(NULL), |
- old_buffer_is_sorted_(false), |
- old_buffer_is_filtered_(false), |
- during_gc_(false), |
- store_buffer_rebuilding_enabled_(false), |
- callback_(NULL), |
- may_move_store_buffer_entries_(true), |
- virtual_memory_(NULL), |
- hash_set_1_(NULL), |
- hash_set_2_(NULL), |
- hash_sets_are_empty_(true) { |
-} |
- |
- |
-void StoreBuffer::SetUp() { |
- virtual_memory_ = new base::VirtualMemory(kStoreBufferSize * 3); |
- uintptr_t start_as_int = |
- reinterpret_cast<uintptr_t>(virtual_memory_->address()); |
- start_ = |
- reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize * 2)); |
- limit_ = start_ + (kStoreBufferSize / kPointerSize); |
- |
- old_virtual_memory_ = |
- new base::VirtualMemory(kOldStoreBufferLength * kPointerSize); |
- old_top_ = old_start_ = |
- reinterpret_cast<Address*>(old_virtual_memory_->address()); |
- // Don't know the alignment requirements of the OS, but it is certainly not |
- // less than 0xfff. |
- DCHECK((reinterpret_cast<uintptr_t>(old_start_) & 0xfff) == 0); |
- int initial_length = |
- static_cast<int>(base::OS::CommitPageSize() / kPointerSize); |
- DCHECK(initial_length > 0); |
- DCHECK(initial_length <= kOldStoreBufferLength); |
- old_limit_ = old_start_ + initial_length; |
- old_reserved_limit_ = old_start_ + kOldStoreBufferLength; |
- |
- CHECK(old_virtual_memory_->Commit( |
- reinterpret_cast<void*>(old_start_), |
- (old_limit_ - old_start_) * kPointerSize, |
- false)); |
- |
- DCHECK(reinterpret_cast<Address>(start_) >= virtual_memory_->address()); |
- DCHECK(reinterpret_cast<Address>(limit_) >= virtual_memory_->address()); |
- Address* vm_limit = reinterpret_cast<Address*>( |
- reinterpret_cast<char*>(virtual_memory_->address()) + |
- virtual_memory_->size()); |
- DCHECK(start_ <= vm_limit); |
- DCHECK(limit_ <= vm_limit); |
- USE(vm_limit); |
- DCHECK((reinterpret_cast<uintptr_t>(limit_) & kStoreBufferOverflowBit) != 0); |
- DCHECK((reinterpret_cast<uintptr_t>(limit_ - 1) & kStoreBufferOverflowBit) == |
- 0); |
- |
- CHECK(virtual_memory_->Commit(reinterpret_cast<Address>(start_), |
- kStoreBufferSize, |
- false)); // Not executable. |
- heap_->public_set_store_buffer_top(start_); |
- |
- hash_set_1_ = new uintptr_t[kHashSetLength]; |
- hash_set_2_ = new uintptr_t[kHashSetLength]; |
- hash_sets_are_empty_ = false; |
- |
- ClearFilteringHashSets(); |
-} |
- |
- |
-void StoreBuffer::TearDown() { |
- delete virtual_memory_; |
- delete old_virtual_memory_; |
- delete[] hash_set_1_; |
- delete[] hash_set_2_; |
- old_start_ = old_top_ = old_limit_ = old_reserved_limit_ = NULL; |
- start_ = limit_ = NULL; |
- heap_->public_set_store_buffer_top(start_); |
-} |
- |
- |
-void StoreBuffer::StoreBufferOverflow(Isolate* isolate) { |
- isolate->heap()->store_buffer()->Compact(); |
- isolate->counters()->store_buffer_overflows()->Increment(); |
-} |
- |
- |
-void StoreBuffer::Uniq() { |
- // Remove adjacent duplicates and cells that do not point at new space. |
- Address previous = NULL; |
- Address* write = old_start_; |
- DCHECK(may_move_store_buffer_entries_); |
- for (Address* read = old_start_; read < old_top_; read++) { |
- Address current = *read; |
- if (current != previous) { |
- if (heap_->InNewSpace(*reinterpret_cast<Object**>(current))) { |
- *write++ = current; |
- } |
- } |
- previous = current; |
- } |
- old_top_ = write; |
-} |
- |
- |
-bool StoreBuffer::SpaceAvailable(intptr_t space_needed) { |
- return old_limit_ - old_top_ >= space_needed; |
-} |
- |
- |
-void StoreBuffer::EnsureSpace(intptr_t space_needed) { |
- while (old_limit_ - old_top_ < space_needed && |
- old_limit_ < old_reserved_limit_) { |
- size_t grow = old_limit_ - old_start_; // Double size. |
- CHECK(old_virtual_memory_->Commit(reinterpret_cast<void*>(old_limit_), |
- grow * kPointerSize, |
- false)); |
- old_limit_ += grow; |
- } |
- |
- if (SpaceAvailable(space_needed)) return; |
- |
- if (old_buffer_is_filtered_) return; |
- DCHECK(may_move_store_buffer_entries_); |
