| Index: src/spaces.cc
|
| diff --git a/src/spaces.cc b/src/spaces.cc
|
| deleted file mode 100644
|
| index ed7437b1f0e907a2f465260269de1e8d4a120744..0000000000000000000000000000000000000000
|
| --- a/src/spaces.cc
|
| +++ /dev/null
|
| @@ -1,3183 +0,0 @@
|
| -// Copyright 2011 the V8 project authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include "src/v8.h"
|
| -
|
| -#include "src/base/platform/platform.h"
|
| -#include "src/full-codegen.h"
|
| -#include "src/macro-assembler.h"
|
| -#include "src/mark-compact.h"
|
| -#include "src/msan.h"
|
| -
|
| -namespace v8 {
|
| -namespace internal {
|
| -
|
| -
|
| -// ----------------------------------------------------------------------------
|
| -// HeapObjectIterator
|
| -
|
| -HeapObjectIterator::HeapObjectIterator(PagedSpace* space) {
|
| - // You can't actually iterate over the anchor page. It is not a real page,
|
| - // just an anchor for the double linked page list. Initialize as if we have
|
| - // reached the end of the anchor page, then the first iteration will move on
|
| - // to the first page.
|
| - Initialize(space,
|
| - NULL,
|
| - NULL,
|
| - kAllPagesInSpace,
|
| - NULL);
|
| -}
|
| -
|
| -
|
| -HeapObjectIterator::HeapObjectIterator(PagedSpace* space,
|
| - HeapObjectCallback size_func) {
|
| - // You can't actually iterate over the anchor page. It is not a real page,
|
| - // just an anchor for the double linked page list. Initialize the current
|
| - // address and end as NULL, then the first iteration will move on
|
| - // to the first page.
|
| - Initialize(space,
|
| - NULL,
|
| - NULL,
|
| - kAllPagesInSpace,
|
| - size_func);
|
| -}
|
| -
|
| -
|
| -HeapObjectIterator::HeapObjectIterator(Page* page,
|
| - HeapObjectCallback size_func) {
|
| - Space* owner = page->owner();
|
| - DCHECK(owner == page->heap()->old_pointer_space() ||
|
| - owner == page->heap()->old_data_space() ||
|
| - owner == page->heap()->map_space() ||
|
| - owner == page->heap()->cell_space() ||
|
| - owner == page->heap()->property_cell_space() ||
|
| - owner == page->heap()->code_space());
|
| - Initialize(reinterpret_cast<PagedSpace*>(owner),
|
| - page->area_start(),
|
| - page->area_end(),
|
| - kOnePageOnly,
|
| - size_func);
|
| - DCHECK(page->WasSweptPrecisely() || page->SweepingCompleted());
|
| -}
|
| -
|
| -
|
| -void HeapObjectIterator::Initialize(PagedSpace* space,
|
| - Address cur, Address end,
|
| - HeapObjectIterator::PageMode mode,
|
| - HeapObjectCallback size_f) {
|
| - // Check that we actually can iterate this space.
|
| - DCHECK(space->swept_precisely());
|
| -
|
| - space_ = space;
|
| - cur_addr_ = cur;
|
| - cur_end_ = end;
|
| - page_mode_ = mode;
|
| - size_func_ = size_f;
|
| -}
|
| -
|
| -
|
| -// We have hit the end of the page and should advance to the next block of
|
| -// objects. This happens at the end of the page.
|
| -bool HeapObjectIterator::AdvanceToNextPage() {
|
| - DCHECK(cur_addr_ == cur_end_);
|
| - if (page_mode_ == kOnePageOnly) return false;
|
| - Page* cur_page;
|
| - if (cur_addr_ == NULL) {
|
| - cur_page = space_->anchor();
|
| - } else {
|
| - cur_page = Page::FromAddress(cur_addr_ - 1);
|
| - DCHECK(cur_addr_ == cur_page->area_end());
|
| - }
|
| - cur_page = cur_page->next_page();
|
| - if (cur_page == space_->anchor()) return false;
|
| - cur_addr_ = cur_page->area_start();
|
| - cur_end_ = cur_page->area_end();
|
| - DCHECK(cur_page->WasSweptPrecisely());
|
| - return true;
|
| -}
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// CodeRange
|
| -
|
| -
|
| -CodeRange::CodeRange(Isolate* isolate)
|
| - : isolate_(isolate),
|
| - code_range_(NULL),
|
| - free_list_(0),
|
| - allocation_list_(0),
|
| - current_allocation_block_index_(0) {
|
| -}
|
| -
|
| -
|
| -bool CodeRange::SetUp(size_t requested) {
|
| - DCHECK(code_range_ == NULL);
|
| -
|
| - if (requested == 0) {
|
| - // When a target requires the code range feature, we put all code objects
|
| - // in a kMaximalCodeRangeSize range of virtual address space, so that
|
| - // they can call each other with near calls.
|
| - if (kRequiresCodeRange) {
|
| - requested = kMaximalCodeRangeSize;
|
| - } else {
|
| - return true;
|
| - }
|
| - }
|
| -
|
| - DCHECK(!kRequiresCodeRange || requested <= kMaximalCodeRangeSize);
|
| - code_range_ = new base::VirtualMemory(requested);
|
| - CHECK(code_range_ != NULL);
|
| - if (!code_range_->IsReserved()) {
|
| - delete code_range_;
|
| - code_range_ = NULL;
|
| - return false;
|
| - }
|
| -
|
| - // We are sure that we have mapped a block of requested addresses.
