Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(10)

Side by Side Diff: src/store-buffer.cc

Issue 463523002: Move store-buffer to heap and remove some unnecessary includes. (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Created 6 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « src/store-buffer.h ('k') | src/store-buffer-inl.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/store-buffer.h"
6
7 #include <algorithm>
8
9 #include "src/v8.h"
10
11 #include "src/base/atomicops.h"
12 #include "src/counters.h"
13 #include "src/store-buffer-inl.h"
14
15 namespace v8 {
16 namespace internal {
17
18 StoreBuffer::StoreBuffer(Heap* heap)
19 : heap_(heap),
20 start_(NULL),
21 limit_(NULL),
22 old_start_(NULL),
23 old_limit_(NULL),
24 old_top_(NULL),
25 old_reserved_limit_(NULL),
26 old_buffer_is_sorted_(false),
27 old_buffer_is_filtered_(false),
28 during_gc_(false),
29 store_buffer_rebuilding_enabled_(false),
30 callback_(NULL),
31 may_move_store_buffer_entries_(true),
32 virtual_memory_(NULL),
33 hash_set_1_(NULL),
34 hash_set_2_(NULL),
35 hash_sets_are_empty_(true) {
36 }
37
38
39 void StoreBuffer::SetUp() {
40 virtual_memory_ = new base::VirtualMemory(kStoreBufferSize * 3);
41 uintptr_t start_as_int =
42 reinterpret_cast<uintptr_t>(virtual_memory_->address());
43 start_ =
44 reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize * 2));
45 limit_ = start_ + (kStoreBufferSize / kPointerSize);
46
47 old_virtual_memory_ =
48 new base::VirtualMemory(kOldStoreBufferLength * kPointerSize);
49 old_top_ = old_start_ =
50 reinterpret_cast<Address*>(old_virtual_memory_->address());
51 // Don't know the alignment requirements of the OS, but it is certainly not
52 // less than 0xfff.
53 DCHECK((reinterpret_cast<uintptr_t>(old_start_) & 0xfff) == 0);
54 int initial_length =
55 static_cast<int>(base::OS::CommitPageSize() / kPointerSize);
56 DCHECK(initial_length > 0);
57 DCHECK(initial_length <= kOldStoreBufferLength);
58 old_limit_ = old_start_ + initial_length;
59 old_reserved_limit_ = old_start_ + kOldStoreBufferLength;
60
61 CHECK(old_virtual_memory_->Commit(
62 reinterpret_cast<void*>(old_start_),
63 (old_limit_ - old_start_) * kPointerSize,
64 false));
65
66 DCHECK(reinterpret_cast<Address>(start_) >= virtual_memory_->address());
67 DCHECK(reinterpret_cast<Address>(limit_) >= virtual_memory_->address());
68 Address* vm_limit = reinterpret_cast<Address*>(
69 reinterpret_cast<char*>(virtual_memory_->address()) +
70 virtual_memory_->size());
71 DCHECK(start_ <= vm_limit);
72 DCHECK(limit_ <= vm_limit);
73 USE(vm_limit);
74 DCHECK((reinterpret_cast<uintptr_t>(limit_) & kStoreBufferOverflowBit) != 0);
75 DCHECK((reinterpret_cast<uintptr_t>(limit_ - 1) & kStoreBufferOverflowBit) ==
76 0);
77
78 CHECK(virtual_memory_->Commit(reinterpret_cast<Address>(start_),
79 kStoreBufferSize,
80 false)); // Not executable.
81 heap_->public_set_store_buffer_top(start_);
82
83 hash_set_1_ = new uintptr_t[kHashSetLength];
84 hash_set_2_ = new uintptr_t[kHashSetLength];
85 hash_sets_are_empty_ = false;
86
87 ClearFilteringHashSets();
88 }
89
90
91 void StoreBuffer::TearDown() {
92 delete virtual_memory_;
93 delete old_virtual_memory_;
94 delete[] hash_set_1_;
95 delete[] hash_set_2_;
96 old_start_ = old_top_ = old_limit_ = old_reserved_limit_ = NULL;
97 start_ = limit_ = NULL;
98 heap_->public_set_store_buffer_top(start_);
99 }
100
101
102 void StoreBuffer::StoreBufferOverflow(Isolate* isolate) {
103 isolate->heap()->store_buffer()->Compact();
104 isolate->counters()->store_buffer_overflows()->Increment();
105 }
106
107
108 void StoreBuffer::Uniq() {
109 // Remove adjacent duplicates and cells that do not point at new space.
