| Index: src/spaces.h
|
| diff --git a/src/spaces.h b/src/spaces.h
|
| deleted file mode 100644
|
| index 2472bd3881952e31d2e18bc06f76517f814dbf65..0000000000000000000000000000000000000000
|
| --- a/src/spaces.h
|
| +++ /dev/null
|
| @@ -1,3048 +0,0 @@
|
| -// Copyright 2011 the V8 project authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#ifndef V8_SPACES_H_
|
| -#define V8_SPACES_H_
|
| -
|
| -#include "src/allocation.h"
|
| -#include "src/base/atomicops.h"
|
| -#include "src/base/platform/mutex.h"
|
| -#include "src/hashmap.h"
|
| -#include "src/list.h"
|
| -#include "src/log.h"
|
| -#include "src/utils.h"
|
| -
|
| -namespace v8 {
|
| -namespace internal {
|
| -
|
| -class Isolate;
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// Heap structures:
|
| -//
|
| -// A JS heap consists of a young generation, an old generation, and a large
|
| -// object space. The young generation is divided into two semispaces. A
|
| -// scavenger implements Cheney's copying algorithm. The old generation is
|
| -// separated into a map space and an old object space. The map space contains
|
| -// all (and only) map objects, the rest of old objects go into the old space.
|
| -// The old generation is collected by a mark-sweep-compact collector.
|
| -//
|
| -// The semispaces of the young generation are contiguous. The old and map
|
| -// spaces consists of a list of pages. A page has a page header and an object
|
| -// area.
|
| -//
|
| -// There is a separate large object space for objects larger than
|
| -// Page::kMaxHeapObjectSize, so that they do not have to move during
|
| -// collection. The large object space is paged. Pages in large object space
|
| -// may be larger than the page size.
|
| -//
|
| -// A store-buffer based write barrier is used to keep track of intergenerational
|
| -// references. See store-buffer.h.
|
| -//
|
| -// During scavenges and mark-sweep collections we sometimes (after a store
|
| -// buffer overflow) iterate intergenerational pointers without decoding heap
|
| -// object maps so if the page belongs to old pointer space or large object
|
| -// space it is essential to guarantee that the page does not contain any
|
| -// garbage pointers to new space: every pointer aligned word which satisfies
|
| -// the Heap::InNewSpace() predicate must be a pointer to a live heap object in
|
| -// new space. Thus objects in old pointer and large object spaces should have a
|
| -// special layout (e.g. no bare integer fields). This requirement does not
|
| -// apply to map space which is iterated in a special fashion. However we still
|
| -// require pointer fields of dead maps to be cleaned.
|
| -//
|
| -// To enable lazy cleaning of old space pages we can mark chunks of the page
|
| -// as being garbage. Garbage sections are marked with a special map. These
|
| -// sections are skipped when scanning the page, even if we are otherwise
|
| -// scanning without regard for object boundaries. Garbage sections are chained
|
| -// together to form a free list after a GC. Garbage sections created outside
|
| -// of GCs by object trunctation etc. may not be in the free list chain. Very
|
| -// small free spaces are ignored, they need only be cleaned of bogus pointers
|
| -// into new space.
|
| -//
|
| -// Each page may have up to one special garbage section. The start of this
|
| -// section is denoted by the top field in the space. The end of the section
|
| -// is denoted by the limit field in the space. This special garbage section
|
| -// is not marked with a free space map in the data. The point of this section
|
| -// is to enable linear allocation without having to constantly update the byte
|
| -// array every time the top field is updated and a new object is created. The
|
| -// special garbage section is not in the chain of garbage sections.
|
| -//
|
| -// Since the top and limit fields are in the space, not the page, only one page
|
| -// has a special garbage section, and if the top and limit are equal then there
|
| -// is no special garbage section.
|
| -
|
| -// Some assertion macros used in the debugging mode.
|
| -
|
| -#define DCHECK_PAGE_ALIGNED(address) \
|
| - DCHECK((OffsetFrom(address) & Page::kPageAlignmentMask) == 0)
|
| -
|
| -#define DCHECK_OBJECT_ALIGNED(address) \
|
| - DCHECK((OffsetFrom(address) & kObjectAlignmentMask) == 0)
|
| -
|
| -#define DCHECK_OBJECT_SIZE(size) \
|
| - DCHECK((0 < size) && (size <= Page::kMaxRegularHeapObjectSize))
|
| -
|
| -#define DCHECK_PAGE_OFFSET(offset) \
|
| - DCHECK((Page::kObjectStartOffset <= offset) \
|
| - && (offset <= Page::kPageSize))
|
| -
|
| -#define DCHECK_MAP_PAGE_INDEX(index) \
|
| - DCHECK((0 <= index) && (index <= MapSpace::kMaxMapPageIndex))
|
| -
|
| -
|
| -class PagedSpace;
|
| -class MemoryAllocator;
|
| -class AllocationInfo;
|
| -class Space;
|
| -class FreeList;
|
| -class MemoryChunk;
|
| -
|
| -class MarkBit {
|
| - public:
|
| - typedef uint32_t CellType;
|
| -
|
| - inline MarkBit(CellType* cell, CellType mask, bool data_only)
|
| - : cell_(cell), mask_(mask), data_only_(data_only) { }
|
| -
|
| - inline CellType* cell() { return cell_; }
|
| - inline CellType mask() { return mask_; }
|
| -
|
| -#ifdef DEBUG
|
| - bool operator==(const MarkBit& other) {
|
| - return cell_ == other.cell_ && mask_ == other.mask_;
|
| - }
|
| -#endif
|
| -
|
| - inline void Set() { *cell_ |= mask_; }
|
| - inline bool Get() { return (*cell_ & mask_) != 0; }
|
| - inline void Clear() { *cell_ &= ~mask_; }
|
| -
|
| - inline bool data_only() { return data_only_; }
|
| -
|
| - inline MarkBit Next() {
|
| - CellType new_mask = mask_ << 1;
|
| - if (new_mask == 0) {
|
| - return MarkBit(cell_ + 1, 1, data_only_);
|
| - } else {
|
| - return MarkBit(cell_, new_mask, data_only_);
|
| - }
|
| - }
|
| -
|
| - private:
|
| - CellType* cell_;
|
| - CellType mask_;
|
| - // This boolean indicates that the object is in a data-only space with no
|
| - // pointers. This enables some optimizations when marking.
|
| - // It is expected that this field is inlined and turned into control flow
|
| - // at the place where the MarkBit object is created.
|
| - bool data_only_;
|
| -};
|
| -
|
| -
|
| -// Bitmap is a sequence of cells each containing fixed number of bits.
|
| -class Bitmap {
|
| - public:
|
| - static const uint32_t kBitsPerCell = 32;
|
| - static const uint32_t kBitsPerCellLog2 = 5;
|
| - static const uint32_t kBitIndexMask = kBitsPerCell - 1;
|
| - static const uint32_t kBytesPerCell = kBitsPerCell / kBitsPerByte;
|
| - static const uint32_t kBytesPerCellLog2 = kBitsPerCellLog2 - kBitsPerByteLog2;
|
| -
|
| - static const size_t kLength =
|
| - (1 << kPageSizeBits) >> (kPointerSizeLog2);
|
| -
|
| - static const size_t kSize =
|
| - (1 << kPageSizeBits) >> (kPointerSizeLog2 + kBitsPerByteLog2);
|
| -
|
| -
|
| - static int CellsForLength(int length) {
|
| - return (length + kBitsPerCell - 1) >> kBitsPerCellLog2;
|
| - }
|
| -
|
| - int CellsCount() {
|
| - return CellsForLength(kLength);
|
| - }
|
| -
|
| - static int SizeFor(int cells_count) {
|
| - return sizeof(MarkBit::CellType) * cells_count;
|
| - }
|
| -
|
| - INLINE(static uint32_t IndexToCell(uint32_t index)) {
|
| - return index >> kBitsPerCellLog2;
|
| - }
|
| -
|
| - INLINE(static uint32_t CellToIndex(uint32_t index)) {
|
| - return index << kBitsPerCellLog2;
|
| - }
|
| -
|
| - INLINE(static uint32_t CellAlignIndex(uint32_t index)) {
|
| - return (index + kBitIndexMask) & ~kBitIndexMask;
|
| - }
|
| -
|
| - INLINE(MarkBit::CellType* cells()) {
|
| - return reinterpret_cast<MarkBit::CellType*>(this);
|
| - }
|
| -
|
| - INLINE(Address address()) {
|
| - return reinterpret_cast<Address>(this);
|
| - }
|
| -
|
| - INLINE(static Bitmap* FromAddress(Address addr)) {
|
| - return reinterpret_cast<Bitmap*>(addr);
|
| - }
|
| -
|
| - inline MarkBit MarkBitFromIndex(uint32_t index, bool data_only = false) {
|
| - MarkBit::CellType mask = 1 << (index & kBitIndexMask);
|
| - MarkBit::CellType* cell = this->cells() + (index >> kBitsPerCellLog2);
|
| - return MarkBit(cell, mask, data_only);
|
| - }
|
| -
|
| - static inline void Clear(MemoryChunk* chunk);
|
| -
|
| - static void PrintWord(uint32_t word, uint32_t himask = 0) {
|
| - for (uint32_t mask = 1; mask != 0; mask <<= 1) {
|
| - if ((mask & himask) != 0) PrintF("[");
|
| - PrintF((mask & word) ? "1" : "0");
|
| - if ((mask & himask) != 0) PrintF("]");
|
| - }
|
| - }
|
| -
|
| - class CellPrinter {
|
| - public:
|
| - CellPrinter() : seq_start(0), seq_type(0), seq_length(0) { }
|
| -
|
| - void Print(uint32_t pos, uint32_t cell) {
|
| - if (cell == seq_type) {
|
| - seq_length++;
|
| - return;
|
| - }
|
| -
|
| - Flush();
|
| -
|
| - if (IsSeq(cell)) {
|
| - seq_start = pos;
|
| - seq_length = 0;
|
| - seq_type = cell;
|
| - return;
|
| - }
|
| -
|
| - PrintF("%d: ", pos);
|
| - PrintWord(cell);
|
| - PrintF("\n");
|
| - }
|
| -
|
| - void Flush() {
|
| - if (seq_length > 0) {
|
| - PrintF("%d: %dx%d\n",
|
| - seq_start,
|
| - seq_type == 0 ? 0 : 1,
|
| - seq_length * kBitsPerCell);
|
| - seq_length = 0;
|
| - }
|
| - }
|
| -
|
| - static bool IsSeq(uint32_t cell) { return cell == 0 || cell == 0xFFFFFFFF; }
|
| -
|
| - private:
|
| - uint32_t seq_start;
|
| - uint32_t seq_type;
|
| - uint32_t seq_length;
|
| - };
|
| -
|
| - void Print() {
|
| - CellPrinter printer;
|
| - for (int i = 0; i < CellsCount(); i++) {
|
| - printer.Print(i, cells()[i]);
|
| - }
|
| - printer.Flush();
|
| - PrintF("\n");
|
| - }
|
| -
|
| - bool IsClean() {
|
| - for (int i = 0; i < CellsCount(); i++) {
|
| - if (cells()[i] != 0) {
|
| - return false;
|
| - }
|
| - }
|
| - return true;
|
| - }
|
| -};
|
| -
|
| -
|
| -class SkipList;
|
| -class SlotsBuffer;
|
| -
|
| -// MemoryChunk represents a memory region owned by a specific space.
|
| -// It is divided into the header and the body. Chunk start is always
|
| -// 1MB aligned. Start of the body is aligned so it can accommodate
|
| -// any heap object.
|
| -class MemoryChunk {
|
| - public:
|
| - // Only works if the pointer is in the first kPageSize of the MemoryChunk.
|
| - static MemoryChunk* FromAddress(Address a) {
|
| - return reinterpret_cast<MemoryChunk*>(OffsetFrom(a) & ~kAlignmentMask);
|
| - }
|
| - static const MemoryChunk* FromAddress(const byte* a) {
|
| - return reinterpret_cast<const MemoryChunk*>(
|
| - OffsetFrom(a) & ~kAlignmentMask);
|
| - }
|
| -
|
| - // Only works for addresses in pointer spaces, not data or code spaces.
|
| - static inline MemoryChunk* FromAnyPointerAddress(Heap* heap, Address addr);
|
| -
|
| - Address address() { return reinterpret_cast<Address>(this); }
|
| -
|
| - bool is_valid() { return address() != NULL; }
|
| -
|
| - MemoryChunk* next_chunk() const {
|
| - return reinterpret_cast<MemoryChunk*>(base::Acquire_Load(&next_chunk_));
|
| - }
|
| -
|
| - MemoryChunk* prev_chunk() const {
|
| - return reinterpret_cast<MemoryChunk*>(base::Acquire_Load(&prev_chunk_));
|
| - }
|
| -
|
| - void set_next_chunk(MemoryChunk* next) {
|
| - base::Release_Store(&next_chunk_, reinterpret_cast<base::AtomicWord>(next));
|
| - }
|
| -
|
| - void set_prev_chunk(MemoryChunk* prev) {
|
| - base::Release_Store(&prev_chunk_, reinterpret_cast<base::AtomicWord>(prev));
|
| - }
|
| -
|
| - Space* owner() const {
|
| - if ((reinterpret_cast<intptr_t>(owner_) & kPageHeaderTagMask) ==
|
| - kPageHeaderTag) {
|
| - return reinterpret_cast<Space*>(reinterpret_cast<intptr_t>(owner_) -
|
| - kPageHeaderTag);
|
| - } else {
|
| - return NULL;
|
| - }
|
| - }
|
| -
|
| - void set_owner(Space* space) {
|
| - DCHECK((reinterpret_cast<intptr_t>(space) & kPageHeaderTagMask) == 0);
|
| - owner_ = reinterpret_cast<Address>(space) + kPageHeaderTag;
|
| - DCHECK((reinterpret_cast<intptr_t>(owner_) & kPageHeaderTagMask) ==
|
| - kPageHeaderTag);
|
| - }
|
| -
|
| - base::VirtualMemory* reserved_memory() {
|
| - return &reservation_;
|
| - }
|
| -
|
| - void InitializeReservedMemory() {
|
| - reservation_.Reset();
|
| - }
|
| -
|
| - void set_reserved_memory(base::VirtualMemory* reservation) {
|
| - DCHECK_NOT_NULL(reservation);
|
| - reservation_.TakeControl(reservation);
|
| - }
|
| -
|
| - bool scan_on_scavenge() { return IsFlagSet(SCAN_ON_SCAVENGE); }
|
| - void initialize_scan_on_scavenge(bool scan) {
|
| - if (scan) {
|
| - SetFlag(SCAN_ON_SCAVENGE);
|
| - } else {
|
| - ClearFlag(SCAN_ON_SCAVENGE);
|
| - }
|
| - }
|
| - inline void set_scan_on_scavenge(bool scan);
|
| -
|
| - int store_buffer_counter() { return store_buffer_counter_; }
|
| - void set_store_buffer_counter(int counter) {
|
| - store_buffer_counter_ = counter;
|
| - }
|
| -
|
| - bool Contains(Address addr) {
|
| - return addr >= area_start() && addr < area_end();
|
| - }
|
| -
|
| - // Checks whether addr can be a limit of addresses in this page.