|
| - DCHECK(code_range_->size() == requested);
|
| - LOG(isolate_,
|
| - NewEvent("CodeRange", code_range_->address(), requested));
|
| - Address base = reinterpret_cast<Address>(code_range_->address());
|
| - Address aligned_base =
|
| - RoundUp(reinterpret_cast<Address>(code_range_->address()),
|
| - MemoryChunk::kAlignment);
|
| - size_t size = code_range_->size() - (aligned_base - base);
|
| - allocation_list_.Add(FreeBlock(aligned_base, size));
|
| - current_allocation_block_index_ = 0;
|
| - return true;
|
| -}
|
| -
|
| -
|
| -int CodeRange::CompareFreeBlockAddress(const FreeBlock* left,
|
| - const FreeBlock* right) {
|
| - // The entire point of CodeRange is that the difference between two
|
| - // addresses in the range can be represented as a signed 32-bit int,
|
| - // so the cast is semantically correct.
|
| - return static_cast<int>(left->start - right->start);
|
| -}
|
| -
|
| -
|
| -bool CodeRange::GetNextAllocationBlock(size_t requested) {
|
| - for (current_allocation_block_index_++;
|
| - current_allocation_block_index_ < allocation_list_.length();
|
| - current_allocation_block_index_++) {
|
| - if (requested <= allocation_list_[current_allocation_block_index_].size) {
|
| - return true; // Found a large enough allocation block.
|
| - }
|
| - }
|
| -
|
| - // Sort and merge the free blocks on the free list and the allocation list.
|
| - free_list_.AddAll(allocation_list_);
|
| - allocation_list_.Clear();
|
| - free_list_.Sort(&CompareFreeBlockAddress);
|
| - for (int i = 0; i < free_list_.length();) {
|
| - FreeBlock merged = free_list_[i];
|
| - i++;
|
| - // Add adjacent free blocks to the current merged block.
|
| - while (i < free_list_.length() &&
|
| - free_list_[i].start == merged.start + merged.size) {
|
| - merged.size += free_list_[i].size;
|
| - i++;
|
| - }
|
| - if (merged.size > 0) {
|
| - allocation_list_.Add(merged);
|
| - }
|
| - }
|
| - free_list_.Clear();
|
| -
|
| - for (current_allocation_block_index_ = 0;
|
| - current_allocation_block_index_ < allocation_list_.length();
|
| - current_allocation_block_index_++) {
|
| - if (requested <= allocation_list_[current_allocation_block_index_].size) {
|
| - return true; // Found a large enough allocation block.
|
| - }
|
| - }
|
| - current_allocation_block_index_ = 0;
|
| - // Code range is full or too fragmented.
|
| - return false;
|
| -}
|
| -
|
| -
|
| -Address CodeRange::AllocateRawMemory(const size_t requested_size,
|
| - const size_t commit_size,
|
| - size_t* allocated) {
|
| - DCHECK(commit_size <= requested_size);
|
| - DCHECK(current_allocation_block_index_ < allocation_list_.length());
|
| - if (requested_size > allocation_list_[current_allocation_block_index_].size) {
|
| - // Find an allocation block large enough.
|
| - if (!GetNextAllocationBlock(requested_size)) return NULL;
|
| - }
|
| - // Commit the requested memory at the start of the current allocation block.
|
| - size_t aligned_requested = RoundUp(requested_size, MemoryChunk::kAlignment);
|
| - FreeBlock current = allocation_list_[current_allocation_block_index_];
|
| - if (aligned_requested >= (current.size - Page::kPageSize)) {
|
| - // Don't leave a small free block, useless for a large object or chunk.
|
| - *allocated = current.size;
|
| - } else {
|
| - *allocated = aligned_requested;
|
| - }
|
| - DCHECK(*allocated <= current.size);
|
| - DCHECK(IsAddressAligned(current.start, MemoryChunk::kAlignment));
|
| - if (!isolate_->memory_allocator()->CommitExecutableMemory(code_range_,
|
| - current.start,
|
| - commit_size,
|
| - *allocated)) {
|
| - *allocated = 0;
|
| - return NULL;
|
| - }
|
| - allocation_list_[current_allocation_block_index_].start += *allocated;
|
| - allocation_list_[current_allocation_block_index_].size -= *allocated;
|
| - if (*allocated == current.size) {
|
| - // This block is used up, get the next one.
|
| - if (!GetNextAllocationBlock(0)) return NULL;
|
| - }
|
| - return current.start;
|
| -}
|
| -
|
| -
|
| -bool CodeRange::CommitRawMemory(Address start, size_t length) {
|
| - return isolate_->memory_allocator()->CommitMemory(start, length, EXECUTABLE);
|
| -}
|
| -
|
| -
|
| -bool CodeRange::UncommitRawMemory(Address start, size_t length) {
|
| - return code_range_->Uncommit(start, length);
|
| -}
|
| -
|
| -
|
| -void CodeRange::FreeRawMemory(Address address, size_t length) {
|
| - DCHECK(IsAddressAligned(address, MemoryChunk::kAlignment));
|
| - free_list_.Add(FreeBlock(address, length));
|
| - code_range_->Uncommit(address, length);
|
| -}
|
| -
|
| -
|
| -void CodeRange::TearDown() {
|
| - delete code_range_; // Frees all memory in the virtual memory range.