110 Address previous = NULL;
111 Address* write = old_start_;
112 DCHECK(may_move_store_buffer_entries_);
113 for (Address* read = old_start_; read < old_top_; read++) {
114 Address current = *read;
115 if (current != previous) {
116 if (heap_->InNewSpace(*reinterpret_cast<Object**>(current))) {
117 *write++ = current;
118 }
119 }
120 previous = current;
121 }
122 old_top_ = write;
123 }
124
125
126 bool StoreBuffer::SpaceAvailable(intptr_t space_needed) {
127 return old_limit_ - old_top_ >= space_needed;
128 }
129
130
131 void StoreBuffer::EnsureSpace(intptr_t space_needed) {
132 while (old_limit_ - old_top_ < space_needed &&
133 old_limit_ < old_reserved_limit_) {
134 size_t grow = old_limit_ - old_start_; // Double size.
135 CHECK(old_virtual_memory_->Commit(reinterpret_cast<void*>(old_limit_),
136 grow * kPointerSize,
137 false));
138 old_limit_ += grow;
139 }
140
141 if (SpaceAvailable(space_needed)) return;
142
143 if (old_buffer_is_filtered_) return;
144 DCHECK(may_move_store_buffer_entries_);
145 Compact();
146
147 old_buffer_is_filtered_ = true;
148 bool page_has_scan_on_scavenge_flag = false;
149
150 PointerChunkIterator it(heap_);
151 MemoryChunk* chunk;
152 while ((chunk = it.next()) != NULL) {
153 if (chunk->scan_on_scavenge()) {
154 page_has_scan_on_scavenge_flag = true;
155 break;
156 }
157 }
158
159 if (page_has_scan_on_scavenge_flag) {
160 Filter(MemoryChunk::SCAN_ON_SCAVENGE);
161 }
162
163 if (SpaceAvailable(space_needed)) return;
164
165 // Sample 1 entry in 97 and filter out the pages where we estimate that more
166 // than 1 in 8 pointers are to new space.
167 static const int kSampleFinenesses = 5;
168 static const struct Samples {
169 int prime_sample_step;
170 int threshold;
171 } samples[kSampleFinenesses] = {
172 { 97, ((Page::kPageSize / kPointerSize) / 97) / 8 },
173 { 23, ((Page::kPageSize / kPointerSize) / 23) / 16 },
174 { 7, ((Page::kPageSize / kPointerSize) / 7) / 32 },
175 { 3, ((Page::kPageSize / kPointerSize) / 3) / 256 },
176 { 1, 0}
177 };
178 for (int i = 0; i < kSampleFinenesses; i++) {
179 ExemptPopularPages(samples[i].prime_sample_step, samples[i].threshold);
180 // As a last resort we mark all pages as being exempt from the store buffer.
181 DCHECK(i != (kSampleFinenesses - 1) || old_top_ == old_start_);
182 if (SpaceAvailable(space_needed)) return;
183 }
184 UNREACHABLE();
185 }
186
187
188 // Sample the store buffer to see if some pages are taking up a lot of space
189 // in the store buffer.
190 void StoreBuffer::ExemptPopularPages(int prime_sample_step, int threshold) {
191 PointerChunkIterator it(heap_);
192 MemoryChunk* chunk;
193 while ((chunk = it.next()) != NULL) {
194 chunk->set_store_buffer_counter(0);
195 }
196 bool created_new_scan_on_scavenge_pages = false;
197 MemoryChunk* previous_chunk = NULL;
198 for (Address* p = old_start_; p < old_top_; p += prime_sample_step) {
199 Address addr = *p;
200 MemoryChunk* containing_chunk = NULL;
201 if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
202 containing_chunk = previous_chunk;
203 } else {
204 containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr);
205 }
206 int old_counter = containing_chunk->store_buffer_counter();
207 if (old_counter >= threshold) {
208 containing_chunk->set_scan_on_scavenge(true);
209 created_new_scan_on_scavenge_pages = true;
210 }
211 containing_chunk->set_store_buffer_counter(old_counter + 1);
212 previous_chunk = containing_chunk;
213 }
214 if (created_new_scan_on_scavenge_pages) {
215 Filter(MemoryChunk::SCAN_ON_SCAVENGE);
216 }
217 old_buffer_is_filtered_ = true;
218 }
219
220
221 void StoreBuffer::Filter(int flag) {
222 Address* new_top = old_start_;
223 MemoryChunk* previous_chunk = NULL;
224 for (Address* p = old_start_; p < old_top_; p++) {
225 Address addr = *p;
226 MemoryChunk* containing_chunk = NULL;
227 if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
228 containing_chunk = previous_chunk;
229 } else {
230 containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr);
231 previous_chunk = containing_chunk;
232 }
233 if (!containing_chunk->IsFlagSet(flag)) {
234 *new_top++ = addr;
235 }
236 }
237 old_top_ = new_top;
238
239 // Filtering hash sets are inconsistent with the store buffer after this
240 // operation.