- Compact(); |
- |
- old_buffer_is_filtered_ = true; |
- bool page_has_scan_on_scavenge_flag = false; |
- |
- PointerChunkIterator it(heap_); |
- MemoryChunk* chunk; |
- while ((chunk = it.next()) != NULL) { |
- if (chunk->scan_on_scavenge()) { |
- page_has_scan_on_scavenge_flag = true; |
- break; |
- } |
- } |
- |
- if (page_has_scan_on_scavenge_flag) { |
- Filter(MemoryChunk::SCAN_ON_SCAVENGE); |
- } |
- |
- if (SpaceAvailable(space_needed)) return; |
- |
- // Sample 1 entry in 97 and filter out the pages where we estimate that more |
- // than 1 in 8 pointers are to new space. |
- static const int kSampleFinenesses = 5; |
- static const struct Samples { |
- int prime_sample_step; |
- int threshold; |
- } samples[kSampleFinenesses] = { |
- { 97, ((Page::kPageSize / kPointerSize) / 97) / 8 }, |
- { 23, ((Page::kPageSize / kPointerSize) / 23) / 16 }, |
- { 7, ((Page::kPageSize / kPointerSize) / 7) / 32 }, |
- { 3, ((Page::kPageSize / kPointerSize) / 3) / 256 }, |
- { 1, 0} |
- }; |
- for (int i = 0; i < kSampleFinenesses; i++) { |
- ExemptPopularPages(samples[i].prime_sample_step, samples[i].threshold); |
- // As a last resort we mark all pages as being exempt from the store buffer. |
- DCHECK(i != (kSampleFinenesses - 1) || old_top_ == old_start_); |
- if (SpaceAvailable(space_needed)) return; |
- } |
- UNREACHABLE(); |
-} |
- |
- |
-// Sample the store buffer to see if some pages are taking up a lot of space |
-// in the store buffer. |
-void StoreBuffer::ExemptPopularPages(int prime_sample_step, int threshold) { |
- PointerChunkIterator it(heap_); |
- MemoryChunk* chunk; |
- while ((chunk = it.next()) != NULL) { |
- chunk->set_store_buffer_counter(0); |
- } |
- bool created_new_scan_on_scavenge_pages = false; |
- MemoryChunk* previous_chunk = NULL; |
- for (Address* p = old_start_; p < old_top_; p += prime_sample_step) { |
- Address addr = *p; |
- MemoryChunk* containing_chunk = NULL; |
- if (previous_chunk != NULL && previous_chunk->Contains(addr)) { |
- containing_chunk = previous_chunk; |
- } else { |
- containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr); |
- } |
- int old_counter = containing_chunk->store_buffer_counter(); |
- if (old_counter >= threshold) { |
- containing_chunk->set_scan_on_scavenge(true); |
- created_new_scan_on_scavenge_pages = true; |
- } |
- containing_chunk->set_store_buffer_counter(old_counter + 1); |
- previous_chunk = containing_chunk; |
- } |
- if (created_new_scan_on_scavenge_pages) { |
- Filter(MemoryChunk::SCAN_ON_SCAVENGE); |
- } |
- old_buffer_is_filtered_ = true; |
-} |
- |
- |
-void StoreBuffer::Filter(int flag) { |
- Address* new_top = old_start_; |
- MemoryChunk* previous_chunk = NULL; |
- for (Address* p = old_start_; p < old_top_; p++) { |
- Address addr = *p; |
- MemoryChunk* containing_chunk = NULL; |
- if (previous_chunk != NULL && previous_chunk->Contains(addr)) { |
- containing_chunk = previous_chunk; |
- } else { |
- containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr); |
- previous_chunk = containing_chunk; |
- } |
- if (!containing_chunk->IsFlagSet(flag)) { |
- *new_top++ = addr; |
- } |
- } |
- old_top_ = new_top; |
- |
- // Filtering hash sets are inconsistent with the store buffer after this |
- // operation. |
- ClearFilteringHashSets(); |
-} |
- |
- |
-void StoreBuffer::SortUniq() { |
- Compact(); |
- if (old_buffer_is_sorted_) return; |
- std::sort(old_start_, old_top_); |
- Uniq(); |
- |
- old_buffer_is_sorted_ = true; |
- |
- // Filtering hash sets are inconsistent with the store buffer after this |
- // operation. |
- ClearFilteringHashSets(); |
-} |
- |
- |
-bool StoreBuffer::PrepareForIteration() { |
- Compact(); |
- PointerChunkIterator it(heap_); |
- MemoryChunk* chunk; |
- bool page_has_scan_on_scavenge_flag = false; |
- while ((chunk = it.next()) != NULL) { |
- if (chunk->scan_on_scavenge()) { |
- page_has_scan_on_scavenge_flag = true; |
- break; |
- } |
- } |
- |