|
| - code_range_ = NULL;
|
| - free_list_.Free();
|
| - allocation_list_.Free();
|
| -}
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// MemoryAllocator
|
| -//
|
| -
|
| -MemoryAllocator::MemoryAllocator(Isolate* isolate)
|
| - : isolate_(isolate),
|
| - capacity_(0),
|
| - capacity_executable_(0),
|
| - size_(0),
|
| - size_executable_(0),
|
| - lowest_ever_allocated_(reinterpret_cast<void*>(-1)),
|
| - highest_ever_allocated_(reinterpret_cast<void*>(0)) {
|
| -}
|
| -
|
| -
|
| -bool MemoryAllocator::SetUp(intptr_t capacity, intptr_t capacity_executable) {
|
| - capacity_ = RoundUp(capacity, Page::kPageSize);
|
| - capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize);
|
| - DCHECK_GE(capacity_, capacity_executable_);
|
| -
|
| - size_ = 0;
|
| - size_executable_ = 0;
|
| -
|
| - return true;
|
| -}
|
| -
|
| -
|
| -void MemoryAllocator::TearDown() {
|
| - // Check that spaces were torn down before MemoryAllocator.
|
| - DCHECK(size_ == 0);
|
| - // TODO(gc) this will be true again when we fix FreeMemory.
|
| - // DCHECK(size_executable_ == 0);
|
| - capacity_ = 0;
|
| - capacity_executable_ = 0;
|
| -}
|
| -
|
| -
|
| -bool MemoryAllocator::CommitMemory(Address base,
|
| - size_t size,
|
| - Executability executable) {
|
| - if (!base::VirtualMemory::CommitRegion(base, size,
|
| - executable == EXECUTABLE)) {
|
| - return false;
|
| - }
|
| - UpdateAllocatedSpaceLimits(base, base + size);
|
| - return true;
|
| -}
|
| -
|
| -
|
| -void MemoryAllocator::FreeMemory(base::VirtualMemory* reservation,
|
| - Executability executable) {
|
| - // TODO(gc) make code_range part of memory allocator?
|
| - DCHECK(reservation->IsReserved());
|
| - size_t size = reservation->size();
|
| - DCHECK(size_ >= size);
|
| - size_ -= size;
|
| -
|
| - isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
|
| -
|
| - if (executable == EXECUTABLE) {
|
| - DCHECK(size_executable_ >= size);
|
| - size_executable_ -= size;
|
| - }
|
| - // Code which is part of the code-range does not have its own VirtualMemory.
|
| - DCHECK(isolate_->code_range() == NULL ||
|
| - !isolate_->code_range()->contains(
|
| - static_cast<Address>(reservation->address())));
|
| - DCHECK(executable == NOT_EXECUTABLE ||
|
| - isolate_->code_range() == NULL ||
|
| - !isolate_->code_range()->valid());
|
| - reservation->Release();
|
| -}
|
| -
|
| -
|
| -void MemoryAllocator::FreeMemory(Address base,
|
| - size_t size,
|
| - Executability executable) {
|
| - // TODO(gc) make code_range part of memory allocator?
|
| - DCHECK(size_ >= size);
|
| - size_ -= size;
|
| -
|
| - isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
|
| -
|
| - if (executable == EXECUTABLE) {
|
| - DCHECK(size_executable_ >= size);
|
| - size_executable_ -= size;
|
| - }
|
| - if (isolate_->code_range() != NULL &&
|
| - isolate_->code_range()->contains(static_cast<Address>(base))) {
|
| - DCHECK(executable == EXECUTABLE);
|
| - isolate_->code_range()->FreeRawMemory(base, size);
|
| - } else {
|
| - DCHECK(executable == NOT_EXECUTABLE ||
|
| - isolate_->code_range() == NULL ||
|
| - !isolate_->code_range()->valid());
|
| - bool result = base::VirtualMemory::ReleaseRegion(base, size);
|
| - USE(result);
|
| - DCHECK(result);
|
| - }
|
| -}
|
| -
|
| -
|
| -Address MemoryAllocator::ReserveAlignedMemory(size_t size,
|
| - size_t alignment,
|
| - base::VirtualMemory* controller) {
|
| - base::VirtualMemory reservation(size, alignment);
|
| -
|
| - if (!reservation.IsReserved()) return NULL;
|
| - size_ += reservation.size();
|
| - Address base = RoundUp(static_cast<Address>(reservation.address()),
|
| - alignment);
|
| - controller->TakeControl(&reservation);
|
| - return base;
|
| -}
|
| -
|
| -
|
| -Address MemoryAllocator::AllocateAlignedMemory(
|
| - size_t reserve_size, size_t commit_size, size_t alignment,
|
| - Executability executable, base::VirtualMemory* controller) {
|
| - DCHECK(commit_size <= reserve_size);
|
| - base::VirtualMemory reservation;
|
| - Address base = ReserveAlignedMemory(reserve_size, alignment, &reservation);
|
| - if (base == NULL) return NULL;
|
| -
|
| - if (executable == EXECUTABLE) {
|
| - if (!CommitExecutableMemory(&reservation,
|
| - base,
|
| - commit_size,
|
| - reserve_size)) {
|
| - base = NULL;
|
| - }
|
| - } else {
|
| - if (reservation.Commit(base, commit_size, false)) {
|
| - UpdateAllocatedSpaceLimits(base, base + commit_size);
|
| - } else {
|
| - base = NULL;
|
| - }
|
| - }
|
| -
|
| - if (base == NULL) {
|
| - // Failed to commit the body. Release the mapping and any partially
|
| - // commited regions inside it.