241 ClearFilteringHashSets();
242 }
243
244
245 void StoreBuffer::SortUniq() {
246 Compact();
247 if (old_buffer_is_sorted_) return;
248 std::sort(old_start_, old_top_);
249 Uniq();
250
251 old_buffer_is_sorted_ = true;
252
253 // Filtering hash sets are inconsistent with the store buffer after this
254 // operation.
255 ClearFilteringHashSets();
256 }
257
258
259 bool StoreBuffer::PrepareForIteration() {
260 Compact();
261 PointerChunkIterator it(heap_);
262 MemoryChunk* chunk;
263 bool page_has_scan_on_scavenge_flag = false;
264 while ((chunk = it.next()) != NULL) {
265 if (chunk->scan_on_scavenge()) {
266 page_has_scan_on_scavenge_flag = true;
267 break;
268 }
269 }
270
271 if (page_has_scan_on_scavenge_flag) {
272 Filter(MemoryChunk::SCAN_ON_SCAVENGE);
273 }
274
275 // Filtering hash sets are inconsistent with the store buffer after
276 // iteration.
277 ClearFilteringHashSets();
278
279 return page_has_scan_on_scavenge_flag;
280 }
281
282
283 #ifdef DEBUG
284 void StoreBuffer::Clean() {
285 ClearFilteringHashSets();
286 Uniq(); // Also removes things that no longer point to new space.
287 EnsureSpace(kStoreBufferSize / 2);
288 }
289
290
291 static Address* in_store_buffer_1_element_cache = NULL;
292
293
294 bool StoreBuffer::CellIsInStoreBuffer(Address cell_address) {
295 if (!FLAG_enable_slow_asserts) return true;
296 if (in_store_buffer_1_element_cache != NULL &&
297 *in_store_buffer_1_element_cache == cell_address) {
298 return true;
299 }
300 Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
301 for (Address* current = top - 1; current >= start_; current--) {
302 if (*current == cell_address) {
303 in_store_buffer_1_element_cache = current;
304 return true;
305 }
306 }
307 for (Address* current = old_top_ - 1; current >= old_start_; current--) {
308 if (*current == cell_address) {
309 in_store_buffer_1_element_cache = current;
310 return true;
311 }
312 }
313 return false;
314 }
315 #endif
316
317
318 void StoreBuffer::ClearFilteringHashSets() {
319 if (!hash_sets_are_empty_) {
320 memset(reinterpret_cast<void*>(hash_set_1_),
321 0,
322 sizeof(uintptr_t) * kHashSetLength);
323 memset(reinterpret_cast<void*>(hash_set_2_),
324 0,
325 sizeof(uintptr_t) * kHashSetLength);
326 hash_sets_are_empty_ = true;
327 }
328 }
329
330
331 void StoreBuffer::GCPrologue() {
332 ClearFilteringHashSets();
333 during_gc_ = true;
334 }
335
336
337 #ifdef VERIFY_HEAP
338 void StoreBuffer::VerifyPointers(LargeObjectSpace* space) {
339 LargeObjectIterator it(space);
340 for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
341 if (object->IsFixedArray()) {
342 Address slot_address = object->address();
343 Address end = object->address() + object->Size();
344
345 while (slot_address < end) {
346 HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address);
347 // When we are not in GC the Heap::InNewSpace() predicate
348 // checks that pointers which satisfy predicate point into
349 // the active semispace.
350 Object* object = reinterpret_cast<Object*>(
351 base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
352 heap_->InNewSpace(object);
353 slot_address += kPointerSize;
354 }
355 }
356 }
357 }
358 #endif
359
360
361 void StoreBuffer::Verify() {
362 #ifdef VERIFY_HEAP
363 VerifyPointers(heap_->lo_space());
364 #endif
365 }
366
367
368 void StoreBuffer::GCEpilogue() {
369 during_gc_ = false;
370 #ifdef VERIFY_HEAP
371 if (FLAG_verify_heap) {
372 Verify();
373 }
374 #endif
375 }
376
377
378 void StoreBuffer::FindPointersToNewSpaceInRegion(
379 Address start,
380 Address end,
381 ObjectSlotCallback slot_callback,
382 bool clear_maps) {
383 for (Address slot_address = start;
384 slot_address < end;
385 slot_address += kPointerSize) {
386 Object** slot = reinterpret_cast<Object**>(slot_address);
387 Object* object = reinterpret_cast<Object*>(
388 base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
389 if (heap_->InNewSpace(object)) {
390 HeapObject* heap_object = reinterpret_cast<HeapObject*>(object);
391 DCHECK(heap_object->IsHeapObject());
392 // The new space object was not promoted if it still contains a map
393 // pointer. Clear the map field now lazily.