|
| - // It's a limit if it's in the page, or if it's just after the
|
| - // last byte of the page.
|
| - bool ContainsLimit(Address addr) {
|
| - return addr >= area_start() && addr <= area_end();
|
| - }
|
| -
|
| - // Every n write barrier invocations we go to runtime even though
|
| - // we could have handled it in generated code. This lets us check
|
| - // whether we have hit the limit and should do some more marking.
|
| - static const int kWriteBarrierCounterGranularity = 500;
|
| -
|
| - enum MemoryChunkFlags {
|
| - IS_EXECUTABLE,
|
| - ABOUT_TO_BE_FREED,
|
| - POINTERS_TO_HERE_ARE_INTERESTING,
|
| - POINTERS_FROM_HERE_ARE_INTERESTING,
|
| - SCAN_ON_SCAVENGE,
|
| - IN_FROM_SPACE, // Mutually exclusive with IN_TO_SPACE.
|
| - IN_TO_SPACE, // All pages in new space has one of these two set.
|
| - NEW_SPACE_BELOW_AGE_MARK,
|
| - CONTAINS_ONLY_DATA,
|
| - EVACUATION_CANDIDATE,
|
| - RESCAN_ON_EVACUATION,
|
| -
|
| - // Pages swept precisely can be iterated, hitting only the live objects.
|
| - // Whereas those swept conservatively cannot be iterated over. Both flags
|
| - // indicate that marking bits have been cleared by the sweeper, otherwise
|
| - // marking bits are still intact.
|
| - WAS_SWEPT_PRECISELY,
|
| - WAS_SWEPT_CONSERVATIVELY,
|
| -
|
| - // Large objects can have a progress bar in their page header. These object
|
| - // are scanned in increments and will be kept black while being scanned.
|
| - // Even if the mutator writes to them they will be kept black and a white
|
| - // to grey transition is performed in the value.
|
| - HAS_PROGRESS_BAR,
|
| -
|
| - // Last flag, keep at bottom.
|
| - NUM_MEMORY_CHUNK_FLAGS
|
| - };
|
| -
|
| -
|
| - static const int kPointersToHereAreInterestingMask =
|
| - 1 << POINTERS_TO_HERE_ARE_INTERESTING;
|
| -
|
| - static const int kPointersFromHereAreInterestingMask =
|
| - 1 << POINTERS_FROM_HERE_ARE_INTERESTING;
|
| -
|
| - static const int kEvacuationCandidateMask =
|
| - 1 << EVACUATION_CANDIDATE;
|
| -
|
| - static const int kSkipEvacuationSlotsRecordingMask =
|
| - (1 << EVACUATION_CANDIDATE) |
|
| - (1 << RESCAN_ON_EVACUATION) |
|
| - (1 << IN_FROM_SPACE) |
|
| - (1 << IN_TO_SPACE);
|
| -
|
| -
|
| - void SetFlag(int flag) {
|
| - flags_ |= static_cast<uintptr_t>(1) << flag;
|
| - }
|
| -
|
| - void ClearFlag(int flag) {
|
| - flags_ &= ~(static_cast<uintptr_t>(1) << flag);
|
| - }
|
| -
|
| - void SetFlagTo(int flag, bool value) {
|
| - if (value) {
|
| - SetFlag(flag);
|
| - } else {
|
| - ClearFlag(flag);
|
| - }
|
| - }
|
| -
|
| - bool IsFlagSet(int flag) {
|
| - return (flags_ & (static_cast<uintptr_t>(1) << flag)) != 0;
|
| - }
|
| -
|
| - // Set or clear multiple flags at a time. The flags in the mask
|
| - // are set to the value in "flags", the rest retain the current value
|
| - // in flags_.
|
| - void SetFlags(intptr_t flags, intptr_t mask) {
|
| - flags_ = (flags_ & ~mask) | (flags & mask);
|
| - }
|
| -
|
| - // Return all current flags.
|
| - intptr_t GetFlags() { return flags_; }
|
| -
|
| -
|
| - // SWEEPING_DONE - The page state when sweeping is complete or sweeping must
|
| - // not be performed on that page.
|
| - // SWEEPING_FINALIZE - A sweeper thread is done sweeping this page and will
|
| - // not touch the page memory anymore.
|
| - // SWEEPING_IN_PROGRESS - This page is currently swept by a sweeper thread.
|
| - // SWEEPING_PENDING - This page is ready for parallel sweeping.
|
| - enum ParallelSweepingState {
|
| - SWEEPING_DONE,
|
| - SWEEPING_FINALIZE,
|
| - SWEEPING_IN_PROGRESS,
|
| - SWEEPING_PENDING
|
| - };
|
| -
|
| - ParallelSweepingState parallel_sweeping() {
|
| - return static_cast<ParallelSweepingState>(
|
| - base::Acquire_Load(¶llel_sweeping_));
|
| - }
|
| -
|
| - void set_parallel_sweeping(ParallelSweepingState state) {
|
| - base::Release_Store(¶llel_sweeping_, state);
|
| - }
|
| -
|
| - bool TryParallelSweeping() {
|
| - return base::Acquire_CompareAndSwap(
|
| - ¶llel_sweeping_, SWEEPING_PENDING, SWEEPING_IN_PROGRESS) ==
|
| - SWEEPING_PENDING;
|
| - }
|
| -
|
| - bool SweepingCompleted() { return parallel_sweeping() <= SWEEPING_FINALIZE; }
|
| -
|
| - // Manage live byte count (count of bytes known to be live,
|
| - // because they are marked black).
|
| - void ResetLiveBytes() {
|
| - if (FLAG_gc_verbose) {
|
| - PrintF("ResetLiveBytes:%p:%x->0\n",
|
| - static_cast<void*>(this), live_byte_count_);
|
| - }
|
| - live_byte_count_ = 0;
|
| - }
|
| - void IncrementLiveBytes(int by) {
|
| - if (FLAG_gc_verbose) {
|
| - printf("UpdateLiveBytes:%p:%x%c=%x->%x\n",
|
| - static_cast<void*>(this), live_byte_count_,
|
| - ((by < 0) ? '-' : '+'), ((by < 0) ? -by : by),
|
| - live_byte_count_ + by);
|
| - }
|
| - live_byte_count_ += by;
|
| - DCHECK_LE(static_cast<unsigned>(live_byte_count_), size_);
|
| - }
|
| - int LiveBytes() {
|
| - DCHECK(static_cast<unsigned>(live_byte_count_) <= size_);
|
| - return live_byte_count_;
|
| - }
|
| -
|
| - int write_barrier_counter() {
|
| - return static_cast<int>(write_barrier_counter_);
|
| - }
|
| -
|
| - void set_write_barrier_counter(int counter) {
|
| - write_barrier_counter_ = counter;
|
| - }
|
| -
|
| - int progress_bar() {
|
| - DCHECK(IsFlagSet(HAS_PROGRESS_BAR));
|
| - return progress_bar_;
|
| - }
|
| -
|
| - void set_progress_bar(int progress_bar) {
|
| - DCHECK(IsFlagSet(HAS_PROGRESS_BAR));
|
| - progress_bar_ = progress_bar;
|
| - }
|
| -
|
| - void ResetProgressBar() {
|
| - if (IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR)) {
|
| - set_progress_bar(0);
|
| - ClearFlag(MemoryChunk::HAS_PROGRESS_BAR);
|
| - }
|
| - }
|
| -
|
| - bool IsLeftOfProgressBar(Object** slot) {
|
| - Address slot_address = reinterpret_cast<Address>(slot);
|
| - DCHECK(slot_address > this->address());
|
| - return (slot_address - (this->address() + kObjectStartOffset)) <
|
| - progress_bar();
|
| - }
|
| -
|
| - static void IncrementLiveBytesFromGC(Address address, int by) {
|
| - MemoryChunk::FromAddress(address)->IncrementLiveBytes(by);
|
| - }
|
| -
|
| - static void IncrementLiveBytesFromMutator(Address address, int by);
|
| -
|
| - static const intptr_t kAlignment =
|
| - (static_cast<uintptr_t>(1) << kPageSizeBits);
|
| -
|
| - static const intptr_t kAlignmentMask = kAlignment - 1;
|
| -
|
| - static const intptr_t kSizeOffset = 0;
|
| -
|
| - static const intptr_t kLiveBytesOffset =
|
| - kSizeOffset + kPointerSize + kPointerSize + kPointerSize +
|
| - kPointerSize + kPointerSize +
|
| - kPointerSize + kPointerSize + kPointerSize + kIntSize;
|
| -
|
| - static const size_t kSlotsBufferOffset = kLiveBytesOffset + kIntSize;
|
| -
|
| - static const size_t kWriteBarrierCounterOffset =
|
| - kSlotsBufferOffset + kPointerSize + kPointerSize;
|
| -
|
| - static const size_t kHeaderSize = kWriteBarrierCounterOffset + kPointerSize +
|
| - kIntSize + kIntSize + kPointerSize +
|
| - 5 * kPointerSize +
|
| - kPointerSize + kPointerSize;
|
| -
|
| - static const int kBodyOffset =
|
| - CODE_POINTER_ALIGN(kHeaderSize + Bitmap::kSize);
|
| -
|
| - // The start offset of the object area in a page. Aligned to both maps and
|
| - // code alignment to be suitable for both. Also aligned to 32 words because
|
| - // the marking bitmap is arranged in 32 bit chunks.
|
| - static const int kObjectStartAlignment = 32 * kPointerSize;
|
| - static const int kObjectStartOffset = kBodyOffset - 1 +
|
| - (kObjectStartAlignment - (kBodyOffset - 1) % kObjectStartAlignment);
|
| -
|
| - size_t size() const { return size_; }
|
| -
|
| - void set_size(size_t size) {
|
| - size_ = size;
|
| - }
|
| -
|
| - void SetArea(Address area_start, Address area_end) {
|
| - area_start_ = area_start;
|
| - area_end_ = area_end;
|
| - }
|
| -
|
| - Executability executable() {
|
| - return IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE;
|
| - }
|
| -
|
| - bool ContainsOnlyData() {
|
| - return IsFlagSet(CONTAINS_ONLY_DATA);
|
| - }
|
| -
|
| - bool InNewSpace() {
|
| - return (flags_ & ((1 << IN_FROM_SPACE) | (1 << IN_TO_SPACE))) != 0;
|
| - }
|
| -
|
| - bool InToSpace() {
|
| - return IsFlagSet(IN_TO_SPACE);
|
| - }
|
| -
|
| - bool InFromSpace() {
|
| - return IsFlagSet(IN_FROM_SPACE);
|
| - }
|
| -
|
| - // ---------------------------------------------------------------------
|
| - // Markbits support
|
| -
|
| - inline Bitmap* markbits() {
|
| - return Bitmap::FromAddress(address() + kHeaderSize);
|
| - }
|
| -
|
| - void PrintMarkbits() { markbits()->Print(); }
|
| -
|
| - inline uint32_t AddressToMarkbitIndex(Address addr) {
|
| - return static_cast<uint32_t>(addr - this->address()) >> kPointerSizeLog2;
|
| - }
|
| -
|
| - inline static uint32_t FastAddressToMarkbitIndex(Address addr) {
|
| - const intptr_t offset =
|
| - reinterpret_cast<intptr_t>(addr) & kAlignmentMask;
|
| -
|
| - return static_cast<uint32_t>(offset) >> kPointerSizeLog2;
|
| - }
|
| -
|
| - inline Address MarkbitIndexToAddress(uint32_t index) {
|
| - return this->address() + (index << kPointerSizeLog2);
|
| - }
|
| -
|
| - void InsertAfter(MemoryChunk* other);
|
| - void Unlink();
|
| -
|
| - inline Heap* heap() const { return heap_; }
|
| -
|
| - static const int kFlagsOffset = kPointerSize;
|
| -
|
| - bool IsEvacuationCandidate() { return IsFlagSet(EVACUATION_CANDIDATE); }
|
| -
|
| - bool ShouldSkipEvacuationSlotRecording() {
|
| - return (flags_ & kSkipEvacuationSlotsRecordingMask) != 0;
|
| - }
|
| -
|
| - inline SkipList* skip_list() {
|
| - return skip_list_;
|
| - }
|
| -
|
| - inline void set_skip_list(SkipList* skip_list) {
|
| - skip_list_ = skip_list;
|
| - }
|
| -
|
| - inline SlotsBuffer* slots_buffer() {
|
| - return slots_buffer_;
|
| - }
|
| -
|
| - inline SlotsBuffer** slots_buffer_address() {
|
| - return &slots_buffer_;
|
| - }
|
| -
|
| - void MarkEvacuationCandidate() {
|
| - DCHECK(slots_buffer_ == NULL);
|
| - SetFlag(EVACUATION_CANDIDATE);
|
| - }
|
| -
|
| - void ClearEvacuationCandidate() {
|
| - DCHECK(slots_buffer_ == NULL);
|
| - ClearFlag(EVACUATION_CANDIDATE);
|
| - }
|
| -
|
| - Address area_start() { return area_start_; }
|
| - Address area_end() { return area_end_; }
|
| - int area_size() {
|
| - return static_cast<int>(area_end() - area_start());
|
| - }
|
| - bool CommitArea(size_t requested);
|
| -
|
| - // Approximate amount of physical memory committed for this chunk.
|
| - size_t CommittedPhysicalMemory() {
|
| - return high_water_mark_;
|
| - }
|
| -
|
| - static inline void UpdateHighWaterMark(Address mark);
|
| -
|
| - protected:
|
| - size_t size_;
|
| - intptr_t flags_;
|
| -
|
| - // Start and end of allocatable memory on this chunk.
|
| - Address area_start_;
|
| - Address area_end_;
|
| -
|
| - // If the chunk needs to remember its memory reservation, it is stored here.
|
| - base::VirtualMemory reservation_;
|
| - // The identity of the owning space. This is tagged as a failure pointer, but
|
| - // no failure can be in an object, so this can be distinguished from any entry
|
| - // in a fixed array.
|
| - Address owner_;
|
| - Heap* heap_;
|
| - // Used by the store buffer to keep track of which pages to mark scan-on-
|
| - // scavenge.
|
| - int store_buffer_counter_;
|
| - // Count of bytes marked black on page.
|
| - int live_byte_count_;
|
| - SlotsBuffer* slots_buffer_;
|
| - SkipList* skip_list_;
|
| - intptr_t write_barrier_counter_;
|
| - // Used by the incremental marker to keep track of the scanning progress in
|
| - // large objects that have a progress bar and are scanned in increments.
|
| - int progress_bar_;
|
| - // Assuming the initial allocation on a page is sequential,
|
| - // count highest number of bytes ever allocated on the page.
|
| - int high_water_mark_;
|
| -
|
| - base::AtomicWord parallel_sweeping_;
|
| -
|
| - // PagedSpace free-list statistics.