|
| - reservation.Release();
|
| - return NULL;
|
| - }
|
| -
|
| - controller->TakeControl(&reservation);
|
| - return base;
|
| -}
|
| -
|
| -
|
| -void Page::InitializeAsAnchor(PagedSpace* owner) {
|
| - set_owner(owner);
|
| - set_prev_page(this);
|
| - set_next_page(this);
|
| -}
|
| -
|
| -
|
| -NewSpacePage* NewSpacePage::Initialize(Heap* heap,
|
| - Address start,
|
| - SemiSpace* semi_space) {
|
| - Address area_start = start + NewSpacePage::kObjectStartOffset;
|
| - Address area_end = start + Page::kPageSize;
|
| -
|
| - MemoryChunk* chunk = MemoryChunk::Initialize(heap,
|
| - start,
|
| - Page::kPageSize,
|
| - area_start,
|
| - area_end,
|
| - NOT_EXECUTABLE,
|
| - semi_space);
|
| - chunk->set_next_chunk(NULL);
|
| - chunk->set_prev_chunk(NULL);
|
| - chunk->initialize_scan_on_scavenge(true);
|
| - bool in_to_space = (semi_space->id() != kFromSpace);
|
| - chunk->SetFlag(in_to_space ? MemoryChunk::IN_TO_SPACE
|
| - : MemoryChunk::IN_FROM_SPACE);
|
| - DCHECK(!chunk->IsFlagSet(in_to_space ? MemoryChunk::IN_FROM_SPACE
|
| - : MemoryChunk::IN_TO_SPACE));
|
| - NewSpacePage* page = static_cast<NewSpacePage*>(chunk);
|
| - heap->incremental_marking()->SetNewSpacePageFlags(page);
|
| - return page;
|
| -}
|
| -
|
| -
|
| -void NewSpacePage::InitializeAsAnchor(SemiSpace* semi_space) {
|
| - set_owner(semi_space);
|
| - set_next_chunk(this);
|
| - set_prev_chunk(this);
|
| - // Flags marks this invalid page as not being in new-space.
|
| - // All real new-space pages will be in new-space.
|
| - SetFlags(0, ~0);
|
| -}
|
| -
|
| -
|
| -MemoryChunk* MemoryChunk::Initialize(Heap* heap,
|
| - Address base,
|
| - size_t size,
|
| - Address area_start,
|
| - Address area_end,
|
| - Executability executable,
|
| - Space* owner) {
|
| - MemoryChunk* chunk = FromAddress(base);
|
| -
|
| - DCHECK(base == chunk->address());
|
| -
|
| - chunk->heap_ = heap;
|
| - chunk->size_ = size;
|
| - chunk->area_start_ = area_start;
|
| - chunk->area_end_ = area_end;
|
| - chunk->flags_ = 0;
|
| - chunk->set_owner(owner);
|
| - chunk->InitializeReservedMemory();
|
| - chunk->slots_buffer_ = NULL;
|
| - chunk->skip_list_ = NULL;
|
| - chunk->write_barrier_counter_ = kWriteBarrierCounterGranularity;
|
| - chunk->progress_bar_ = 0;
|
| - chunk->high_water_mark_ = static_cast<int>(area_start - base);
|
| - chunk->set_parallel_sweeping(SWEEPING_DONE);
|
| - chunk->available_in_small_free_list_ = 0;
|
| - chunk->available_in_medium_free_list_ = 0;
|
| - chunk->available_in_large_free_list_ = 0;
|
| - chunk->available_in_huge_free_list_ = 0;
|
| - chunk->non_available_small_blocks_ = 0;
|
| - chunk->ResetLiveBytes();
|
| - Bitmap::Clear(chunk);
|
| - chunk->initialize_scan_on_scavenge(false);
|
| - chunk->SetFlag(WAS_SWEPT_PRECISELY);
|
| -
|
| - DCHECK(OFFSET_OF(MemoryChunk, flags_) == kFlagsOffset);
|
| - DCHECK(OFFSET_OF(MemoryChunk, live_byte_count_) == kLiveBytesOffset);
|
| -
|
| - if (executable == EXECUTABLE) {
|
| - chunk->SetFlag(IS_EXECUTABLE);
|
| - }
|
| -
|
| - if (owner == heap->old_data_space()) {
|
| - chunk->SetFlag(CONTAINS_ONLY_DATA);
|
| - }
|
| -
|
| - return chunk;
|
| -}
|
| -
|
| -
|
| -// Commit MemoryChunk area to the requested size.
|
| -bool MemoryChunk::CommitArea(size_t requested) {
|
| - size_t guard_size = IsFlagSet(IS_EXECUTABLE) ?
|
| - MemoryAllocator::CodePageGuardSize() : 0;
|
| - size_t header_size = area_start() - address() - guard_size;
|
| - size_t commit_size =
|
| - RoundUp(header_size + requested, base::OS::CommitPageSize());
|
| - size_t committed_size = RoundUp(header_size + (area_end() - area_start()),
|
| - base::OS::CommitPageSize());
|
| -
|
| - if (commit_size > committed_size) {
|
| - // Commit size should be less or equal than the reserved size.
|
| - DCHECK(commit_size <= size() - 2 * guard_size);
|
| - // Append the committed area.