- if (page_has_scan_on_scavenge_flag) { |
- Filter(MemoryChunk::SCAN_ON_SCAVENGE); |
- } |
- |
- // Filtering hash sets are inconsistent with the store buffer after |
- // iteration. |
- ClearFilteringHashSets(); |
- |
- return page_has_scan_on_scavenge_flag; |
-} |
- |
- |
-#ifdef DEBUG |
-void StoreBuffer::Clean() { |
- ClearFilteringHashSets(); |
- Uniq(); // Also removes things that no longer point to new space. |
- EnsureSpace(kStoreBufferSize / 2); |
-} |
- |
- |
-static Address* in_store_buffer_1_element_cache = NULL; |
- |
- |
-bool StoreBuffer::CellIsInStoreBuffer(Address cell_address) { |
- if (!FLAG_enable_slow_asserts) return true; |
- if (in_store_buffer_1_element_cache != NULL && |
- *in_store_buffer_1_element_cache == cell_address) { |
- return true; |
- } |
- Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top()); |
- for (Address* current = top - 1; current >= start_; current--) { |
- if (*current == cell_address) { |
- in_store_buffer_1_element_cache = current; |
- return true; |
- } |
- } |
- for (Address* current = old_top_ - 1; current >= old_start_; current--) { |
- if (*current == cell_address) { |
- in_store_buffer_1_element_cache = current; |
- return true; |
- } |
- } |
- return false; |
-} |
-#endif |
- |
- |
-void StoreBuffer::ClearFilteringHashSets() { |
- if (!hash_sets_are_empty_) { |
- memset(reinterpret_cast<void*>(hash_set_1_), |
- 0, |
- sizeof(uintptr_t) * kHashSetLength); |
- memset(reinterpret_cast<void*>(hash_set_2_), |
- 0, |
- sizeof(uintptr_t) * kHashSetLength); |
- hash_sets_are_empty_ = true; |
- } |
-} |
- |
- |
-void StoreBuffer::GCPrologue() { |
- ClearFilteringHashSets(); |
- during_gc_ = true; |
-} |
- |
- |
-#ifdef VERIFY_HEAP |
-void StoreBuffer::VerifyPointers(LargeObjectSpace* space) { |
- LargeObjectIterator it(space); |
- for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) { |
- if (object->IsFixedArray()) { |
- Address slot_address = object->address(); |
- Address end = object->address() + object->Size(); |
- |
- while (slot_address < end) { |
- HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address); |
- // When we are not in GC the Heap::InNewSpace() predicate |
- // checks that pointers which satisfy predicate point into |
- // the active semispace. |
- Object* object = reinterpret_cast<Object*>( |
- base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot))); |
- heap_->InNewSpace(object); |
- slot_address += kPointerSize; |
- } |
- } |
- } |
-} |
-#endif |
- |
- |
-void StoreBuffer::Verify() { |
-#ifdef VERIFY_HEAP |
- VerifyPointers(heap_->lo_space()); |
-#endif |
-} |
- |
- |
-void StoreBuffer::GCEpilogue() { |
- during_gc_ = false; |
-#ifdef VERIFY_HEAP |
- if (FLAG_verify_heap) { |
- Verify(); |
- } |
-#endif |
-} |
- |
- |
-void StoreBuffer::FindPointersToNewSpaceInRegion( |
- Address start, |
- Address end, |
- ObjectSlotCallback slot_callback, |
- bool clear_maps) { |
- for (Address slot_address = start; |
- slot_address < end; |
- slot_address += kPointerSize) { |
- Object** slot = reinterpret_cast<Object**>(slot_address); |
- Object* object = reinterpret_cast<Object*>( |
- base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot))); |
- if (heap_->InNewSpace(object)) { |
- HeapObject* heap_object = reinterpret_cast<HeapObject*>(object); |
- DCHECK(heap_object->IsHeapObject()); |
- // The new space object was not promoted if it still contains a map |
- // pointer. Clear the map field now lazily. |
- if (clear_maps) ClearDeadObject(heap_object); |
- slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object); |
- object = reinterpret_cast<Object*>( |
- base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot))); |
- if (heap_->InNewSpace(object)) { |
- EnterDirectlyIntoStoreBuffer(slot_address); |
- } |
- } |
- } |
-} |
- |
- |
-void StoreBuffer::IteratePointersInStoreBuffer( |
- ObjectSlotCallback slot_callback, |
- bool clear_maps) { |
- Address* limit = old_top_; |
- old_top_ = old_start_; |