394 if (clear_maps) ClearDeadObject(heap_object);
395 slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object);
396 object = reinterpret_cast<Object*>(
397 base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
398 if (heap_->InNewSpace(object)) {
399 EnterDirectlyIntoStoreBuffer(slot_address);
400 }
401 }
402 }
403 }
404
405
406 void StoreBuffer::IteratePointersInStoreBuffer(
407 ObjectSlotCallback slot_callback,
408 bool clear_maps) {
409 Address* limit = old_top_;
410 old_top_ = old_start_;
411 {
412 DontMoveStoreBufferEntriesScope scope(this);
413 for (Address* current = old_start_; current < limit; current++) {
414 #ifdef DEBUG
415 Address* saved_top = old_top_;
416 #endif
417 Object** slot = reinterpret_cast<Object**>(*current);
418 Object* object = reinterpret_cast<Object*>(
419 base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
420 if (heap_->InFromSpace(object)) {
421 HeapObject* heap_object = reinterpret_cast<HeapObject*>(object);
422 // The new space object was not promoted if it still contains a map
423 // pointer. Clear the map field now lazily.
424 if (clear_maps) ClearDeadObject(heap_object);
425 slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object);
426 object = reinterpret_cast<Object*>(
427 base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
428 if (heap_->InNewSpace(object)) {
429 EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot));
430 }
431 }
432 DCHECK(old_top_ == saved_top + 1 || old_top_ == saved_top);
433 }
434 }
435 }
436
437
438 void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) {
439 IteratePointersToNewSpace(slot_callback, false);
440 }
441
442
443 void StoreBuffer::IteratePointersToNewSpaceAndClearMaps(
444 ObjectSlotCallback slot_callback) {
445 IteratePointersToNewSpace(slot_callback, true);
446 }
447
448
449 void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback,
450 bool clear_maps) {
451 // We do not sort or remove duplicated entries from the store buffer because
452 // we expect that callback will rebuild the store buffer thus removing
453 // all duplicates and pointers to old space.
454 bool some_pages_to_scan = PrepareForIteration();
455
456 // TODO(gc): we want to skip slots on evacuation candidates
457 // but we can't simply figure that out from slot address
458 // because slot can belong to a large object.
459 IteratePointersInStoreBuffer(slot_callback, clear_maps);
460
461 // We are done scanning all the pointers that were in the store buffer, but
462 // there may be some pages marked scan_on_scavenge that have pointers to new
463 // space that are not in the store buffer. We must scan them now. As we
464 // scan, the surviving pointers to new space will be added to the store
465 // buffer. If there are still a lot of pointers to new space then we will
466 // keep the scan_on_scavenge flag on the page and discard the pointers that
467 // were added to the store buffer. If there are not many pointers to new
468 // space left on the page we will keep the pointers in the store buffer and
469 // remove the flag from the page.
470 if (some_pages_to_scan) {
471 if (callback_ != NULL) {
472 (*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent);
473 }
474 PointerChunkIterator it(heap_);
475 MemoryChunk* chunk;
476 while ((chunk = it.next()) != NULL) {
477 if (chunk->scan_on_scavenge()) {
478 chunk->set_scan_on_scavenge(false);
479 if (callback_ != NULL) {
480 (*callback_)(heap_, chunk, kStoreBufferScanningPageEvent);
481 }
482 if (chunk->owner() == heap_->lo_space()) {
483 LargePage* large_page = reinterpret_cast<LargePage*>(chunk);
484 HeapObject* array = large_page->GetObject();
485 DCHECK(array->IsFixedArray());
486 Address start = array->address();
487 Address end = start + array->Size();
488 FindPointersToNewSpaceInRegion(start, end, slot_callback, clear_maps);
489 } else {
490 Page* page = reinterpret_cast<Page*>(chunk);
491 PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner());
492 Address start = page->area_start();
493 Address end = page->area_end();
494 if (owner == heap_->map_space()) {
495 DCHECK(page->WasSweptPrecisely());
496 HeapObjectIterator iterator(page, NULL);
497 for (HeapObject* heap_object = iterator.Next(); heap_object != NULL;
498 heap_object = iterator.Next()) {
499 // We skip free space objects.