|
| - Address start = address() + committed_size + guard_size;
|
| - size_t length = commit_size - committed_size;
|
| - if (reservation_.IsReserved()) {
|
| - Executability executable = IsFlagSet(IS_EXECUTABLE)
|
| - ? EXECUTABLE : NOT_EXECUTABLE;
|
| - if (!heap()->isolate()->memory_allocator()->CommitMemory(
|
| - start, length, executable)) {
|
| - return false;
|
| - }
|
| - } else {
|
| - CodeRange* code_range = heap_->isolate()->code_range();
|
| - DCHECK(code_range != NULL && code_range->valid() &&
|
| - IsFlagSet(IS_EXECUTABLE));
|
| - if (!code_range->CommitRawMemory(start, length)) return false;
|
| - }
|
| -
|
| - if (Heap::ShouldZapGarbage()) {
|
| - heap_->isolate()->memory_allocator()->ZapBlock(start, length);
|
| - }
|
| - } else if (commit_size < committed_size) {
|
| - DCHECK(commit_size > 0);
|
| - // Shrink the committed area.
|
| - size_t length = committed_size - commit_size;
|
| - Address start = address() + committed_size + guard_size - length;
|
| - if (reservation_.IsReserved()) {
|
| - if (!reservation_.Uncommit(start, length)) return false;
|
| - } else {
|
| - CodeRange* code_range = heap_->isolate()->code_range();
|
| - DCHECK(code_range != NULL && code_range->valid() &&
|
| - IsFlagSet(IS_EXECUTABLE));
|
| - if (!code_range->UncommitRawMemory(start, length)) return false;
|
| - }
|
| - }
|
| -
|
| - area_end_ = area_start_ + requested;
|
| - return true;
|
| -}
|
| -
|
| -
|
| -void MemoryChunk::InsertAfter(MemoryChunk* other) {
|
| - MemoryChunk* other_next = other->next_chunk();
|
| -
|
| - set_next_chunk(other_next);
|
| - set_prev_chunk(other);
|
| - other_next->set_prev_chunk(this);
|
| - other->set_next_chunk(this);
|
| -}
|
| -
|
| -
|
| -void MemoryChunk::Unlink() {
|
| - MemoryChunk* next_element = next_chunk();
|
| - MemoryChunk* prev_element = prev_chunk();
|
| - next_element->set_prev_chunk(prev_element);
|
| - prev_element->set_next_chunk(next_element);
|
| - set_prev_chunk(NULL);
|
| - set_next_chunk(NULL);
|
| -}
|
| -
|
| -
|
| -MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t reserve_area_size,
|
| - intptr_t commit_area_size,
|
| - Executability executable,
|
| - Space* owner) {
|
| - DCHECK(commit_area_size <= reserve_area_size);
|
| -
|
| - size_t chunk_size;
|
| - Heap* heap = isolate_->heap();
|
| - Address base = NULL;
|
| - base::VirtualMemory reservation;
|
| - Address area_start = NULL;
|
| - Address area_end = NULL;
|
| -
|
| - //
|
| - // MemoryChunk layout:
|
| - //
|
| - // Executable
|
| - // +----------------------------+<- base aligned with MemoryChunk::kAlignment
|
| - // | Header |
|
| - // +----------------------------+<- base + CodePageGuardStartOffset
|
| - // | Guard |
|
| - // +----------------------------+<- area_start_
|
| - // | Area |
|
| - // +----------------------------+<- area_end_ (area_start + commit_area_size)
|
| - // | Committed but not used |
|
| - // +----------------------------+<- aligned at OS page boundary
|
| - // | Reserved but not committed |
|
| - // +----------------------------+<- aligned at OS page boundary
|
| - // | Guard |
|
| - // +----------------------------+<- base + chunk_size
|
| - //
|
| - // Non-executable
|
| - // +----------------------------+<- base aligned with MemoryChunk::kAlignment
|
| - // | Header |
|
| - // +----------------------------+<- area_start_ (base + kObjectStartOffset)
|
| - // | Area |
|
| - // +----------------------------+<- area_end_ (area_start + commit_area_size)
|
| - // | Committed but not used |
|
| - // +----------------------------+<- aligned at OS page boundary
|
| - // | Reserved but not committed |
|
| - // +----------------------------+<- base + chunk_size
|
| - //
|
| -
|
| - if (executable == EXECUTABLE) {
|
| - chunk_size = RoundUp(CodePageAreaStartOffset() + reserve_area_size,
|
| - base::OS::CommitPageSize()) + CodePageGuardSize();
|
| -
|
| - // Check executable memory limit.
|
| - if (size_executable_ + chunk_size > capacity_executable_) {
|
| - LOG(isolate_,
|
| - StringEvent("MemoryAllocator::AllocateRawMemory",
|
| - "V8 Executable Allocation capacity exceeded"));
|
| - return NULL;
|
| - }
|
| -
|
| - // Size of header (not executable) plus area (executable).
|
| - size_t commit_size = RoundUp(CodePageGuardStartOffset() + commit_area_size,
|
| - base::OS::CommitPageSize());
|
| - // Allocate executable memory either from code range or from the
|
| - // OS.
|
| - if (isolate_->code_range() != NULL && isolate_->code_range()->valid()) {
|
| - base = isolate_->code_range()->AllocateRawMemory(chunk_size,
|
| - commit_size,
|
| - &chunk_size);
|
| - DCHECK(IsAligned(reinterpret_cast<intptr_t>(base),
|
| - MemoryChunk::kAlignment));
|
| - if (base == NULL) return NULL;
|
| - size_ += chunk_size;
|
| - // Update executable memory size.