|
| - intptr_t available_in_small_free_list_;
|
| - intptr_t available_in_medium_free_list_;
|
| - intptr_t available_in_large_free_list_;
|
| - intptr_t available_in_huge_free_list_;
|
| - intptr_t non_available_small_blocks_;
|
| -
|
| - static MemoryChunk* Initialize(Heap* heap,
|
| - Address base,
|
| - size_t size,
|
| - Address area_start,
|
| - Address area_end,
|
| - Executability executable,
|
| - Space* owner);
|
| -
|
| - private:
|
| - // next_chunk_ holds a pointer of type MemoryChunk
|
| - base::AtomicWord next_chunk_;
|
| - // prev_chunk_ holds a pointer of type MemoryChunk
|
| - base::AtomicWord prev_chunk_;
|
| -
|
| - friend class MemoryAllocator;
|
| -};
|
| -
|
| -
|
| -STATIC_ASSERT(sizeof(MemoryChunk) <= MemoryChunk::kHeaderSize);
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// A page is a memory chunk of a size 1MB. Large object pages may be larger.
|
| -//
|
| -// The only way to get a page pointer is by calling factory methods:
|
| -// Page* p = Page::FromAddress(addr); or
|
| -// Page* p = Page::FromAllocationTop(top);
|
| -class Page : public MemoryChunk {
|
| - public:
|
| - // Returns the page containing a given address. The address ranges
|
| - // from [page_addr .. page_addr + kPageSize[
|
| - // This only works if the object is in fact in a page. See also MemoryChunk::
|
| - // FromAddress() and FromAnyAddress().
|
| - INLINE(static Page* FromAddress(Address a)) {
|
| - return reinterpret_cast<Page*>(OffsetFrom(a) & ~kPageAlignmentMask);
|
| - }
|
| -
|
| - // Returns the page containing an allocation top. Because an allocation
|
| - // top address can be the upper bound of the page, we need to subtract
|
| - // it with kPointerSize first. The address ranges from
|
| - // [page_addr + kObjectStartOffset .. page_addr + kPageSize].
|
| - INLINE(static Page* FromAllocationTop(Address top)) {
|
| - Page* p = FromAddress(top - kPointerSize);
|
| - return p;
|
| - }
|
| -
|
| - // Returns the next page in the chain of pages owned by a space.
|
| - inline Page* next_page();
|
| - inline Page* prev_page();
|
| - inline void set_next_page(Page* page);
|
| - inline void set_prev_page(Page* page);
|
| -
|
| - // Checks whether an address is page aligned.
|
| - static bool IsAlignedToPageSize(Address a) {
|
| - return 0 == (OffsetFrom(a) & kPageAlignmentMask);
|
| - }
|
| -
|
| - // Returns the offset of a given address to this page.
|
| - INLINE(int Offset(Address a)) {
|
| - int offset = static_cast<int>(a - address());
|
| - return offset;
|
| - }
|
| -
|
| - // Returns the address for a given offset to the this page.
|
| - Address OffsetToAddress(int offset) {
|
| - DCHECK_PAGE_OFFSET(offset);
|
| - return address() + offset;
|
| - }
|
| -
|
| - // ---------------------------------------------------------------------
|
| -
|
| - // Page size in bytes. This must be a multiple of the OS page size.
|
| - static const int kPageSize = 1 << kPageSizeBits;
|
| -
|
| - // Maximum object size that fits in a page. Objects larger than that size
|
| - // are allocated in large object space and are never moved in memory. This
|
| - // also applies to new space allocation, since objects are never migrated
|
| - // from new space to large object space. Takes double alignment into account.
|
| - static const int kMaxRegularHeapObjectSize = kPageSize - kObjectStartOffset;
|
| -
|
| - // Page size mask.
|
| - static const intptr_t kPageAlignmentMask = (1 << kPageSizeBits) - 1;
|
| -
|
| - inline void ClearGCFields();
|
| -
|
| - static inline Page* Initialize(Heap* heap,
|
| - MemoryChunk* chunk,
|
| - Executability executable,
|
| - PagedSpace* owner);
|
| -
|
| - void InitializeAsAnchor(PagedSpace* owner);
|
| -
|
| - bool WasSweptPrecisely() { return IsFlagSet(WAS_SWEPT_PRECISELY); }
|
| - bool WasSweptConservatively() { return IsFlagSet(WAS_SWEPT_CONSERVATIVELY); }
|
| - bool WasSwept() { return WasSweptPrecisely() || WasSweptConservatively(); }
|
| -
|
| - void MarkSweptPrecisely() { SetFlag(WAS_SWEPT_PRECISELY); }
|
| - void MarkSweptConservatively() { SetFlag(WAS_SWEPT_CONSERVATIVELY); }
|
| -
|
| - void ClearSweptPrecisely() { ClearFlag(WAS_SWEPT_PRECISELY); }
|
| - void ClearSweptConservatively() { ClearFlag(WAS_SWEPT_CONSERVATIVELY); }
|
| -
|
| - void ResetFreeListStatistics();
|
| -
|
| -#define FRAGMENTATION_STATS_ACCESSORS(type, name) \
|
| - type name() { return name##_; } \
|
| - void set_##name(type name) { name##_ = name; } \
|
| - void add_##name(type name) { name##_ += name; }
|
| -
|
| - FRAGMENTATION_STATS_ACCESSORS(intptr_t, non_available_small_blocks)
|
| - FRAGMENTATION_STATS_ACCESSORS(intptr_t, available_in_small_free_list)
|
| - FRAGMENTATION_STATS_ACCESSORS(intptr_t, available_in_medium_free_list)
|
| - FRAGMENTATION_STATS_ACCESSORS(intptr_t, available_in_large_free_list)
|
| - FRAGMENTATION_STATS_ACCESSORS(intptr_t, available_in_huge_free_list)
|
| -
|
| -#undef FRAGMENTATION_STATS_ACCESSORS
|
| -
|
| -#ifdef DEBUG
|
| - void Print();
|
| -#endif // DEBUG
|
| -
|
| - friend class MemoryAllocator;
|
| -};
|
| -
|
| -
|
| -STATIC_ASSERT(sizeof(Page) <= MemoryChunk::kHeaderSize);
|
| -
|
| -
|
| -class LargePage : public MemoryChunk {
|
| - public:
|
| - HeapObject* GetObject() {
|
| - return HeapObject::FromAddress(area_start());
|
| - }
|
| -
|
| - inline LargePage* next_page() const {
|
| - return static_cast<LargePage*>(next_chunk());
|
| - }
|
| -
|
| - inline void set_next_page(LargePage* page) {
|
| - set_next_chunk(page);
|
| - }
|
| - private:
|
| - static inline LargePage* Initialize(Heap* heap, MemoryChunk* chunk);
|
| -
|
| - friend class MemoryAllocator;
|
| -};
|
| -
|
| -STATIC_ASSERT(sizeof(LargePage) <= MemoryChunk::kHeaderSize);
|
| -
|
| -// ----------------------------------------------------------------------------
|
| -// Space is the abstract superclass for all allocation spaces.
|
| -class Space : public Malloced {
|
| - public:
|
| - Space(Heap* heap, AllocationSpace id, Executability executable)
|
| - : heap_(heap), id_(id), executable_(executable) {}
|
| -
|
| - virtual ~Space() {}
|
| -
|
| - Heap* heap() const { return heap_; }
|
| -
|
| - // Does the space need executable memory?
|
| - Executability executable() { return executable_; }
|
| -
|
| - // Identity used in error reporting.
|
| - AllocationSpace identity() { return id_; }
|
| -
|
| - // Returns allocated size.
|
| - virtual intptr_t Size() = 0;
|
| -
|
| - // Returns size of objects. Can differ from the allocated size
|
| - // (e.g. see LargeObjectSpace).
|
| - virtual intptr_t SizeOfObjects() { return Size(); }
|
| -
|
| - virtual int RoundSizeDownToObjectAlignment(int size) {
|
| - if (id_ == CODE_SPACE) {
|
| - return RoundDown(size, kCodeAlignment);
|
| - } else {
|
| - return RoundDown(size, kPointerSize);
|
| - }
|
| - }
|
| -
|
| -#ifdef DEBUG
|
| - virtual void Print() = 0;
|
| -#endif
|
| -
|
| - private:
|
| - Heap* heap_;
|
| - AllocationSpace id_;
|
| - Executability executable_;
|
| -};
|
| -
|
| -
|
| -// ----------------------------------------------------------------------------
|
| -// All heap objects containing executable code (code objects) must be allocated
|
| -// from a 2 GB range of memory, so that they can call each other using 32-bit
|
| -// displacements. This happens automatically on 32-bit platforms, where 32-bit
|
| -// displacements cover the entire 4GB virtual address space. On 64-bit
|
| -// platforms, we support this using the CodeRange object, which reserves and
|
| -// manages a range of virtual memory.
|
| -class CodeRange {
|
| - public:
|
| - explicit CodeRange(Isolate* isolate);
|
| - ~CodeRange() { TearDown(); }
|
| -
|
| - // Reserves a range of virtual memory, but does not commit any of it.
|
| - // Can only be called once, at heap initialization time.
|
| - // Returns false on failure.
|
| - bool SetUp(size_t requested_size);
|
| -
|
| - // Frees the range of virtual memory, and frees the data structures used to
|
| - // manage it.
|
| - void TearDown();
|
| -
|
| - bool valid() { return code_range_ != NULL; }
|
| - Address start() {
|
| - DCHECK(valid());
|
| - return static_cast<Address>(code_range_->address());
|
| - }
|
| - bool contains(Address address) {
|
| - if (!valid()) return false;
|
| - Address start = static_cast<Address>(code_range_->address());
|
| - return start <= address && address < start + code_range_->size();
|
| - }
|
| -
|
| - // Allocates a chunk of memory from the large-object portion of
|
| - // the code range. On platforms with no separate code range, should
|
| - // not be called.
|
| - MUST_USE_RESULT Address AllocateRawMemory(const size_t requested_size,
|
| - const size_t commit_size,
|
| - size_t* allocated);
|
| - bool CommitRawMemory(Address start, size_t length);
|
| - bool UncommitRawMemory(Address start, size_t length);
|
| - void FreeRawMemory(Address buf, size_t length);
|
| -
|
| - private:
|
| - Isolate* isolate_;
|
| -
|
| - // The reserved range of virtual memory that all code objects are put in.
|
| - base::VirtualMemory* code_range_;
|
| - // Plain old data class, just a struct plus a constructor.
|
| - class FreeBlock {
|
| - public:
|
| - FreeBlock(Address start_arg, size_t size_arg)
|
| - : start(start_arg), size(size_arg) {
|
| - DCHECK(IsAddressAligned(start, MemoryChunk::kAlignment));
|
| - DCHECK(size >= static_cast<size_t>(Page::kPageSize));
|
| - }
|
| - FreeBlock(void* start_arg, size_t size_arg)
|
| - : start(static_cast<Address>(start_arg)), size(size_arg) {
|
| - DCHECK(IsAddressAligned(start, MemoryChunk::kAlignment));
|
| - DCHECK(size >= static_cast<size_t>(Page::kPageSize));
|
| - }
|
| -
|
| - Address start;
|
| - size_t size;
|
| - };
|
| -
|
| - // Freed blocks of memory are added to the free list. When the allocation
|
| - // list is exhausted, the free list is sorted and merged to make the new
|
| - // allocation list.
|
| - List<FreeBlock> free_list_;
|
| - // Memory is allocated from the free blocks on the allocation list.
|
| - // The block at current_allocation_block_index_ is the current block.
|
| - List<FreeBlock> allocation_list_;
|
| - int current_allocation_block_index_;
|
| -
|
| - // Finds a block on the allocation list that contains at least the
|
| - // requested amount of memory. If none is found, sorts and merges
|
| - // the existing free memory blocks, and searches again.
|
| - // If none can be found, returns false.
|
| - bool GetNextAllocationBlock(size_t requested);
|
| - // Compares the start addresses of two free blocks.
|
| - static int CompareFreeBlockAddress(const FreeBlock* left,
|
| - const FreeBlock* right);
|
| -
|
| - DISALLOW_COPY_AND_ASSIGN(CodeRange);
|
| -};
|
| -
|
| -
|
| -class SkipList {
|
| - public:
|
| - SkipList() {
|
| - Clear();
|
| - }
|
| -
|
| - void Clear() {
|
| - for (int idx = 0; idx < kSize; idx++) {
|
| - starts_[idx] = reinterpret_cast<Address>(-1);
|
| - }
|
| - }
|
| -
|
| - Address StartFor(Address addr) {
|
| - return starts_[RegionNumber(addr)];
|
| - }
|
| -
|
| - void AddObject(Address addr, int size) {
|
| - int start_region = RegionNumber(addr);
|
| - int end_region = RegionNumber(addr + size - kPointerSize);
|
| - for (int idx = start_region; idx <= end_region; idx++) {
|
| - if (starts_[idx] > addr) starts_[idx] = addr;
|
| - }
|
| - }
|
| -
|
| - static inline int RegionNumber(Address addr) {
|
| - return (OffsetFrom(addr) & Page::kPageAlignmentMask) >> kRegionSizeLog2;
|
| - }
|
| -
|
| - static void Update(Address addr, int size) {
|
| - Page* page = Page::FromAddress(addr);
|
| - SkipList* list = page->skip_list();
|
| - if (list == NULL) {
|
| - list = new SkipList();
|
| - page->set_skip_list(list);
|
| - }
|
| -
|
| - list->AddObject(addr, size);
|
| - }
|
| -
|
| - private:
|
| - static const int kRegionSizeLog2 = 13;
|
| - static const int kRegionSize = 1 << kRegionSizeLog2;
|
| - static const int kSize = Page::kPageSize / kRegionSize;
|
| -
|
| - STATIC_ASSERT(Page::kPageSize % kRegionSize == 0);
|
| -
|
| - Address starts_[kSize];
|
| -};
|
| -
|
| -
|
| -// ----------------------------------------------------------------------------
|
| -// A space acquires chunks of memory from the operating system. The memory
|
| -// allocator allocated and deallocates pages for the paged heap spaces and large
|
| -// pages for large object space.
|
| -//
|
| -// Each space has to manage it's own pages.
|
| -//
|
| -class MemoryAllocator {
|
| - public:
|
| - explicit MemoryAllocator(Isolate* isolate);
|
| -
|
| - // Initializes its internal bookkeeping structures.
|
| - // Max capacity of the total space and executable memory limit.
|
| - bool SetUp(intptr_t max_capacity, intptr_t capacity_executable);
|
| -
|
| - void TearDown();
|
| -
|
| - Page* AllocatePage(
|
| - intptr_t size, PagedSpace* owner, Executability executable);
|
| -
|
| - LargePage* AllocateLargePage(
|
| - intptr_t object_size, Space* owner, Executability executable);
|
| -
|
| - void Free(MemoryChunk* chunk);
|
| -
|
| - // Returns the maximum available bytes of heaps.
|
| - intptr_t Available() { return capacity_ < size_ ? 0 : capacity_ - size_; }
|
| -
|
| - // Returns allocated spaces in bytes.
|
| - intptr_t Size() { return size_; }
|
| -
|
| - // Returns the maximum available executable bytes of heaps.
|
| - intptr_t AvailableExecutable() {
|
| - if (capacity_executable_ < size_executable_) return 0;
|
| - return capacity_executable_ - size_executable_;
|
| - }
|
| -
|
| - // Returns allocated executable spaces in bytes.
|
| - intptr_t SizeExecutable() { return size_executable_; }
|
| -
|
| - // Returns maximum available bytes that the old space can have.