500 if (!heap_object->IsFiller()) {
501 FindPointersToNewSpaceInRegion(
502 heap_object->address() + HeapObject::kHeaderSize,
503 heap_object->address() + heap_object->Size(), slot_callback,
504 clear_maps);
505 }
506 }
507 } else {
508 if (!page->SweepingCompleted()) {
509 heap_->mark_compact_collector()->SweepInParallel(page, owner);
510 if (!page->SweepingCompleted()) {
511 // We were not able to sweep that page, i.e., a concurrent
512 // sweeper thread currently owns this page.
513 // TODO(hpayer): This may introduce a huge pause here. We
514 // just care about finish sweeping of the scan on scavenge page.
515 heap_->mark_compact_collector()->EnsureSweepingCompleted();
516 }
517 }
518 // TODO(hpayer): remove the special casing and merge map and pointer
519 // space handling as soon as we removed conservative sweeping.
520 CHECK(page->owner() == heap_->old_pointer_space());
521 if (heap_->old_pointer_space()->swept_precisely()) {
522 HeapObjectIterator iterator(page, NULL);
523 for (HeapObject* heap_object = iterator.Next();
524 heap_object != NULL; heap_object = iterator.Next()) {
525 // We iterate over objects that contain new space pointers only.
526 if (heap_object->MayContainNewSpacePointers()) {
527 FindPointersToNewSpaceInRegion(
528 heap_object->address() + HeapObject::kHeaderSize,
529 heap_object->address() + heap_object->Size(),
530 slot_callback, clear_maps);
531 }
532 }
533 } else {
534 FindPointersToNewSpaceInRegion(start, end, slot_callback,
535 clear_maps);
536 }
537 }
538 }
539 }
540 }
541 if (callback_ != NULL) {
542 (*callback_)(heap_, NULL, kStoreBufferScanningPageEvent);
543 }
544 }
545 }
546
547
548 void StoreBuffer::Compact() {
549 Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
550
551 if (top == start_) return;
552
553 // There's no check of the limit in the loop below so we check here for
554 // the worst case (compaction doesn't eliminate any pointers).
555 DCHECK(top <= limit_);
556 heap_->public_set_store_buffer_top(start_);
557 EnsureSpace(top - start_);
558 DCHECK(may_move_store_buffer_entries_);
559 // Goes through the addresses in the store buffer attempting to remove
560 // duplicates. In the interest of speed this is a lossy operation. Some
561 // duplicates will remain. We have two hash sets with different hash
562 // functions to reduce the number of unnecessary clashes.
563 hash_sets_are_empty_ = false; // Hash sets are in use.
564 for (Address* current = start_; current < top; current++) {
565 DCHECK(!heap_->cell_space()->Contains(*current));
566 DCHECK(!heap_->code_space()->Contains(*current));
567 DCHECK(!heap_->old_data_space()->Contains(*current));
568 uintptr_t int_addr = reinterpret_cast<uintptr_t>(*current);
569 // Shift out the last bits including any tags.
570 int_addr >>= kPointerSizeLog2;
571 // The upper part of an address is basically random because of ASLR and OS
572 // non-determinism, so we use only the bits within a page for hashing to
573 // make v8's behavior (more) deterministic.
574 uintptr_t hash_addr =
575 int_addr & (Page::kPageAlignmentMask >> kPointerSizeLog2);
576 int hash1 = ((hash_addr ^ (hash_addr >> kHashSetLengthLog2)) &
577 (kHashSetLength - 1));
578 if (hash_set_1_[hash1] == int_addr) continue;
579 uintptr_t hash2 = (hash_addr - (hash_addr >> kHashSetLengthLog2));
580 hash2 ^= hash2 >> (kHashSetLengthLog2 * 2);
581 hash2 &= (kHashSetLength - 1);
582 if (hash_set_2_[hash2] == int_addr) continue;
583 if (hash_set_1_[hash1] == 0) {
584 hash_set_1_[hash1] = int_addr;
585 } else if (hash_set_2_[hash2] == 0) {
586 hash_set_2_[hash2] = int_addr;
587 } else {
588 // Rather than slowing down we just throw away some entries. This will
589 // cause some duplicates to remain undetected.
590 hash_set_1_[hash1] = int_addr;
591 hash_set_2_[hash2] = 0;
592 }
593 old_buffer_is_sorted_ = false;
594 old_buffer_is_filtered_ = false;
595 *old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2);
596 DCHECK(old_top_ <= old_limit_);
597 }
598 heap_->isolate()->counters()->store_buffer_compactions()->Increment();
599 }
600
601 } } // namespace v8::internal
OLDNEW
« no previous file with comments | « src/store-buffer.h ('k') | src/store-buffer-inl.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698