|
| - size_executable_ += chunk_size;
|
| - } else {
|
| - base = AllocateAlignedMemory(chunk_size,
|
| - commit_size,
|
| - MemoryChunk::kAlignment,
|
| - executable,
|
| - &reservation);
|
| - if (base == NULL) return NULL;
|
| - // Update executable memory size.
|
| - size_executable_ += reservation.size();
|
| - }
|
| -
|
| - if (Heap::ShouldZapGarbage()) {
|
| - ZapBlock(base, CodePageGuardStartOffset());
|
| - ZapBlock(base + CodePageAreaStartOffset(), commit_area_size);
|
| - }
|
| -
|
| - area_start = base + CodePageAreaStartOffset();
|
| - area_end = area_start + commit_area_size;
|
| - } else {
|
| - chunk_size = RoundUp(MemoryChunk::kObjectStartOffset + reserve_area_size,
|
| - base::OS::CommitPageSize());
|
| - size_t commit_size = RoundUp(MemoryChunk::kObjectStartOffset +
|
| - commit_area_size, base::OS::CommitPageSize());
|
| - base = AllocateAlignedMemory(chunk_size,
|
| - commit_size,
|
| - MemoryChunk::kAlignment,
|
| - executable,
|
| - &reservation);
|
| -
|
| - if (base == NULL) return NULL;
|
| -
|
| - if (Heap::ShouldZapGarbage()) {
|
| - ZapBlock(base, Page::kObjectStartOffset + commit_area_size);
|
| - }
|
| -
|
| - area_start = base + Page::kObjectStartOffset;
|
| - area_end = area_start + commit_area_size;
|
| - }
|
| -
|
| - // Use chunk_size for statistics and callbacks because we assume that they
|
| - // treat reserved but not-yet committed memory regions of chunks as allocated.
|
| - isolate_->counters()->memory_allocated()->
|
| - Increment(static_cast<int>(chunk_size));
|
| -
|
| - LOG(isolate_, NewEvent("MemoryChunk", base, chunk_size));
|
| - if (owner != NULL) {
|
| - ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity());
|
| - PerformAllocationCallback(space, kAllocationActionAllocate, chunk_size);
|
| - }
|
| -
|
| - MemoryChunk* result = MemoryChunk::Initialize(heap,
|
| - base,
|
| - chunk_size,
|
| - area_start,
|
| - area_end,
|
| - executable,
|
| - owner);
|
| - result->set_reserved_memory(&reservation);
|
| - MSAN_MEMORY_IS_INITIALIZED_IN_JIT(base, chunk_size);
|
| - return result;
|
| -}
|
| -
|
| -
|
| -void Page::ResetFreeListStatistics() {
|
| - non_available_small_blocks_ = 0;
|
| - available_in_small_free_list_ = 0;
|
| - available_in_medium_free_list_ = 0;
|
| - available_in_large_free_list_ = 0;
|
| - available_in_huge_free_list_ = 0;
|
| -}
|
| -
|
| -
|
| -Page* MemoryAllocator::AllocatePage(intptr_t size,
|
| - PagedSpace* owner,
|
| - Executability executable) {
|
| - MemoryChunk* chunk = AllocateChunk(size, size, executable, owner);
|
| -
|
| - if (chunk == NULL) return NULL;
|
| -
|
| - return Page::Initialize(isolate_->heap(), chunk, executable, owner);
|
| -}
|
| -
|
| -
|
| -LargePage* MemoryAllocator::AllocateLargePage(intptr_t object_size,
|
| - Space* owner,
|
| - Executability executable) {
|
| - MemoryChunk* chunk = AllocateChunk(object_size,
|
| - object_size,
|
| - executable,
|
| - owner);
|
| - if (chunk == NULL) return NULL;
|
| - return LargePage::Initialize(isolate_->heap(), chunk);
|
| -}
|
| -
|
| -
|
| -void MemoryAllocator::Free(MemoryChunk* chunk) {
|
| - LOG(isolate_, DeleteEvent("MemoryChunk", chunk));
|
| - if (chunk->owner() != NULL) {
|
| - ObjectSpace space =
|
| - static_cast<ObjectSpace>(1 << chunk->owner()->identity());
|
| - PerformAllocationCallback(space, kAllocationActionFree, chunk->size());
|
| - }
|
| -
|
| - isolate_->heap()->RememberUnmappedPage(
|
| - reinterpret_cast<Address>(chunk), chunk->IsEvacuationCandidate());
|
| -
|
| - delete chunk->slots_buffer();
|
| - delete chunk->skip_list();
|
| -
|
| - base::VirtualMemory* reservation = chunk->reserved_memory();
|
| - if (reservation->IsReserved()) {
|
| - FreeMemory(reservation, chunk->executable());
|
| - } else {
|
| - FreeMemory(chunk->address(),
|
| - chunk->size(),
|
| - chunk->executable());
|
| - }
|
| -}
|
| -
|
| -
|
| -bool MemoryAllocator::CommitBlock(Address start,
|
| - size_t size,
|
| - Executability executable) {
|
| - if (!CommitMemory(start, size, executable)) return false;
|
| -
|
| - if (Heap::ShouldZapGarbage()) {
|
| - ZapBlock(start, size);