|
| - intptr_t MaxAvailable() {
|
| - return (Available() / Page::kPageSize) * Page::kMaxRegularHeapObjectSize;
|
| - }
|
| -
|
| - // Returns an indication of whether a pointer is in a space that has
|
| - // been allocated by this MemoryAllocator.
|
| - V8_INLINE bool IsOutsideAllocatedSpace(const void* address) const {
|
| - return address < lowest_ever_allocated_ ||
|
| - address >= highest_ever_allocated_;
|
| - }
|
| -
|
| -#ifdef DEBUG
|
| - // Reports statistic info of the space.
|
| - void ReportStatistics();
|
| -#endif
|
| -
|
| - // Returns a MemoryChunk in which the memory region from commit_area_size to
|
| - // reserve_area_size of the chunk area is reserved but not committed, it
|
| - // could be committed later by calling MemoryChunk::CommitArea.
|
| - MemoryChunk* AllocateChunk(intptr_t reserve_area_size,
|
| - intptr_t commit_area_size,
|
| - Executability executable,
|
| - Space* space);
|
| -
|
| - Address ReserveAlignedMemory(size_t requested,
|
| - size_t alignment,
|
| - base::VirtualMemory* controller);
|
| - Address AllocateAlignedMemory(size_t reserve_size,
|
| - size_t commit_size,
|
| - size_t alignment,
|
| - Executability executable,
|
| - base::VirtualMemory* controller);
|
| -
|
| - bool CommitMemory(Address addr, size_t size, Executability executable);
|
| -
|
| - void FreeMemory(base::VirtualMemory* reservation, Executability executable);
|
| - void FreeMemory(Address addr, size_t size, Executability executable);
|
| -
|
| - // Commit a contiguous block of memory from the initial chunk. Assumes that
|
| - // the address is not NULL, the size is greater than zero, and that the
|
| - // block is contained in the initial chunk. Returns true if it succeeded
|
| - // and false otherwise.
|
| - bool CommitBlock(Address start, size_t size, Executability executable);
|
| -
|
| - // Uncommit a contiguous block of memory [start..(start+size)[.
|
| - // start is not NULL, the size is greater than zero, and the
|
| - // block is contained in the initial chunk. Returns true if it succeeded
|
| - // and false otherwise.
|
| - bool UncommitBlock(Address start, size_t size);
|
| -
|
| - // Zaps a contiguous block of memory [start..(start+size)[ thus
|
| - // filling it up with a recognizable non-NULL bit pattern.
|
| - void ZapBlock(Address start, size_t size);
|
| -
|
| - void PerformAllocationCallback(ObjectSpace space,
|
| - AllocationAction action,
|
| - size_t size);
|
| -
|
| - void AddMemoryAllocationCallback(MemoryAllocationCallback callback,
|
| - ObjectSpace space,
|
| - AllocationAction action);
|
| -
|
| - void RemoveMemoryAllocationCallback(
|
| - MemoryAllocationCallback callback);
|
| -
|
| - bool MemoryAllocationCallbackRegistered(
|
| - MemoryAllocationCallback callback);
|
| -
|
| - static int CodePageGuardStartOffset();
|
| -
|
| - static int CodePageGuardSize();
|
| -
|
| - static int CodePageAreaStartOffset();
|
| -
|
| - static int CodePageAreaEndOffset();
|
| -
|
| - static int CodePageAreaSize() {
|
| - return CodePageAreaEndOffset() - CodePageAreaStartOffset();
|
| - }
|
| -
|
| - MUST_USE_RESULT bool CommitExecutableMemory(base::VirtualMemory* vm,
|
| - Address start,
|
| - size_t commit_size,
|
| - size_t reserved_size);
|
| -
|
| - private:
|
| - Isolate* isolate_;
|
| -
|
| - // Maximum space size in bytes.
|
| - size_t capacity_;
|
| - // Maximum subset of capacity_ that can be executable
|
| - size_t capacity_executable_;
|
| -
|
| - // Allocated space size in bytes.
|
| - size_t size_;
|
| - // Allocated executable space size in bytes.
|
| - size_t size_executable_;
|
| -
|
| - // We keep the lowest and highest addresses allocated as a quick way
|
| - // of determining that pointers are outside the heap. The estimate is
|
| - // conservative, i.e. not all addrsses in 'allocated' space are allocated
|
| - // to our heap. The range is [lowest, highest[, inclusive on the low end
|
| - // and exclusive on the high end.
|
| - void* lowest_ever_allocated_;
|
| - void* highest_ever_allocated_;
|
| -
|
| - struct MemoryAllocationCallbackRegistration {
|
| - MemoryAllocationCallbackRegistration(MemoryAllocationCallback callback,
|
| - ObjectSpace space,
|
| - AllocationAction action)
|
| - : callback(callback), space(space), action(action) {
|
| - }
|
| - MemoryAllocationCallback callback;
|
| - ObjectSpace space;
|
| - AllocationAction action;
|
| - };
|
| -
|
| - // A List of callback that are triggered when memory is allocated or free'd
|
| - List<MemoryAllocationCallbackRegistration>
|
| - memory_allocation_callbacks_;
|
| -
|
| - // Initializes pages in a chunk. Returns the first page address.
|
| - // This function and GetChunkId() are provided for the mark-compact
|
| - // collector to rebuild page headers in the from space, which is
|
| - // used as a marking stack and its page headers are destroyed.
|
| - Page* InitializePagesInChunk(int chunk_id, int pages_in_chunk,
|
| - PagedSpace* owner);
|
| -
|
| - void UpdateAllocatedSpaceLimits(void* low, void* high) {
|
| - lowest_ever_allocated_ = Min(lowest_ever_allocated_, low);
|
| - highest_ever_allocated_ = Max(highest_ever_allocated_, high);
|
| - }
|
| -
|
| - DISALLOW_IMPLICIT_CONSTRUCTORS(MemoryAllocator);
|
| -};
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// Interface for heap object iterator to be implemented by all object space
|
| -// object iterators.
|
| -//
|
| -// NOTE: The space specific object iterators also implements the own next()
|
| -// method which is used to avoid using virtual functions
|
| -// iterating a specific space.
|
| -
|
| -class ObjectIterator : public Malloced {
|
| - public:
|
| - virtual ~ObjectIterator() { }
|
| -
|
| - virtual HeapObject* next_object() = 0;
|
| -};
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// Heap object iterator in new/old/map spaces.
|
| -//
|
| -// A HeapObjectIterator iterates objects from the bottom of the given space
|
| -// to its top or from the bottom of the given page to its top.
|
| -//
|
| -// If objects are allocated in the page during iteration the iterator may
|
| -// or may not iterate over those objects. The caller must create a new
|
| -// iterator in order to be sure to visit these new objects.
|
| -class HeapObjectIterator: public ObjectIterator {
|
| - public:
|
| - // Creates a new object iterator in a given space.
|
| - // If the size function is not given, the iterator calls the default
|
| - // Object::Size().
|
| - explicit HeapObjectIterator(PagedSpace* space);
|
| - HeapObjectIterator(PagedSpace* space, HeapObjectCallback size_func);
|
| - HeapObjectIterator(Page* page, HeapObjectCallback size_func);
|
| -
|
| - // Advance to the next object, skipping free spaces and other fillers and
|
| - // skipping the special garbage section of which there is one per space.
|
| - // Returns NULL when the iteration has ended.
|
| - inline HeapObject* Next() {
|
| - do {
|
| - HeapObject* next_obj = FromCurrentPage();
|
| - if (next_obj != NULL) return next_obj;
|
| - } while (AdvanceToNextPage());
|
| - return NULL;
|
| - }
|
| -
|
| - virtual HeapObject* next_object() {
|
| - return Next();
|
| - }
|
| -
|
| - private:
|
| - enum PageMode { kOnePageOnly, kAllPagesInSpace };
|
| -
|
| - Address cur_addr_; // Current iteration point.
|
| - Address cur_end_; // End iteration point.
|
| - HeapObjectCallback size_func_; // Size function or NULL.
|
| - PagedSpace* space_;
|
| - PageMode page_mode_;
|
| -
|
| - // Fast (inlined) path of next().
|
| - inline HeapObject* FromCurrentPage();
|
| -
|
| - // Slow path of next(), goes into the next page. Returns false if the
|
| - // iteration has ended.
|
| - bool AdvanceToNextPage();
|
| -
|
| - // Initializes fields.
|
| - inline void Initialize(PagedSpace* owner,
|
| - Address start,
|
| - Address end,
|
| - PageMode mode,
|
| - HeapObjectCallback size_func);
|
| -};
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// A PageIterator iterates the pages in a paged space.
|
| -
|
| -class PageIterator BASE_EMBEDDED {
|
| - public:
|
| - explicit inline PageIterator(PagedSpace* space);
|
| -
|
| - inline bool has_next();
|
| - inline Page* next();
|
| -
|
| - private:
|
| - PagedSpace* space_;
|
| - Page* prev_page_; // Previous page returned.
|
| - // Next page that will be returned. Cached here so that we can use this
|
| - // iterator for operations that deallocate pages.
|
| - Page* next_page_;
|
| -};
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// A space has a circular list of pages. The next page can be accessed via
|
| -// Page::next_page() call.
|
| -
|
| -// An abstraction of allocation and relocation pointers in a page-structured
|
| -// space.
|
| -class AllocationInfo {
|
| - public:
|
| - AllocationInfo() : top_(NULL), limit_(NULL) {
|
| - }
|
| -
|
| - INLINE(void set_top(Address top)) {
|
| - SLOW_DCHECK(top == NULL ||
|
| - (reinterpret_cast<intptr_t>(top) & HeapObjectTagMask()) == 0);
|
| - top_ = top;
|
| - }
|
| -
|
| - INLINE(Address top()) const {
|
| - SLOW_DCHECK(top_ == NULL ||
|
| - (reinterpret_cast<intptr_t>(top_) & HeapObjectTagMask()) == 0);
|
| - return top_;
|
| - }
|
| -
|
| - Address* top_address() {
|
| - return &top_;
|
| - }
|
| -
|
| - INLINE(void set_limit(Address limit)) {
|
| - SLOW_DCHECK(limit == NULL ||
|
| - (reinterpret_cast<intptr_t>(limit) & HeapObjectTagMask()) == 0);
|
| - limit_ = limit;
|
| - }
|
| -
|
| - INLINE(Address limit()) const {
|
| - SLOW_DCHECK(limit_ == NULL ||
|
| - (reinterpret_cast<intptr_t>(limit_) & HeapObjectTagMask()) == 0);
|
| - return limit_;
|
| - }
|
| -
|
| - Address* limit_address() {
|
| - return &limit_;
|
| - }
|
| -
|
| -#ifdef DEBUG
|
| - bool VerifyPagedAllocation() {
|
| - return (Page::FromAllocationTop(top_) == Page::FromAllocationTop(limit_))
|
| - && (top_ <= limit_);
|
| - }
|
| -#endif
|
| -
|
| - private:
|
| - // Current allocation top.
|
| - Address top_;
|
| - // Current allocation limit.
|
| - Address limit_;
|
| -};
|
| -
|
| -
|
| -// An abstraction of the accounting statistics of a page-structured space.
|
| -// The 'capacity' of a space is the number of object-area bytes (i.e., not
|
| -// including page bookkeeping structures) currently in the space. The 'size'
|
| -// of a space is the number of allocated bytes, the 'waste' in the space is
|
| -// the number of bytes that are not allocated and not available to
|
| -// allocation without reorganizing the space via a GC (e.g. small blocks due
|
| -// to internal fragmentation, top of page areas in map space), and the bytes
|
| -// 'available' is the number of unallocated bytes that are not waste. The
|
| -// capacity is the sum of size, waste, and available.
|
| -//
|
| -// The stats are only set by functions that ensure they stay balanced. These
|
| -// functions increase or decrease one of the non-capacity stats in
|
| -// conjunction with capacity, or else they always balance increases and
|
| -// decreases to the non-capacity stats.
|
| -class AllocationStats BASE_EMBEDDED {
|
| - public:
|
| - AllocationStats() { Clear(); }
|
| -
|
| - // Zero out all the allocation statistics (i.e., no capacity).
|
| - void Clear() {
|
| - capacity_ = 0;
|
| - max_capacity_ = 0;
|
| - size_ = 0;
|
| - waste_ = 0;
|
| - }
|
| -
|
| - void ClearSizeWaste() {
|
| - size_ = capacity_;
|
| - waste_ = 0;
|
| - }
|
| -
|
| - // Reset the allocation statistics (i.e., available = capacity with no
|
| - // wasted or allocated bytes).
|
| - void Reset() {
|
| - size_ = 0;
|
| - waste_ = 0;
|
| - }
|
| -
|
| - // Accessors for the allocation statistics.
|
| - intptr_t Capacity() { return capacity_; }
|
| - intptr_t MaxCapacity() { return max_capacity_; }
|
| - intptr_t Size() { return size_; }
|
| - intptr_t Waste() { return waste_; }
|
| -
|
| - // Grow the space by adding available bytes. They are initially marked as
|
| - // being in use (part of the size), but will normally be immediately freed,
|
| - // putting them on the free list and removing them from size_.
|
| - void ExpandSpace(int size_in_bytes) {
|
| - capacity_ += size_in_bytes;
|
| - size_ += size_in_bytes;
|
| - if (capacity_ > max_capacity_) {
|
| - max_capacity_ = capacity_;
|
| - }
|
| - DCHECK(size_ >= 0);
|
| - }
|
| -
|
| - // Shrink the space by removing available bytes. Since shrinking is done
|
| - // during sweeping, bytes have been marked as being in use (part of the size)
|
| - // and are hereby freed.
|
| - void ShrinkSpace(int size_in_bytes) {
|
| - capacity_ -= size_in_bytes;
|
| - size_ -= size_in_bytes;
|
| - DCHECK(size_ >= 0);
|
| - }
|
| -
|
| - // Allocate from available bytes (available -> size).
|
| - void AllocateBytes(intptr_t size_in_bytes) {
|
| - size_ += size_in_bytes;
|
| - DCHECK(size_ >= 0);
|
| - }
|
| -
|
| - // Free allocated bytes, making them available (size -> available).
|
| - void DeallocateBytes(intptr_t size_in_bytes) {
|
| - size_ -= size_in_bytes;
|
| - DCHECK(size_ >= 0);
|
| - }
|
| -
|
| - // Waste free bytes (available -> waste).
|
| - void WasteBytes(int size_in_bytes) {
|
| - DCHECK(size_in_bytes >= 0);
|
| - waste_ += size_in_bytes;
|
| - }
|
| -
|
| - private:
|
| - intptr_t capacity_;
|
| - intptr_t max_capacity_;
|
| - intptr_t size_;
|
| - intptr_t waste_;
|
| -};
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// Free lists for old object spaces
|
| -//
|
| -// Free-list nodes are free blocks in the heap. They look like heap objects
|
| -// (free-list node pointers have the heap object tag, and they have a map like
|
| -// a heap object). They have a size and a next pointer. The next pointer is
|
| -// the raw address of the next free list node (or NULL).
|
| -class FreeListNode: public HeapObject {
|
| - public:
|
| - // Obtain a free-list node from a raw address. This is not a cast because
|
| - // it does not check nor require that the first word at the address is a map
|
| - // pointer.