- { |
- DontMoveStoreBufferEntriesScope scope(this); |
- for (Address* current = old_start_; current < limit; current++) { |
-#ifdef DEBUG |
- Address* saved_top = old_top_; |
-#endif |
- Object** slot = reinterpret_cast<Object**>(*current); |
- Object* object = reinterpret_cast<Object*>( |
- base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot))); |
- if (heap_->InFromSpace(object)) { |
- HeapObject* heap_object = reinterpret_cast<HeapObject*>(object); |
- // The new space object was not promoted if it still contains a map |
- // pointer. Clear the map field now lazily. |
- if (clear_maps) ClearDeadObject(heap_object); |
- slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object); |
- object = reinterpret_cast<Object*>( |
- base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot))); |
- if (heap_->InNewSpace(object)) { |
- EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot)); |
- } |
- } |
- DCHECK(old_top_ == saved_top + 1 || old_top_ == saved_top); |
- } |
- } |
-} |
- |
- |
-void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) { |
- IteratePointersToNewSpace(slot_callback, false); |
-} |
- |
- |
-void StoreBuffer::IteratePointersToNewSpaceAndClearMaps( |
- ObjectSlotCallback slot_callback) { |
- IteratePointersToNewSpace(slot_callback, true); |
-} |
- |
- |
-void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback, |
- bool clear_maps) { |
- // We do not sort or remove duplicated entries from the store buffer because |
- // we expect that callback will rebuild the store buffer thus removing |
- // all duplicates and pointers to old space. |
- bool some_pages_to_scan = PrepareForIteration(); |
- |
- // TODO(gc): we want to skip slots on evacuation candidates |
- // but we can't simply figure that out from slot address |
- // because slot can belong to a large object. |
- IteratePointersInStoreBuffer(slot_callback, clear_maps); |
- |
- // We are done scanning all the pointers that were in the store buffer, but |
- // there may be some pages marked scan_on_scavenge that have pointers to new |
- // space that are not in the store buffer. We must scan them now. As we |
- // scan, the surviving pointers to new space will be added to the store |
- // buffer. If there are still a lot of pointers to new space then we will |
- // keep the scan_on_scavenge flag on the page and discard the pointers that |
- // were added to the store buffer. If there are not many pointers to new |
- // space left on the page we will keep the pointers in the store buffer and |
- // remove the flag from the page. |
- if (some_pages_to_scan) { |
- if (callback_ != NULL) { |
- (*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent); |
- } |
- PointerChunkIterator it(heap_); |
- MemoryChunk* chunk; |
- while ((chunk = it.next()) != NULL) { |
- if (chunk->scan_on_scavenge()) { |
- chunk->set_scan_on_scavenge(false); |
- if (callback_ != NULL) { |
- (*callback_)(heap_, chunk, kStoreBufferScanningPageEvent); |
- } |
- if (chunk->owner() == heap_->lo_space()) { |
- LargePage* large_page = reinterpret_cast<LargePage*>(chunk); |
- HeapObject* array = large_page->GetObject(); |
- DCHECK(array->IsFixedArray()); |
- Address start = array->address(); |
- Address end = start + array->Size(); |
- FindPointersToNewSpaceInRegion(start, end, slot_callback, clear_maps); |
- } else { |
- Page* page = reinterpret_cast<Page*>(chunk); |
- PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner()); |
- Address start = page->area_start(); |
- Address end = page->area_end(); |
- if (owner == heap_->map_space()) { |
- DCHECK(page->WasSweptPrecisely()); |
- HeapObjectIterator iterator(page, NULL); |
- for (HeapObject* heap_object = iterator.Next(); heap_object != NULL; |
- heap_object = iterator.Next()) { |
- // We skip free space objects. |
- if (!heap_object->IsFiller()) { |
- FindPointersToNewSpaceInRegion( |
- heap_object->address() + HeapObject::kHeaderSize, |