|
| - }
|
| -
|
| - isolate_->counters()->memory_allocated()->Increment(static_cast<int>(size));
|
| - return true;
|
| -}
|
| -
|
| -
|
| -bool MemoryAllocator::UncommitBlock(Address start, size_t size) {
|
| - if (!base::VirtualMemory::UncommitRegion(start, size)) return false;
|
| - isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
|
| - return true;
|
| -}
|
| -
|
| -
|
| -void MemoryAllocator::ZapBlock(Address start, size_t size) {
|
| - for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) {
|
| - Memory::Address_at(start + s) = kZapValue;
|
| - }
|
| -}
|
| -
|
| -
|
| -void MemoryAllocator::PerformAllocationCallback(ObjectSpace space,
|
| - AllocationAction action,
|
| - size_t size) {
|
| - for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
|
| - MemoryAllocationCallbackRegistration registration =
|
| - memory_allocation_callbacks_[i];
|
| - if ((registration.space & space) == space &&
|
| - (registration.action & action) == action)
|
| - registration.callback(space, action, static_cast<int>(size));
|
| - }
|
| -}
|
| -
|
| -
|
| -bool MemoryAllocator::MemoryAllocationCallbackRegistered(
|
| - MemoryAllocationCallback callback) {
|
| - for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
|
| - if (memory_allocation_callbacks_[i].callback == callback) return true;
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -
|
| -void MemoryAllocator::AddMemoryAllocationCallback(
|
| - MemoryAllocationCallback callback,
|
| - ObjectSpace space,
|
| - AllocationAction action) {
|
| - DCHECK(callback != NULL);
|
| - MemoryAllocationCallbackRegistration registration(callback, space, action);
|
| - DCHECK(!MemoryAllocator::MemoryAllocationCallbackRegistered(callback));
|
| - return memory_allocation_callbacks_.Add(registration);
|
| -}
|
| -
|
| -
|
| -void MemoryAllocator::RemoveMemoryAllocationCallback(
|
| - MemoryAllocationCallback callback) {
|
| - DCHECK(callback != NULL);
|
| - for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
|
| - if (memory_allocation_callbacks_[i].callback == callback) {
|
| - memory_allocation_callbacks_.Remove(i);
|
| - return;
|
| - }
|
| - }
|
| - UNREACHABLE();
|
| -}
|
| -
|
| -
|
| -#ifdef DEBUG
|
| -void MemoryAllocator::ReportStatistics() {
|
| - float pct = static_cast<float>(capacity_ - size_) / capacity_;
|
| - PrintF(" capacity: %" V8_PTR_PREFIX "d"
|
| - ", used: %" V8_PTR_PREFIX "d"
|
| - ", available: %%%d\n\n",
|
| - capacity_, size_, static_cast<int>(pct*100));
|
| -}
|
| -#endif
|
| -
|
| -
|
| -int MemoryAllocator::CodePageGuardStartOffset() {
|
| - // We are guarding code pages: the first OS page after the header
|
| - // will be protected as non-writable.
|
| - return RoundUp(Page::kObjectStartOffset, base::OS::CommitPageSize());
|
| -}
|
| -
|
| -
|
| -int MemoryAllocator::CodePageGuardSize() {
|
| - return static_cast<int>(base::OS::CommitPageSize());
|
| -}
|
| -
|
| -
|
| -int MemoryAllocator::CodePageAreaStartOffset() {
|
| - // We are guarding code pages: the first OS page after the header
|
| - // will be protected as non-writable.
|
| - return CodePageGuardStartOffset() + CodePageGuardSize();
|
| -}
|
| -
|
| -
|
| -int MemoryAllocator::CodePageAreaEndOffset() {
|
| - // We are guarding code pages: the last OS page will be protected as
|
| - // non-writable.
|
| - return Page::kPageSize - static_cast<int>(base::OS::CommitPageSize());
|
| -}
|
| -
|
| -
|
| -bool MemoryAllocator::CommitExecutableMemory(base::VirtualMemory* vm,
|
| - Address start,
|
| - size_t commit_size,
|
| - size_t reserved_size) {
|
| - // Commit page header (not executable).
|
| - if (!vm->Commit(start,
|
| - CodePageGuardStartOffset(),
|
| - false)) {
|
| - return false;
|
| - }
|
| -
|
| - // Create guard page after the header.
|
| - if (!vm->Guard(start + CodePageGuardStartOffset())) {
|
| - return false;
|
| - }
|
| -
|
| - // Commit page body (executable).
|
| - if (!vm->Commit(start + CodePageAreaStartOffset(),
|
| - commit_size - CodePageGuardStartOffset(),
|
| - true)) {
|
| - return false;
|
| - }
|
| -
|
| - // Create guard page before the end.