|
| - static FreeListNode* FromAddress(Address address) {
|
| - return reinterpret_cast<FreeListNode*>(HeapObject::FromAddress(address));
|
| - }
|
| -
|
| - static inline bool IsFreeListNode(HeapObject* object);
|
| -
|
| - // Set the size in bytes, which can be read with HeapObject::Size(). This
|
| - // function also writes a map to the first word of the block so that it
|
| - // looks like a heap object to the garbage collector and heap iteration
|
| - // functions.
|
| - void set_size(Heap* heap, int size_in_bytes);
|
| -
|
| - // Accessors for the next field.
|
| - inline FreeListNode* next();
|
| - inline FreeListNode** next_address();
|
| - inline void set_next(FreeListNode* next);
|
| -
|
| - inline void Zap();
|
| -
|
| - static inline FreeListNode* cast(Object* object) {
|
| - return reinterpret_cast<FreeListNode*>(object);
|
| - }
|
| -
|
| - private:
|
| - static const int kNextOffset = POINTER_SIZE_ALIGN(FreeSpace::kHeaderSize);
|
| -
|
| - DISALLOW_IMPLICIT_CONSTRUCTORS(FreeListNode);
|
| -};
|
| -
|
| -
|
| -// The free list category holds a pointer to the top element and a pointer to
|
| -// the end element of the linked list of free memory blocks.
|
| -class FreeListCategory {
|
| - public:
|
| - FreeListCategory() :
|
| - top_(0),
|
| - end_(NULL),
|
| - available_(0) {}
|
| -
|
| - intptr_t Concatenate(FreeListCategory* category);
|
| -
|
| - void Reset();
|
| -
|
| - void Free(FreeListNode* node, int size_in_bytes);
|
| -
|
| - FreeListNode* PickNodeFromList(int *node_size);
|
| - FreeListNode* PickNodeFromList(int size_in_bytes, int *node_size);
|
| -
|
| - intptr_t EvictFreeListItemsInList(Page* p);
|
| - bool ContainsPageFreeListItemsInList(Page* p);
|
| -
|
| - void RepairFreeList(Heap* heap);
|
| -
|
| - FreeListNode* top() const {
|
| - return reinterpret_cast<FreeListNode*>(base::NoBarrier_Load(&top_));
|
| - }
|
| -
|
| - void set_top(FreeListNode* top) {
|
| - base::NoBarrier_Store(&top_, reinterpret_cast<base::AtomicWord>(top));
|
| - }
|
| -
|
| - FreeListNode** GetEndAddress() { return &end_; }
|
| - FreeListNode* end() const { return end_; }
|
| - void set_end(FreeListNode* end) { end_ = end; }
|
| -
|
| - int* GetAvailableAddress() { return &available_; }
|
| - int available() const { return available_; }
|
| - void set_available(int available) { available_ = available; }
|
| -
|
| - base::Mutex* mutex() { return &mutex_; }
|
| -
|
| - bool IsEmpty() {
|
| - return top() == 0;
|
| - }
|
| -
|
| -#ifdef DEBUG
|
| - intptr_t SumFreeList();
|
| - int FreeListLength();
|
| -#endif
|
| -
|
| - private:
|
| - // top_ points to the top FreeListNode* in the free list category.
|
| - base::AtomicWord top_;
|
| - FreeListNode* end_;
|
| - base::Mutex mutex_;
|
| -
|
| - // Total available bytes in all blocks of this free list category.
|
| - int available_;
|
| -};
|
| -
|
| -
|
| -// The free list for the old space. The free list is organized in such a way
|
| -// as to encourage objects allocated around the same time to be near each
|
| -// other. The normal way to allocate is intended to be by bumping a 'top'
|
| -// pointer until it hits a 'limit' pointer. When the limit is hit we need to
|
| -// find a new space to allocate from. This is done with the free list, which
|
| -// is divided up into rough categories to cut down on waste. Having finer
|
| -// categories would scatter allocation more.
|
| -
|
| -// The old space free list is organized in categories.
|
| -// 1-31 words: Such small free areas are discarded for efficiency reasons.
|
| -// They can be reclaimed by the compactor. However the distance between top
|
| -// and limit may be this small.
|
| -// 32-255 words: There is a list of spaces this large. It is used for top and
|
| -// limit when the object we need to allocate is 1-31 words in size. These
|
| -// spaces are called small.
|
| -// 256-2047 words: There is a list of spaces this large. It is used for top and
|
| -// limit when the object we need to allocate is 32-255 words in size. These
|
| -// spaces are called medium.
|
| -// 1048-16383 words: There is a list of spaces this large. It is used for top
|
| -// and limit when the object we need to allocate is 256-2047 words in size.
|
| -// These spaces are call large.
|
| -// At least 16384 words. This list is for objects of 2048 words or larger.
|
| -// Empty pages are added to this list. These spaces are called huge.
|
| -class FreeList {
|
| - public:
|
| - explicit FreeList(PagedSpace* owner);
|
| -
|
| - intptr_t Concatenate(FreeList* free_list);
|
| -
|
| - // Clear the free list.
|
| - void Reset();
|
| -
|
| - // Return the number of bytes available on the free list.
|
| - intptr_t available() {
|
| - return small_list_.available() + medium_list_.available() +
|
| - large_list_.available() + huge_list_.available();
|
| - }
|
| -
|
| - // Place a node on the free list. The block of size 'size_in_bytes'
|
| - // starting at 'start' is placed on the free list. The return value is the
|
| - // number of bytes that have been lost due to internal fragmentation by
|
| - // freeing the block. Bookkeeping information will be written to the block,
|
| - // i.e., its contents will be destroyed. The start address should be word
|
| - // aligned, and the size should be a non-zero multiple of the word size.
|
| - int Free(Address start, int size_in_bytes);
|
| -
|
| - // This method returns how much memory can be allocated after freeing
|
| - // maximum_freed memory.
|
| - static inline int GuaranteedAllocatable(int maximum_freed) {
|
| - if (maximum_freed < kSmallListMin) {
|
| - return 0;
|
| - } else if (maximum_freed <= kSmallListMax) {
|
| - return kSmallAllocationMax;
|
| - } else if (maximum_freed <= kMediumListMax) {
|
| - return kMediumAllocationMax;
|
| - } else if (maximum_freed <= kLargeListMax) {
|
| - return kLargeAllocationMax;
|
| - }
|
| - return maximum_freed;
|
| - }
|
| -
|
| - // Allocate a block of size 'size_in_bytes' from the free list. The block
|
| - // is unitialized. A failure is returned if no block is available. The
|
| - // number of bytes lost to fragmentation is returned in the output parameter
|
| - // 'wasted_bytes'. The size should be a non-zero multiple of the word size.
|
| - MUST_USE_RESULT HeapObject* Allocate(int size_in_bytes);
|
| -
|
| - bool IsEmpty() {
|
| - return small_list_.IsEmpty() && medium_list_.IsEmpty() &&
|
| - large_list_.IsEmpty() && huge_list_.IsEmpty();
|
| - }
|
| -
|
| -#ifdef DEBUG
|
| - void Zap();
|
| - intptr_t SumFreeLists();
|
| - bool IsVeryLong();
|
| -#endif
|
| -
|
| - // Used after booting the VM.
|
| - void RepairLists(Heap* heap);
|
| -
|
| - intptr_t EvictFreeListItems(Page* p);
|
| - bool ContainsPageFreeListItems(Page* p);
|
| -
|
| - FreeListCategory* small_list() { return &small_list_; }
|
| - FreeListCategory* medium_list() { return &medium_list_; }
|
| - FreeListCategory* large_list() { return &large_list_; }
|
| - FreeListCategory* huge_list() { return &huge_list_; }
|
| -
|
| - private:
|
| - // The size range of blocks, in bytes.
|
| - static const int kMinBlockSize = 3 * kPointerSize;
|
| - static const int kMaxBlockSize = Page::kMaxRegularHeapObjectSize;
|
| -
|
| - FreeListNode* FindNodeFor(int size_in_bytes, int* node_size);
|
| -
|
| - PagedSpace* owner_;
|
| - Heap* heap_;
|
| -
|
| - static const int kSmallListMin = 0x20 * kPointerSize;
|
| - static const int kSmallListMax = 0xff * kPointerSize;
|
| - static const int kMediumListMax = 0x7ff * kPointerSize;
|
| - static const int kLargeListMax = 0x3fff * kPointerSize;
|
| - static const int kSmallAllocationMax = kSmallListMin - kPointerSize;
|
| - static const int kMediumAllocationMax = kSmallListMax;
|
| - static const int kLargeAllocationMax = kMediumListMax;
|
| - FreeListCategory small_list_;
|
| - FreeListCategory medium_list_;
|
| - FreeListCategory large_list_;
|
| - FreeListCategory huge_list_;
|
| -
|
| - DISALLOW_IMPLICIT_CONSTRUCTORS(FreeList);
|
| -};
|
| -
|
| -
|
| -class AllocationResult {
|
| - public:
|
| - // Implicit constructor from Object*.
|
| - AllocationResult(Object* object) : object_(object), // NOLINT
|
| - retry_space_(INVALID_SPACE) { }
|
| -
|
| - AllocationResult() : object_(NULL),
|
| - retry_space_(INVALID_SPACE) { }
|
| -
|
| - static inline AllocationResult Retry(AllocationSpace space = NEW_SPACE) {
|
| - return AllocationResult(space);
|
| - }
|
| -
|
| - inline bool IsRetry() { return retry_space_ != INVALID_SPACE; }
|
| -
|
| - template <typename T>
|
| - bool To(T** obj) {
|
| - if (IsRetry()) return false;
|
| - *obj = T::cast(object_);
|
| - return true;
|
| - }
|
| -
|
| - Object* ToObjectChecked() {
|
| - CHECK(!IsRetry());
|
| - return object_;
|
| - }
|
| -
|
| - AllocationSpace RetrySpace() {
|
| - DCHECK(IsRetry());
|
| - return retry_space_;
|
| - }
|
| -
|
| - private:
|
| - explicit AllocationResult(AllocationSpace space) : object_(NULL),
|
| - retry_space_(space) { }
|
| -
|
| - Object* object_;
|
| - AllocationSpace retry_space_;
|
| -};
|
| -
|
| -
|
| -class PagedSpace : public Space {
|
| - public:
|
| - // Creates a space with a maximum capacity, and an id.
|
| - PagedSpace(Heap* heap,
|
| - intptr_t max_capacity,
|
| - AllocationSpace id,
|
| - Executability executable);
|
| -
|
| - virtual ~PagedSpace() {}
|
| -
|
| - // Set up the space using the given address range of virtual memory (from
|
| - // the memory allocator's initial chunk) if possible. If the block of
|
| - // addresses is not big enough to contain a single page-aligned page, a
|
| - // fresh chunk will be allocated.
|
| - bool SetUp();
|
| -
|
| - // Returns true if the space has been successfully set up and not
|
| - // subsequently torn down.
|
| - bool HasBeenSetUp();
|
| -
|
| - // Cleans up the space, frees all pages in this space except those belonging
|
| - // to the initial chunk, uncommits addresses in the initial chunk.
|
| - void TearDown();
|
| -
|
| - // Checks whether an object/address is in this space.
|
| - inline bool Contains(Address a);
|
| - bool Contains(HeapObject* o) { return Contains(o->address()); }
|
| -
|
| - // Given an address occupied by a live object, return that object if it is
|
| - // in this space, or a Smi if it is not. The implementation iterates over
|
| - // objects in the page containing the address, the cost is linear in the
|
| - // number of objects in the page. It may be slow.
|
| - Object* FindObject(Address addr);
|
| -
|
| - // During boot the free_space_map is created, and afterwards we may need
|
| - // to write it into the free list nodes that were already created.
|
| - void RepairFreeListsAfterBoot();
|
| -
|
| - // Prepares for a mark-compact GC.
|
| - void PrepareForMarkCompact();
|
| -
|
| - // Current capacity without growing (Size() + Available()).
|
| - intptr_t Capacity() { return accounting_stats_.Capacity(); }
|
| -
|
| - // Total amount of memory committed for this space. For paged
|
| - // spaces this equals the capacity.
|
| - intptr_t CommittedMemory() { return Capacity(); }
|
| -
|
| - // The maximum amount of memory ever committed for this space.
|
| - intptr_t MaximumCommittedMemory() { return accounting_stats_.MaxCapacity(); }
|
| -
|
| - // Approximate amount of physical memory committed for this space.
|
| - size_t CommittedPhysicalMemory();
|
| -
|
| - struct SizeStats {
|
| - intptr_t Total() {
|
| - return small_size_ + medium_size_ + large_size_ + huge_size_;
|
| - }
|
| -
|
| - intptr_t small_size_;
|
| - intptr_t medium_size_;
|
| - intptr_t large_size_;
|
| - intptr_t huge_size_;
|
| - };
|
| -
|
| - void ObtainFreeListStatistics(Page* p, SizeStats* sizes);
|
| - void ResetFreeListStatistics();
|
| -
|
| - // Sets the capacity, the available space and the wasted space to zero.
|
| - // The stats are rebuilt during sweeping by adding each page to the
|
| - // capacity and the size when it is encountered. As free spaces are
|
| - // discovered during the sweeping they are subtracted from the size and added
|
| - // to the available and wasted totals.
|
| - void ClearStats() {
|
| - accounting_stats_.ClearSizeWaste();
|
| - ResetFreeListStatistics();
|
| - }
|
| -
|
| - // Increases the number of available bytes of that space.
|
| - void AddToAccountingStats(intptr_t bytes) {
|
| - accounting_stats_.DeallocateBytes(bytes);
|
| - }
|
| -
|
| - // Available bytes without growing. These are the bytes on the free list.
|
| - // The bytes in the linear allocation area are not included in this total
|
| - // because updating the stats would slow down allocation. New pages are
|
| - // immediately added to the free list so they show up here.
|
| - intptr_t Available() { return free_list_.available(); }
|
| -
|
| - // Allocated bytes in this space. Garbage bytes that were not found due to
|
| - // concurrent sweeping are counted as being allocated! The bytes in the
|
| - // current linear allocation area (between top and limit) are also counted
|
| - // here.
|
| - virtual intptr_t Size() { return accounting_stats_.Size(); }
|
| -
|
| - // As size, but the bytes in lazily swept pages are estimated and the bytes
|
| - // in the current linear allocation area are not included.
|
| - virtual intptr_t SizeOfObjects();
|
| -
|
| - // Wasted bytes in this space. These are just the bytes that were thrown away
|
| - // due to being too small to use for allocation. They do not include the
|
| - // free bytes that were not found at all due to lazy sweeping.
|
| - virtual intptr_t Waste() { return accounting_stats_.Waste(); }
|
| -
|
| - // Returns the allocation pointer in this space.
|
| - Address top() { return allocation_info_.top(); }
|
| - Address limit() { return allocation_info_.limit(); }
|
| -
|
| - // The allocation top address.
|
| - Address* allocation_top_address() {
|
| - return allocation_info_.top_address();
|
| - }
|
| -
|
| - // The allocation limit address.
|
| - Address* allocation_limit_address() {
|
| - return allocation_info_.limit_address();
|
| - }
|
| -
|
| - // Allocate the requested number of bytes in the space if possible, return a
|
| - // failure object if not.