- heap_object->address() + heap_object->Size(), slot_callback, |
- clear_maps); |
- } |
- } |
- } else { |
- if (!page->SweepingCompleted()) { |
- heap_->mark_compact_collector()->SweepInParallel(page, owner); |
- if (!page->SweepingCompleted()) { |
- // We were not able to sweep that page, i.e., a concurrent |
- // sweeper thread currently owns this page. |
- // TODO(hpayer): This may introduce a huge pause here. We |
- // just care about finish sweeping of the scan on scavenge page. |
- heap_->mark_compact_collector()->EnsureSweepingCompleted(); |
- } |
- } |
- // TODO(hpayer): remove the special casing and merge map and pointer |
- // space handling as soon as we removed conservative sweeping. |
- CHECK(page->owner() == heap_->old_pointer_space()); |
- if (heap_->old_pointer_space()->swept_precisely()) { |
- HeapObjectIterator iterator(page, NULL); |
- for (HeapObject* heap_object = iterator.Next(); |
- heap_object != NULL; heap_object = iterator.Next()) { |
- // We iterate over objects that contain new space pointers only. |
- if (heap_object->MayContainNewSpacePointers()) { |
- FindPointersToNewSpaceInRegion( |
- heap_object->address() + HeapObject::kHeaderSize, |
- heap_object->address() + heap_object->Size(), |
- slot_callback, clear_maps); |
- } |
- } |
- } else { |
- FindPointersToNewSpaceInRegion(start, end, slot_callback, |
- clear_maps); |
- } |
- } |
- } |
- } |
- } |
- if (callback_ != NULL) { |
- (*callback_)(heap_, NULL, kStoreBufferScanningPageEvent); |
- } |
- } |
-} |
- |
- |
-void StoreBuffer::Compact() { |
- Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top()); |
- |
- if (top == start_) return; |
- |
- // There's no check of the limit in the loop below so we check here for |
- // the worst case (compaction doesn't eliminate any pointers). |
- DCHECK(top <= limit_); |
- heap_->public_set_store_buffer_top(start_); |
- EnsureSpace(top - start_); |
- DCHECK(may_move_store_buffer_entries_); |
- // Goes through the addresses in the store buffer attempting to remove |
- // duplicates. In the interest of speed this is a lossy operation. Some |
- // duplicates will remain. We have two hash sets with different hash |
- // functions to reduce the number of unnecessary clashes. |
- hash_sets_are_empty_ = false; // Hash sets are in use. |
- for (Address* current = start_; current < top; current++) { |
- DCHECK(!heap_->cell_space()->Contains(*current)); |
- DCHECK(!heap_->code_space()->Contains(*current)); |
- DCHECK(!heap_->old_data_space()->Contains(*current)); |
- uintptr_t int_addr = reinterpret_cast<uintptr_t>(*current); |
- // Shift out the last bits including any tags. |
- int_addr >>= kPointerSizeLog2; |
- // The upper part of an address is basically random because of ASLR and OS |
- // non-determinism, so we use only the bits within a page for hashing to |
- // make v8's behavior (more) deterministic. |
- uintptr_t hash_addr = |
- int_addr & (Page::kPageAlignmentMask >> kPointerSizeLog2); |
- int hash1 = ((hash_addr ^ (hash_addr >> kHashSetLengthLog2)) & |
- (kHashSetLength - 1)); |
- if (hash_set_1_[hash1] == int_addr) continue; |
- uintptr_t hash2 = (hash_addr - (hash_addr >> kHashSetLengthLog2)); |
- hash2 ^= hash2 >> (kHashSetLengthLog2 * 2); |
- hash2 &= (kHashSetLength - 1); |
- if (hash_set_2_[hash2] == int_addr) continue; |
- if (hash_set_1_[hash1] == 0) { |
- hash_set_1_[hash1] = int_addr; |
- } else if (hash_set_2_[hash2] == 0) { |
- hash_set_2_[hash2] = int_addr; |
- } else { |
- // Rather than slowing down we just throw away some entries. This will |
- // cause some duplicates to remain undetected. |
- hash_set_1_[hash1] = int_addr; |
- hash_set_2_[hash2] = 0; |
- } |
- old_buffer_is_sorted_ = false; |
- old_buffer_is_filtered_ = false; |
- *old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2); |
- DCHECK(old_top_ <= old_limit_); |
- } |
- heap_->isolate()->counters()->store_buffer_compactions()->Increment(); |
-} |
- |
-} } // namespace v8::internal |