|
| - MUST_USE_RESULT inline AllocationResult AllocateRaw(int size_in_bytes);
|
| -
|
| - // Give a block of memory to the space's free list. It might be added to
|
| - // the free list or accounted as waste.
|
| - // If add_to_freelist is false then just accounting stats are updated and
|
| - // no attempt to add area to free list is made.
|
| - int Free(Address start, int size_in_bytes) {
|
| - int wasted = free_list_.Free(start, size_in_bytes);
|
| - accounting_stats_.DeallocateBytes(size_in_bytes);
|
| - accounting_stats_.WasteBytes(wasted);
|
| - return size_in_bytes - wasted;
|
| - }
|
| -
|
| - void ResetFreeList() {
|
| - free_list_.Reset();
|
| - }
|
| -
|
| - // Set space allocation info.
|
| - void SetTopAndLimit(Address top, Address limit) {
|
| - DCHECK(top == limit ||
|
| - Page::FromAddress(top) == Page::FromAddress(limit - 1));
|
| - MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
|
| - allocation_info_.set_top(top);
|
| - allocation_info_.set_limit(limit);
|
| - }
|
| -
|
| - // Empty space allocation info, returning unused area to free list.
|
| - void EmptyAllocationInfo() {
|
| - // Mark the old linear allocation area with a free space map so it can be
|
| - // skipped when scanning the heap.
|
| - int old_linear_size = static_cast<int>(limit() - top());
|
| - Free(top(), old_linear_size);
|
| - SetTopAndLimit(NULL, NULL);
|
| - }
|
| -
|
| - void Allocate(int bytes) {
|
| - accounting_stats_.AllocateBytes(bytes);
|
| - }
|
| -
|
| - void IncreaseCapacity(int size);
|
| -
|
| - // Releases an unused page and shrinks the space.
|
| - void ReleasePage(Page* page);
|
| -
|
| - // The dummy page that anchors the linked list of pages.
|
| - Page* anchor() { return &anchor_; }
|
| -
|
| -#ifdef VERIFY_HEAP
|
| - // Verify integrity of this space.
|
| - virtual void Verify(ObjectVisitor* visitor);
|
| -
|
| - // Overridden by subclasses to verify space-specific object
|
| - // properties (e.g., only maps or free-list nodes are in map space).
|
| - virtual void VerifyObject(HeapObject* obj) {}
|
| -#endif
|
| -
|
| -#ifdef DEBUG
|
| - // Print meta info and objects in this space.
|
| - virtual void Print();
|
| -
|
| - // Reports statistics for the space
|
| - void ReportStatistics();
|
| -
|
| - // Report code object related statistics
|
| - void CollectCodeStatistics();
|
| - static void ReportCodeStatistics(Isolate* isolate);
|
| - static void ResetCodeStatistics(Isolate* isolate);
|
| -#endif
|
| -
|
| - bool swept_precisely() { return swept_precisely_; }
|
| - void set_swept_precisely(bool b) { swept_precisely_ = b; }
|
| -
|
| - // Evacuation candidates are swept by evacuator. Needs to return a valid
|
| - // result before _and_ after evacuation has finished.
|
| - static bool ShouldBeSweptBySweeperThreads(Page* p) {
|
| - return !p->IsEvacuationCandidate() &&
|
| - !p->IsFlagSet(Page::RESCAN_ON_EVACUATION) &&
|
| - !p->WasSweptPrecisely();
|
| - }
|
| -
|
| - void IncrementUnsweptFreeBytes(intptr_t by) {
|
| - unswept_free_bytes_ += by;
|
| - }
|
| -
|
| - void IncreaseUnsweptFreeBytes(Page* p) {
|
| - DCHECK(ShouldBeSweptBySweeperThreads(p));
|
| - unswept_free_bytes_ += (p->area_size() - p->LiveBytes());
|
| - }
|
| -
|
| - void DecrementUnsweptFreeBytes(intptr_t by) {
|
| - unswept_free_bytes_ -= by;
|
| - }
|
| -
|
| - void DecreaseUnsweptFreeBytes(Page* p) {
|
| - DCHECK(ShouldBeSweptBySweeperThreads(p));
|
| - unswept_free_bytes_ -= (p->area_size() - p->LiveBytes());
|
| - }
|
| -
|
| - void ResetUnsweptFreeBytes() {
|
| - unswept_free_bytes_ = 0;
|
| - }
|
| -
|
| - // This function tries to steal size_in_bytes memory from the sweeper threads
|
| - // free-lists. If it does not succeed stealing enough memory, it will wait
|
| - // for the sweeper threads to finish sweeping.
|
| - // It returns true when sweeping is completed and false otherwise.
|
| - bool EnsureSweeperProgress(intptr_t size_in_bytes);
|
| -
|
| - void set_end_of_unswept_pages(Page* page) {
|
| - end_of_unswept_pages_ = page;
|
| - }
|
| -
|
| - Page* end_of_unswept_pages() {
|
| - return end_of_unswept_pages_;
|
| - }
|
| -
|
| - Page* FirstPage() { return anchor_.next_page(); }
|
| - Page* LastPage() { return anchor_.prev_page(); }
|
| -
|
| - void EvictEvacuationCandidatesFromFreeLists();
|
| -
|
| - bool CanExpand();
|
| -
|
| - // Returns the number of total pages in this space.
|
| - int CountTotalPages();
|
| -
|
| - // Return size of allocatable area on a page in this space.
|
| - inline int AreaSize() {
|
| - return area_size_;
|
| - }
|
| -
|
| - void CreateEmergencyMemory();
|
| - void FreeEmergencyMemory();
|
| - void UseEmergencyMemory();
|
| -
|
| - bool HasEmergencyMemory() { return emergency_memory_ != NULL; }
|
| -
|
| - protected:
|
| - FreeList* free_list() { return &free_list_; }
|
| -
|
| - int area_size_;
|
| -
|
| - // Maximum capacity of this space.
|
| - intptr_t max_capacity_;
|
| -
|
| - intptr_t SizeOfFirstPage();
|
| -
|
| - // Accounting information for this space.
|
| - AllocationStats accounting_stats_;
|
| -
|
| - // The dummy page that anchors the double linked list of pages.
|
| - Page anchor_;
|
| -
|
| - // The space's free list.
|
| - FreeList free_list_;
|
| -
|
| - // Normal allocation information.
|
| - AllocationInfo allocation_info_;
|
| -
|
| - // This space was swept precisely, hence it is iterable.
|
| - bool swept_precisely_;
|
| -
|
| - // The number of free bytes which could be reclaimed by advancing the
|
| - // concurrent sweeper threads. This is only an estimation because concurrent
|
| - // sweeping is done conservatively.
|
| - intptr_t unswept_free_bytes_;
|
| -
|
| - // The sweeper threads iterate over the list of pointer and data space pages
|
| - // and sweep these pages concurrently. They will stop sweeping after the
|
| - // end_of_unswept_pages_ page.
|
| - Page* end_of_unswept_pages_;
|
| -
|
| - // Emergency memory is the memory of a full page for a given space, allocated
|
| - // conservatively before evacuating a page. If compaction fails due to out
|
| - // of memory error the emergency memory can be used to complete compaction.
|
| - // If not used, the emergency memory is released after compaction.
|
| - MemoryChunk* emergency_memory_;
|
| -
|
| - // Expands the space by allocating a fixed number of pages. Returns false if
|
| - // it cannot allocate requested number of pages from OS, or if the hard heap
|
| - // size limit has been hit.
|
| - bool Expand();
|
| -
|
| - // Generic fast case allocation function that tries linear allocation at the
|
| - // address denoted by top in allocation_info_.
|
| - inline HeapObject* AllocateLinearly(int size_in_bytes);
|
| -
|
| - // If sweeping is still in progress try to sweep unswept pages. If that is
|
| - // not successful, wait for the sweeper threads and re-try free-list
|
| - // allocation.
|
| - MUST_USE_RESULT HeapObject* WaitForSweeperThreadsAndRetryAllocation(
|
| - int size_in_bytes);
|
| -
|
| - // Slow path of AllocateRaw. This function is space-dependent.
|
| - MUST_USE_RESULT HeapObject* SlowAllocateRaw(int size_in_bytes);
|
| -
|
| - friend class PageIterator;
|
| - friend class MarkCompactCollector;
|
| -};
|
| -
|
| -
|
| -class NumberAndSizeInfo BASE_EMBEDDED {
|
| - public:
|
| - NumberAndSizeInfo() : number_(0), bytes_(0) {}
|
| -
|
| - int number() const { return number_; }
|
| - void increment_number(int num) { number_ += num; }
|
| -
|
| - int bytes() const { return bytes_; }
|
| - void increment_bytes(int size) { bytes_ += size; }
|
| -
|
| - void clear() {
|
| - number_ = 0;
|
| - bytes_ = 0;
|
| - }
|
| -
|
| - private:
|
| - int number_;
|
| - int bytes_;
|
| -};
|
| -
|
| -
|
| -// HistogramInfo class for recording a single "bar" of a histogram. This
|
| -// class is used for collecting statistics to print to the log file.
|
| -class HistogramInfo: public NumberAndSizeInfo {
|
| - public:
|
| - HistogramInfo() : NumberAndSizeInfo() {}
|
| -
|
| - const char* name() { return name_; }
|
| - void set_name(const char* name) { name_ = name; }
|
| -
|
| - private:
|
| - const char* name_;
|
| -};
|
| -
|
| -
|
| -enum SemiSpaceId {
|
| - kFromSpace = 0,
|
| - kToSpace = 1
|
| -};
|
| -
|
| -
|
| -class SemiSpace;
|
| -
|
| -
|
| -class NewSpacePage : public MemoryChunk {
|
| - public:
|
| - // GC related flags copied from from-space to to-space when
|
| - // flipping semispaces.
|
| - static const intptr_t kCopyOnFlipFlagsMask =
|
| - (1 << MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING) |
|
| - (1 << MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING) |
|
| - (1 << MemoryChunk::SCAN_ON_SCAVENGE);
|
| -
|
| - static const int kAreaSize = Page::kMaxRegularHeapObjectSize;
|
| -
|
| - inline NewSpacePage* next_page() const {
|
| - return static_cast<NewSpacePage*>(next_chunk());
|
| - }
|
| -
|
| - inline void set_next_page(NewSpacePage* page) {
|
| - set_next_chunk(page);
|
| - }
|
| -
|
| - inline NewSpacePage* prev_page() const {
|
| - return static_cast<NewSpacePage*>(prev_chunk());
|
| - }
|
| -
|
| - inline void set_prev_page(NewSpacePage* page) {
|
| - set_prev_chunk(page);
|
| - }
|
| -
|
| - SemiSpace* semi_space() {
|
| - return reinterpret_cast<SemiSpace*>(owner());
|
| - }
|
| -
|
| - bool is_anchor() { return !this->InNewSpace(); }
|
| -
|
| - static bool IsAtStart(Address addr) {
|
| - return (reinterpret_cast<intptr_t>(addr) & Page::kPageAlignmentMask)
|
| - == kObjectStartOffset;
|
| - }
|
| -
|
| - static bool IsAtEnd(Address addr) {
|
| - return (reinterpret_cast<intptr_t>(addr) & Page::kPageAlignmentMask) == 0;
|
| - }
|
| -
|
| - Address address() {
|
| - return reinterpret_cast<Address>(this);
|
| - }
|
| -
|
| - // Finds the NewSpacePage containg the given address.
|
| - static inline NewSpacePage* FromAddress(Address address_in_page) {
|
| - Address page_start =
|
| - reinterpret_cast<Address>(reinterpret_cast<uintptr_t>(address_in_page) &
|
| - ~Page::kPageAlignmentMask);
|
| - NewSpacePage* page = reinterpret_cast<NewSpacePage*>(page_start);
|
| - return page;
|
| - }
|
| -
|
| - // Find the page for a limit address. A limit address is either an address
|
| - // inside a page, or the address right after the last byte of a page.
|
| - static inline NewSpacePage* FromLimit(Address address_limit) {
|
| - return NewSpacePage::FromAddress(address_limit - 1);
|
| - }
|
| -
|
| - // Checks if address1 and address2 are on the same new space page.
|
| - static inline bool OnSamePage(Address address1, Address address2) {
|
| - return NewSpacePage::FromAddress(address1) ==
|
| - NewSpacePage::FromAddress(address2);
|
| - }
|
| -
|
| - private:
|
| - // Create a NewSpacePage object that is only used as anchor
|
| - // for the doubly-linked list of real pages.
|
| - explicit NewSpacePage(SemiSpace* owner) {
|
| - InitializeAsAnchor(owner);
|
| - }
|
| -
|
| - static NewSpacePage* Initialize(Heap* heap,
|
| - Address start,
|
| - SemiSpace* semi_space);
|
| -
|
| - // Intialize a fake NewSpacePage used as sentinel at the ends
|
| - // of a doubly-linked list of real NewSpacePages.
|
| - // Only uses the prev/next links, and sets flags to not be in new-space.
|
| - void InitializeAsAnchor(SemiSpace* owner);
|
| -
|
| - friend class SemiSpace;
|
| - friend class SemiSpaceIterator;
|
| -};
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// SemiSpace in young generation
|
| -//
|
| -// A semispace is a contiguous chunk of memory holding page-like memory
|
| -// chunks. The mark-compact collector uses the memory of the first page in
|
| -// the from space as a marking stack when tracing live objects.
|
| -
|
| -class SemiSpace : public Space {
|
| - public:
|
| - // Constructor.
|
| - SemiSpace(Heap* heap, SemiSpaceId semispace)
|
| - : Space(heap, NEW_SPACE, NOT_EXECUTABLE),
|
| - start_(NULL),
|
| - age_mark_(NULL),
|
| - id_(semispace),
|
| - anchor_(this),
|
| - current_page_(NULL) { }
|
| -
|
| - // Sets up the semispace using the given chunk.
|
| - void SetUp(Address start, int initial_capacity, int maximum_capacity);
|
| -
|
| - // Tear down the space. Heap memory was not allocated by the space, so it
|
| - // is not deallocated here.
|
| - void TearDown();
|
| -
|
| - // True if the space has been set up but not torn down.
|
| - bool HasBeenSetUp() { return start_ != NULL; }
|
| -
|
| - // Grow the semispace to the new capacity. The new capacity
|
| - // requested must be larger than the current capacity and less than
|
| - // the maximum capacity.
|
| - bool GrowTo(int new_capacity);
|
| -
|
| - // Shrinks the semispace to the new capacity. The new capacity
|
| - // requested must be more than the amount of used memory in the
|
| - // semispace and less than the current capacity.
|
| - bool ShrinkTo(int new_capacity);
|
| -
|
| - // Returns the start address of the first page of the space.
|
| - Address space_start() {
|
| - DCHECK(anchor_.next_page() != &anchor_);
|
| - return anchor_.next_page()->area_start();
|
| - }
|
| -
|
| - // Returns the start address of the current page of the space.
|
| - Address page_low() {
|
| - return current_page_->area_start();
|
| - }
|
| -
|
| - // Returns one past the end address of the space.
|
| - Address space_end() {
|
| - return anchor_.prev_page()->area_end();
|
| - }
|
| -
|
| - // Returns one past the end address of the current page of the space.
|
| - Address page_high() {
|
| - return current_page_->area_end();
|
| - }
|
| -
|
| - bool AdvancePage() {
|
| - NewSpacePage* next_page = current_page_->next_page();
|
| - if (next_page == anchor()) return false;
|
| - current_page_ = next_page;
|
| - return true;
|
| - }
|
| -
|
| - // Resets the space to using the first page.
|
| - void Reset();
|
| -
|
| - // Age mark accessors.
|
| - Address age_mark() { return age_mark_; }
|
| - void set_age_mark(Address mark);
|
| -
|
| - // True if the address is in the address range of this semispace (not
|
| - // necessarily below the allocation pointer).
|
| - bool Contains(Address a) {
|
| - return (reinterpret_cast<uintptr_t>(a) & address_mask_)
|
| - == reinterpret_cast<uintptr_t>(start_);
|
| - }
|
| -
|
| - // True if the object is a heap object in the address range of this
|
| - // semispace (not necessarily below the allocation pointer).
|
| - bool Contains(Object* o) {
|
| - return (reinterpret_cast<uintptr_t>(o) & object_mask_) == object_expected_;
|
| - }
|
| -
|
| - // If we don't have these here then SemiSpace will be abstract. However
|
| - // they should never be called.
|
| - virtual intptr_t Size() {
|
| - UNREACHABLE();
|
| - return 0;
|
| - }
|
| -
|
| - bool is_committed() { return committed_; }
|
| - bool Commit();
|
| - bool Uncommit();
|
| -
|
| - NewSpacePage* first_page() { return anchor_.next_page(); }
|
| - NewSpacePage* current_page() { return current_page_; }
|
| -
|
| -#ifdef VERIFY_HEAP
|
| - virtual void Verify();
|
| -#endif
|
| -
|
| -#ifdef DEBUG
|
| - virtual void Print();
|
| - // Validate a range of of addresses in a SemiSpace.
|
| - // The "from" address must be on a page prior to the "to" address,
|
| - // in the linked page order, or it must be earlier on the same page.
|
| - static void AssertValidRange(Address from, Address to);
|
| -#else
|
| - // Do nothing.
|
| - inline static void AssertValidRange(Address from, Address to) {}
|
| -#endif
|
| -
|
| - // Returns the current capacity of the semi space.
|
| - int Capacity() { return capacity_; }
|
| -
|
| - // Returns the maximum capacity of the semi space.
|
| - int MaximumCapacity() { return maximum_capacity_; }
|
| -
|
| - // Returns the initial capacity of the semi space.
|
| - int InitialCapacity() { return initial_capacity_; }
|
| -
|
| - SemiSpaceId id() { return id_; }
|
| -
|
| - static void Swap(SemiSpace* from, SemiSpace* to);
|
| -
|
| - // Returns the maximum amount of memory ever committed by the semi space.
|
| - size_t MaximumCommittedMemory() { return maximum_committed_; }
|
| -
|
| - // Approximate amount of physical memory committed for this space.
|
| - size_t CommittedPhysicalMemory();
|
| -
|
| - private:
|
| - // Flips the semispace between being from-space and to-space.
|
| - // Copies the flags into the masked positions on all pages in the space.
|
| - void FlipPages(intptr_t flags, intptr_t flag_mask);
|
| -
|
| - // Updates Capacity and MaximumCommitted based on new capacity.
|
| - void SetCapacity(int new_capacity);
|
| -
|
| - NewSpacePage* anchor() { return &anchor_; }
|
| -
|
| - // The current and maximum capacity of the space.
|
| - int capacity_;
|
| - int maximum_capacity_;
|
| - int initial_capacity_;
|
| -
|
| - intptr_t maximum_committed_;
|
| -
|
| - // The start address of the space.
|
| - Address start_;
|
| - // Used to govern object promotion during mark-compact collection.
|
| - Address age_mark_;
|
| -
|
| - // Masks and comparison values to test for containment in this semispace.
|
| - uintptr_t address_mask_;
|
| - uintptr_t object_mask_;
|
| - uintptr_t object_expected_;
|
| -
|
| - bool committed_;
|
| - SemiSpaceId id_;
|
| -
|
| - NewSpacePage anchor_;
|
| - NewSpacePage* current_page_;
|
| -
|
| - friend class SemiSpaceIterator;
|
| - friend class NewSpacePageIterator;
|
| - public:
|
| - TRACK_MEMORY("SemiSpace")
|
| -};
|
| -
|
| -
|
| -// A SemiSpaceIterator is an ObjectIterator that iterates over the active
|
| -// semispace of the heap's new space. It iterates over the objects in the
|
| -// semispace from a given start address (defaulting to the bottom of the
|
| -// semispace) to the top of the semispace. New objects allocated after the
|
| -// iterator is created are not iterated.
|
| -class SemiSpaceIterator : public ObjectIterator {
|
| - public:
|
| - // Create an iterator over the objects in the given space. If no start
|
| - // address is given, the iterator starts from the bottom of the space. If
|
| - // no size function is given, the iterator calls Object::Size().
|
| -
|
| - // Iterate over all of allocated to-space.
|
| - explicit SemiSpaceIterator(NewSpace* space);
|
| - // Iterate over all of allocated to-space, with a custome size function.
|
| - SemiSpaceIterator(NewSpace* space, HeapObjectCallback size_func);
|
| - // Iterate over part of allocated to-space, from start to the end
|
| - // of allocation.
|
| - SemiSpaceIterator(NewSpace* space, Address start);
|
| - // Iterate from one address to another in the same semi-space.
|
| - SemiSpaceIterator(Address from, Address to);
|
| -
|
| - HeapObject* Next() {
|
| - if (current_ == limit_) return NULL;
|
| - if (NewSpacePage::IsAtEnd(current_)) {
|
| - NewSpacePage* page = NewSpacePage::FromLimit(current_);
|
| - page = page->next_page();
|
| - DCHECK(!page->is_anchor());
|
| - current_ = page->area_start();
|
| - if (current_ == limit_) return NULL;
|
| - }
|
| -
|
| - HeapObject* object = HeapObject::FromAddress(current_);
|
| - int size = (size_func_ == NULL) ? object->Size() : size_func_(object);
|
| -
|
| - current_ += size;
|
| - return object;
|
| - }
|
| -
|
| - // Implementation of the ObjectIterator functions.
|
| - virtual HeapObject* next_object() { return Next(); }
|
| -
|
| - private:
|
| - void Initialize(Address start,
|
| - Address end,
|
| - HeapObjectCallback size_func);
|
| -
|
| - // The current iteration point.
|
| - Address current_;
|
| - // The end of iteration.
|
| - Address limit_;
|
| - // The callback function.
|
| - HeapObjectCallback size_func_;
|
| -};
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// A PageIterator iterates the pages in a semi-space.
|
| -class NewSpacePageIterator BASE_EMBEDDED {
|
| - public:
|
| - // Make an iterator that runs over all pages in to-space.
|
| - explicit inline NewSpacePageIterator(NewSpace* space);
|
| -
|
| - // Make an iterator that runs over all pages in the given semispace,
|
| - // even those not used in allocation.
|
| - explicit inline NewSpacePageIterator(SemiSpace* space);
|
| -
|
| - // Make iterator that iterates from the page containing start
|
| - // to the page that contains limit in the same semispace.
|
| - inline NewSpacePageIterator(Address start, Address limit);
|
| -
|
| - inline bool has_next();
|
| - inline NewSpacePage* next();
|
| -
|
| - private:
|
| - NewSpacePage* prev_page_; // Previous page returned.
|
| - // Next page that will be returned. Cached here so that we can use this
|
| - // iterator for operations that deallocate pages.
|
| - NewSpacePage* next_page_;
|
| - // Last page returned.
|
| - NewSpacePage* last_page_;
|
| -};
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// The young generation space.
|
| -//
|
| -// The new space consists of a contiguous pair of semispaces. It simply
|
| -// forwards most functions to the appropriate semispace.
|
| -
|
| -class NewSpace : public Space {
|
| - public:
|
| - // Constructor.
|
| - explicit NewSpace(Heap* heap)
|
| - : Space(heap, NEW_SPACE, NOT_EXECUTABLE),
|
| - to_space_(heap, kToSpace),
|
| - from_space_(heap, kFromSpace),
|
| - reservation_(),
|
| - inline_allocation_limit_step_(0) {}
|
| -
|
| - // Sets up the new space using the given chunk.
|
| - bool SetUp(int reserved_semispace_size_, int max_semi_space_size);
|
| -
|
| - // Tears down the space. Heap memory was not allocated by the space, so it
|
| - // is not deallocated here.
|
| - void TearDown();
|
| -
|
| - // True if the space has been set up but not torn down.
|
| - bool HasBeenSetUp() {
|
| - return to_space_.HasBeenSetUp() && from_space_.HasBeenSetUp();
|
| - }
|
| -
|
| - // Flip the pair of spaces.
|
| - void Flip();
|
| -
|
| - // Grow the capacity of the semispaces. Assumes that they are not at
|
| - // their maximum capacity.
|
| - void Grow();
|
| -
|
| - // Shrink the capacity of the semispaces.
|
| - void Shrink();
|
| -
|
| - // True if the address or object lies in the address range of either
|
| - // semispace (not necessarily below the allocation pointer).
|
| - bool Contains(Address a) {
|
| - return (reinterpret_cast<uintptr_t>(a) & address_mask_)
|
| - == reinterpret_cast<uintptr_t>(start_);
|
| - }
|
| -
|
| - bool Contains(Object* o) {
|
| - Address a = reinterpret_cast<Address>(o);
|
| - return (reinterpret_cast<uintptr_t>(a) & object_mask_) == object_expected_;
|
| - }
|
| -
|
| - // Return the allocated bytes in the active semispace.
|
| - virtual intptr_t Size() {
|
| - return pages_used_ * NewSpacePage::kAreaSize +
|
| - static_cast<int>(top() - to_space_.page_low());
|
| - }
|
| -
|
| - // The same, but returning an int. We have to have the one that returns
|
| - // intptr_t because it is inherited, but if we know we are dealing with the
|
| - // new space, which can't get as big as the other spaces then this is useful:
|
| - int SizeAsInt() { return static_cast<int>(Size()); }
|
| -
|
| - // Return the current capacity of a semispace.
|
| - intptr_t EffectiveCapacity() {
|
| - SLOW_DCHECK(to_space_.Capacity() == from_space_.Capacity());
|
| - return (to_space_.Capacity() / Page::kPageSize) * NewSpacePage::kAreaSize;
|
| - }
|
| -
|
| - // Return the current capacity of a semispace.
|
| - intptr_t Capacity() {
|
| - DCHECK(to_space_.Capacity() == from_space_.Capacity());
|
| - return to_space_.Capacity();
|
| - }
|
| -
|
| - // Return the total amount of memory committed for new space.
|
| - intptr_t CommittedMemory() {
|
| - if (from_space_.is_committed()) return 2 * Capacity();
|
| - return Capacity();
|
| - }
|
| -
|
| - // Return the total amount of memory committed for new space.
|
| - intptr_t MaximumCommittedMemory() {
|
| - return to_space_.MaximumCommittedMemory() +
|
| - from_space_.MaximumCommittedMemory();
|
| - }
|
| -
|
| - // Approximate amount of physical memory committed for this space.
|
| - size_t CommittedPhysicalMemory();
|
| -
|
| - // Return the available bytes without growing.
|
| - intptr_t Available() {
|
| - return Capacity() - Size();
|
| - }
|
| -
|
| - // Return the maximum capacity of a semispace.
|
| - int MaximumCapacity() {
|
| - DCHECK(to_space_.MaximumCapacity() == from_space_.MaximumCapacity());
|
| - return to_space_.MaximumCapacity();
|
| - }
|
| -
|
| - bool IsAtMaximumCapacity() {
|
| - return Capacity() == MaximumCapacity();
|
| - }
|
| -
|
| - // Returns the initial capacity of a semispace.
|
| - int InitialCapacity() {
|
| - DCHECK(to_space_.InitialCapacity() == from_space_.InitialCapacity());
|
| - return to_space_.InitialCapacity();
|
| - }
|
| -
|
| - // Return the address of the allocation pointer in the active semispace.
|
| - Address top() {
|
| - DCHECK(to_space_.current_page()->ContainsLimit(allocation_info_.top()));
|
| - return allocation_info_.top();
|
| - }
|
| -
|
| - void set_top(Address top) {
|
| - DCHECK(to_space_.current_page()->ContainsLimit(top));
|
| - allocation_info_.set_top(top);
|
| - }
|
| -
|
| - // Return the address of the allocation pointer limit in the active semispace.
|
| - Address limit() {
|
| - DCHECK(to_space_.current_page()->ContainsLimit(allocation_info_.limit()));
|
| - return allocation_info_.limit();
|
| - }
|
| -
|
| - // Return the address of the first object in the active semispace.
|
| - Address bottom() { return to_space_.space_start(); }
|
| -
|
| - // Get the age mark of the inactive semispace.
|
| - Address age_mark() { return from_space_.age_mark(); }
|
| - // Set the age mark in the active semispace.
|
| - void set_age_mark(Address mark) { to_space_.set_age_mark(mark); }
|
| -
|
| - // The start address of the space and a bit mask. Anding an address in the
|
| - // new space with the mask will result in the start address.
|
| - Address start() { return start_; }
|
| - uintptr_t mask() { return address_mask_; }
|
| -
|
| - INLINE(uint32_t AddressToMarkbitIndex(Address addr)) {
|
| - DCHECK(Contains(addr));
|
| - DCHECK(IsAligned(OffsetFrom(addr), kPointerSize) ||
|
| - IsAligned(OffsetFrom(addr) - 1, kPointerSize));
|
| - return static_cast<uint32_t>(addr - start_) >> kPointerSizeLog2;
|
| - }
|
| -
|
| - INLINE(Address MarkbitIndexToAddress(uint32_t index)) {
|
| - return reinterpret_cast<Address>(index << kPointerSizeLog2);
|
| - }
|
| -
|
| - // The allocation top and limit address.
|
| - Address* allocation_top_address() {
|
| - return allocation_info_.top_address();
|
| - }
|
| -
|
| - // The allocation limit address.
|
| - Address* allocation_limit_address() {
|
| - return allocation_info_.limit_address();
|
| - }
|
| -
|
| - MUST_USE_RESULT INLINE(AllocationResult AllocateRaw(int size_in_bytes));
|
| -
|
| - // Reset the allocation pointer to the beginning of the active semispace.
|
| - void ResetAllocationInfo();
|
| -
|
| - void UpdateInlineAllocationLimit(int size_in_bytes);
|
| - void LowerInlineAllocationLimit(intptr_t step) {
|
| - inline_allocation_limit_step_ = step;
|
| - UpdateInlineAllocationLimit(0);
|
| - top_on_previous_step_ = allocation_info_.top();
|
| - }
|
| -
|
| - // Get the extent of the inactive semispace (for use as a marking stack,
|
| - // or to zap it). Notice: space-addresses are not necessarily on the
|
| - // same page, so FromSpaceStart() might be above FromSpaceEnd().
|
| - Address FromSpacePageLow() { return from_space_.page_low(); }
|
| - Address FromSpacePageHigh() { return from_space_.page_high(); }
|
| - Address FromSpaceStart() { return from_space_.space_start(); }
|
| - Address FromSpaceEnd() { return from_space_.space_end(); }
|
| -
|
| - // Get the extent of the active semispace's pages' memory.
|
| - Address ToSpaceStart() { return to_space_.space_start(); }
|
| - Address ToSpaceEnd() { return to_space_.space_end(); }
|
| -
|
| - inline bool ToSpaceContains(Address address) {
|
| - return to_space_.Contains(address);
|
| - }
|
| - inline bool FromSpaceContains(Address address) {
|
| - return from_space_.Contains(address);
|
| - }
|
| -
|
| - // True if the object is a heap object in the address range of the
|
| - // respective semispace (not necessarily below the allocation pointer of the
|
| - // semispace).
|
| - inline bool ToSpaceContains(Object* o) { return to_space_.Contains(o); }
|
| - inline bool FromSpaceContains(Object* o) { return from_space_.Contains(o); }
|
| -
|
| - // Try to switch the active semispace to a new, empty, page.
|
| - // Returns false if this isn't possible or reasonable (i.e., there
|
| - // are no pages, or the current page is already empty), or true
|
| - // if successful.
|
| - bool AddFreshPage();
|
| -
|
| -#ifdef VERIFY_HEAP
|
| - // Verify the active semispace.
|
| - virtual void Verify();
|
| -#endif
|
| -
|
| -#ifdef DEBUG
|
| - // Print the active semispace.
|
| - virtual void Print() { to_space_.Print(); }
|
| -#endif
|
| -
|
| - // Iterates the active semispace to collect statistics.
|
| - void CollectStatistics();
|
| - // Reports previously collected statistics of the active semispace.
|
| - void ReportStatistics();
|
| - // Clears previously collected statistics.
|
| - void ClearHistograms();
|
| -
|
| - // Record the allocation or promotion of a heap object. Note that we don't
|
| - // record every single allocation, but only those that happen in the
|
| - // to space during a scavenge GC.
|
| - void RecordAllocation(HeapObject* obj);
|
| - void RecordPromotion(HeapObject* obj);
|
| -
|
| - // Return whether the operation succeded.
|
| - bool CommitFromSpaceIfNeeded() {
|
| - if (from_space_.is_committed()) return true;
|
| - return from_space_.Commit();
|
| - }
|
| -
|
| - bool UncommitFromSpace() {
|
| - if (!from_space_.is_committed()) return true;
|
| - return from_space_.Uncommit();
|
| - }
|
| -
|
| - inline intptr_t inline_allocation_limit_step() {
|
| - return inline_allocation_limit_step_;
|
| - }
|
| -
|
| - SemiSpace* active_space() { return &to_space_; }
|
| -
|
| - private:
|
| - // Update allocation info to match the current to-space page.
|
| - void UpdateAllocationInfo();
|
| -
|
| - Address chunk_base_;
|
| - uintptr_t chunk_size_;
|
| -
|
| - // The semispaces.
|
| - SemiSpace to_space_;
|
| - SemiSpace from_space_;
|
| - base::VirtualMemory reservation_;
|
| - int pages_used_;
|
| -
|
| - // Start address and bit mask for containment testing.
|
| - Address start_;
|
| - uintptr_t address_mask_;
|
| - uintptr_t object_mask_;
|
| - uintptr_t object_expected_;
|
| -
|
| - // Allocation pointer and limit for normal allocation and allocation during
|
| - // mark-compact collection.
|
| - AllocationInfo allocation_info_;
|
| -
|
| - // When incremental marking is active we will set allocation_info_.limit
|
| - // to be lower than actual limit and then will gradually increase it
|
| - // in steps to guarantee that we do incremental marking steps even
|
| - // when all allocation is performed from inlined generated code.
|
| - intptr_t inline_allocation_limit_step_;
|
| -
|
| - Address top_on_previous_step_;
|
| -
|
| - HistogramInfo* allocated_histogram_;
|
| - HistogramInfo* promoted_histogram_;
|
| -
|
| - MUST_USE_RESULT AllocationResult SlowAllocateRaw(int size_in_bytes);
|
| -
|
| - friend class SemiSpaceIterator;
|
| -
|
| - public:
|
| - TRACK_MEMORY("NewSpace")
|
| -};
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// Old object space (excluding map objects)
|
| -
|
| -class OldSpace : public PagedSpace {
|
| - public:
|
| - // Creates an old space object with a given maximum capacity.
|
| - // The constructor does not allocate pages from OS.
|
| - OldSpace(Heap* heap,
|
| - intptr_t max_capacity,
|
| - AllocationSpace id,
|
| - Executability executable)
|
| - : PagedSpace(heap, max_capacity, id, executable) {
|
| - }
|
| -
|
| - public:
|
| - TRACK_MEMORY("OldSpace")
|
| -};
|
| -
|
| -
|
| -// For contiguous spaces, top should be in the space (or at the end) and limit
|
| -// should be the end of the space.
|
| -#define DCHECK_SEMISPACE_ALLOCATION_INFO(info, space) \
|
| - SLOW_DCHECK((space).page_low() <= (info).top() \
|
| - && (info).top() <= (space).page_high() \
|
| - && (info).limit() <= (space).page_high())
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// Old space for all map objects
|
| -
|
| -class MapSpace : public PagedSpace {
|
| - public:
|
| - // Creates a map space object with a maximum capacity.
|
| - MapSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id)
|
| - : PagedSpace(heap, max_capacity, id, NOT_EXECUTABLE),
|
| - max_map_space_pages_(kMaxMapPageIndex - 1) {
|
| - }
|
| -
|
| - // Given an index, returns the page address.
|
| - // TODO(1600): this limit is artifical just to keep code compilable
|
| - static const int kMaxMapPageIndex = 1 << 16;
|
| -
|
| - virtual int RoundSizeDownToObjectAlignment(int size) {
|
| - if (IsPowerOf2(Map::kSize)) {
|
| - return RoundDown(size, Map::kSize);
|
| - } else {
|
| - return (size / Map::kSize) * Map::kSize;
|
| - }
|
| - }
|
| -
|
| - protected:
|
| - virtual void VerifyObject(HeapObject* obj);
|
| -
|
| - private:
|
| - static const int kMapsPerPage = Page::kMaxRegularHeapObjectSize / Map::kSize;
|
| -
|
| - // Do map space compaction if there is a page gap.
|
| - int CompactionThreshold() {
|
| - return kMapsPerPage * (max_map_space_pages_ - 1);
|
| - }
|
| -
|
| - const int max_map_space_pages_;
|
| -
|
| - public:
|
| - TRACK_MEMORY("MapSpace")
|
| -};
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// Old space for simple property cell objects
|
| -
|
| -class CellSpace : public PagedSpace {
|
| - public:
|
| - // Creates a property cell space object with a maximum capacity.
|
| - CellSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id)
|
| - : PagedSpace(heap, max_capacity, id, NOT_EXECUTABLE) {
|
| - }
|
| -
|
| - virtual int RoundSizeDownToObjectAlignment(int size) {
|
| - if (IsPowerOf2(Cell::kSize)) {
|
| - return RoundDown(size, Cell::kSize);
|
| - } else {
|
| - return (size / Cell::kSize) * Cell::kSize;
|
| - }
|
| - }
|
| -
|
| - protected:
|
| - virtual void VerifyObject(HeapObject* obj);
|
| -
|
| - public:
|
| - TRACK_MEMORY("CellSpace")
|
| -};
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// Old space for all global object property cell objects
|
| -
|
| -class PropertyCellSpace : public PagedSpace {
|
| - public:
|
| - // Creates a property cell space object with a maximum capacity.
|
| - PropertyCellSpace(Heap* heap, intptr_t max_capacity,
|
| - AllocationSpace id)
|
| - : PagedSpace(heap, max_capacity, id, NOT_EXECUTABLE) {
|
| - }
|
| -
|
| - virtual int RoundSizeDownToObjectAlignment(int size) {
|
| - if (IsPowerOf2(PropertyCell::kSize)) {
|
| - return RoundDown(size, PropertyCell::kSize);
|
| - } else {
|
| - return (size / PropertyCell::kSize) * PropertyCell::kSize;
|
| - }
|
| - }
|
| -
|
| - protected:
|
| - virtual void VerifyObject(HeapObject* obj);
|
| -
|
| - public:
|
| - TRACK_MEMORY("PropertyCellSpace")
|
| -};
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// Large objects ( > Page::kMaxHeapObjectSize ) are allocated and managed by
|
| -// the large object space. A large object is allocated from OS heap with
|
| -// extra padding bytes (Page::kPageSize + Page::kObjectStartOffset).
|
| -// A large object always starts at Page::kObjectStartOffset to a page.
|
| -// Large objects do not move during garbage collections.
|
| -
|
| -class LargeObjectSpace : public Space {
|
| - public:
|
| - LargeObjectSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id);
|
| - virtual ~LargeObjectSpace() {}
|
| -
|
| - // Initializes internal data structures.
|
| - bool SetUp();
|
| -
|
| - // Releases internal resources, frees objects in this space.
|
| - void TearDown();
|
| -
|
| - static intptr_t ObjectSizeFor(intptr_t chunk_size) {
|
| - if (chunk_size <= (Page::kPageSize + Page::kObjectStartOffset)) return 0;
|
| - return chunk_size - Page::kPageSize - Page::kObjectStartOffset;
|
| - }
|
| -
|
| - // Shared implementation of AllocateRaw, AllocateRawCode and
|
| - // AllocateRawFixedArray.
|
| - MUST_USE_RESULT AllocationResult AllocateRaw(int object_size,
|
| - Executability executable);
|
| -
|
| - // Available bytes for objects in this space.
|
| - inline intptr_t Available();
|
| -
|
| - virtual intptr_t Size() {
|
| - return size_;
|
| - }
|
| -
|
| - virtual intptr_t SizeOfObjects() {
|
| - return objects_size_;
|
| - }
|
| -
|
| - intptr_t MaximumCommittedMemory() {
|
| - return maximum_committed_;
|
| - }
|
| -
|
| - intptr_t CommittedMemory() {
|
| - return Size();
|
| - }
|
| -
|
| - // Approximate amount of physical memory committed for this space.
|
| - size_t CommittedPhysicalMemory();
|
| -
|
| - int PageCount() {
|
| - return page_count_;
|
| - }
|
| -
|
| - // Finds an object for a given address, returns a Smi if it is not found.
|
| - // The function iterates through all objects in this space, may be slow.
|
| - Object* FindObject(Address a);
|
| -
|
| - // Finds a large object page containing the given address, returns NULL
|
| - // if such a page doesn't exist.
|
| - LargePage* FindPage(Address a);
|
| -
|
| - // Frees unmarked objects.
|
| - void FreeUnmarkedObjects();
|
| -
|
| - // Checks whether a heap object is in this space; O(1).
|
| - bool Contains(HeapObject* obj);
|
| -
|
| - // Checks whether the space is empty.
|
| - bool IsEmpty() { return first_page_ == NULL; }
|
| -
|
| - LargePage* first_page() { return first_page_; }
|
| -
|
| -#ifdef VERIFY_HEAP
|
| - virtual void Verify();
|
| -#endif
|
| -
|
| -#ifdef DEBUG
|
| - virtual void Print();
|
| - void ReportStatistics();
|
| - void CollectCodeStatistics();
|
| -#endif
|
| - // Checks whether an address is in the object area in this space. It
|
| - // iterates all objects in the space. May be slow.
|
| - bool SlowContains(Address addr) { return FindObject(addr)->IsHeapObject(); }
|
| -
|
| - private:
|
| - intptr_t max_capacity_;
|
| - intptr_t maximum_committed_;
|
| - // The head of the linked list of large object chunks.
|
| - LargePage* first_page_;
|
| - intptr_t size_; // allocated bytes
|
| - int page_count_; // number of chunks
|
| - intptr_t objects_size_; // size of objects
|
| - // Map MemoryChunk::kAlignment-aligned chunks to large pages covering them
|
| - HashMap chunk_map_;
|
| -
|
| - friend class LargeObjectIterator;
|
| -
|
| - public:
|
| - TRACK_MEMORY("LargeObjectSpace")
|
| -};
|
| -
|
| -
|
| -class LargeObjectIterator: public ObjectIterator {
|
| - public:
|
| - explicit LargeObjectIterator(LargeObjectSpace* space);
|
| - LargeObjectIterator(LargeObjectSpace* space, HeapObjectCallback size_func);
|
| -
|
| - HeapObject* Next();
|
| -
|
| - // implementation of ObjectIterator.
|
| - virtual HeapObject* next_object() { return Next(); }
|
| -
|
| - private:
|
| - LargePage* current_;
|
| - HeapObjectCallback size_func_;
|
| -};
|
| -
|
| -
|
| -// Iterates over the chunks (pages and large object pages) that can contain
|
| -// pointers to new space.
|
| -class PointerChunkIterator BASE_EMBEDDED {
|
| - public:
|
| - inline explicit PointerChunkIterator(Heap* heap);
|
| -
|
| - // Return NULL when the iterator is done.
|
| - MemoryChunk* next() {
|
| - switch (state_) {
|
| - case kOldPointerState: {
|
| - if (old_pointer_iterator_.has_next()) {
|
| - return old_pointer_iterator_.next();
|
| - }
|
| - state_ = kMapState;
|
| - // Fall through.
|
| - }
|
| - case kMapState: {
|
| - if (map_iterator_.has_next()) {
|
| - return map_iterator_.next();
|
| - }
|
| - state_ = kLargeObjectState;
|
| - // Fall through.
|
| - }
|
| - case kLargeObjectState: {
|
| - HeapObject* heap_object;
|
| - do {
|
| - heap_object = lo_iterator_.Next();
|
| - if (heap_object == NULL) {
|
| - state_ = kFinishedState;
|
| - return NULL;
|
| - }
|
| - // Fixed arrays are the only pointer-containing objects in large
|
| - // object space.
|
| - } while (!heap_object->IsFixedArray());
|
| - MemoryChunk* answer = MemoryChunk::FromAddress(heap_object->address());
|
| - return answer;
|
| - }
|
| - case kFinishedState:
|
| - return NULL;
|
| - default:
|
| - break;
|
| - }
|
| - UNREACHABLE();
|
| - return NULL;
|
| - }
|
| -
|
| -
|
| - private:
|
| - enum State {
|
| - kOldPointerState,
|
| - kMapState,
|
| - kLargeObjectState,
|
| - kFinishedState
|
| - };
|
| - State state_;
|
| - PageIterator old_pointer_iterator_;
|
| - PageIterator map_iterator_;
|
| - LargeObjectIterator lo_iterator_;
|
| -};
|
| -
|
| -
|
| -#ifdef DEBUG
|
| -struct CommentStatistic {
|
| - const char* comment;
|
| - int size;
|
| - int count;
|
| - void Clear() {
|
| - comment = NULL;
|
| - size = 0;
|
| - count = 0;
|
| - }
|
| - // Must be small, since an iteration is used for lookup.
|
| - static const int kMaxComments = 64;
|
| -};
|
| -#endif
|
| -
|
| -
|
| -} } // namespace v8::internal
|
| -
|
| -#endif // V8_SPACES_H_
|
|
|