|
| - if (!vm->Guard(start + reserved_size - CodePageGuardSize())) {
|
| - return false;
|
| - }
|
| -
|
| - UpdateAllocatedSpaceLimits(start,
|
| - start + CodePageAreaStartOffset() +
|
| - commit_size - CodePageGuardStartOffset());
|
| - return true;
|
| -}
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// MemoryChunk implementation
|
| -
|
| -void MemoryChunk::IncrementLiveBytesFromMutator(Address address, int by) {
|
| - MemoryChunk* chunk = MemoryChunk::FromAddress(address);
|
| - if (!chunk->InNewSpace() && !static_cast<Page*>(chunk)->WasSwept()) {
|
| - static_cast<PagedSpace*>(chunk->owner())->IncrementUnsweptFreeBytes(-by);
|
| - }
|
| - chunk->IncrementLiveBytes(by);
|
| -}
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// PagedSpace implementation
|
| -
|
| -PagedSpace::PagedSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id,
|
| - Executability executable)
|
| - : Space(heap, id, executable),
|
| - free_list_(this),
|
| - swept_precisely_(true),
|
| - unswept_free_bytes_(0),
|
| - end_of_unswept_pages_(NULL),
|
| - emergency_memory_(NULL) {
|
| - if (id == CODE_SPACE) {
|
| - area_size_ = heap->isolate()->memory_allocator()->
|
| - CodePageAreaSize();
|
| - } else {
|
| - area_size_ = Page::kPageSize - Page::kObjectStartOffset;
|
| - }
|
| - max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize)
|
| - * AreaSize();
|
| - accounting_stats_.Clear();
|
| -
|
| - allocation_info_.set_top(NULL);
|
| - allocation_info_.set_limit(NULL);
|
| -
|
| - anchor_.InitializeAsAnchor(this);
|
| -}
|
| -
|
| -
|
| -bool PagedSpace::SetUp() {
|
| - return true;
|
| -}
|
| -
|
| -
|
| -bool PagedSpace::HasBeenSetUp() {
|
| - return true;
|
| -}
|
| -
|
| -
|
| -void PagedSpace::TearDown() {
|
| - PageIterator iterator(this);
|
| - while (iterator.has_next()) {
|
| - heap()->isolate()->memory_allocator()->Free(iterator.next());
|
| - }
|
| - anchor_.set_next_page(&anchor_);
|
| - anchor_.set_prev_page(&anchor_);
|
| - accounting_stats_.Clear();
|
| -}
|
| -
|
| -
|
| -size_t PagedSpace::CommittedPhysicalMemory() {
|
| - if (!base::VirtualMemory::HasLazyCommits()) return CommittedMemory();
|
| - MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
|
| - size_t size = 0;
|
| - PageIterator it(this);
|
| - while (it.has_next()) {
|
| - size += it.next()->CommittedPhysicalMemory();
|
| - }
|
| - return size;
|
| -}
|
| -
|
| -
|
| -Object* PagedSpace::FindObject(Address addr) {
|
| - // Note: this function can only be called on precisely swept spaces.
|
| - DCHECK(!heap()->mark_compact_collector()->in_use());
|
| -
|
| - if (!Contains(addr)) return Smi::FromInt(0); // Signaling not found.
|
| -
|
| - Page* p = Page::FromAddress(addr);
|
| - HeapObjectIterator it(p, NULL);
|
| - for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
|
| - Address cur = obj->address();
|
| - Address next = cur + obj->Size();
|
| - if ((cur <= addr) && (addr < next)) return obj;
|
| - }
|
| -
|
| - UNREACHABLE();
|
| - return Smi::FromInt(0);
|
| -}
|
| -
|
| -
|
| -bool PagedSpace::CanExpand() {
|
| - DCHECK(max_capacity_ % AreaSize() == 0);
|
| -
|
| - if (Capacity() == max_capacity_) return false;
|
| -
|
| - DCHECK(Capacity() < max_capacity_);
|
| -
|
| - // Are we going to exceed capacity for this space?
|
| - if ((Capacity() + Page::kPageSize) > max_capacity_) return false;
|
| -
|
| - return true;
|
| -}
|
| -
|
| -
|
| -bool PagedSpace::Expand() {
|
| - if (!CanExpand()) return false;
|
| -
|
| - intptr_t size = AreaSize();
|
| -
|
| - if (anchor_.next_page() == &anchor_) {
|
| - size = SizeOfFirstPage();
|
| - }
|
| -
|
| - Page* p = heap()->isolate()->memory_allocator()->AllocatePage(
|
| - size, this, executable());
|
| - if (p == NULL) return false;
|
| -
|
| - DCHECK(Capacity() <= max_capacity_);
|
| -
|
| - p->InsertAfter(anchor_.prev_page());
|
| -
|
| - return true;
|
| -}
|
| -
|
| -
|
| -intptr_t PagedSpace::SizeOfFirstPage() {
|
| - int size = 0;
|
| - switch (identity()) {
|
| - case OLD_POINTER_SPACE:
|
| - size = 112 * kPointerSize * KB;
|
| - break;
|
| - case OLD_DATA_SPACE:
|
| - size = 192 * KB;
|
| - break;
|
| - case MAP_SPACE:
|
| - size = 16 * kPointerSize * KB;
|
| - break;
|
| - case CELL_SPACE:
|
| - size = 16 * kPointerSize * KB;
|
| - break;
|
| - case PROPERTY_CELL_SPACE:
|
| - size = 8 * kPointerSize * KB;
|
| - break;
|
| - case CODE_SPACE: {
|
| - CodeRange* code_range = heap()->isolate()->code_range();
|
| - if (code_range != NULL && code_range->valid()) {
|
| - // When code range exists, code pages are allocated in a special way
|
| - // (from the reserved code range). That part of the code is not yet
|
| - // upgraded to handle small pages.
|
| - size = AreaSize();
|
| - } else {
|
| - size = RoundUp(
|
| - 480 * KB * FullCodeGenerator::kBootCodeSizeMultiplier / 100,
|
| - kPointerSize);
|
| - }
|
| - break;
|
| - }
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - return Min(size, AreaSize());
|
| -}
|
| -
|
| -
|
| -int PagedSpace::CountTotalPages() {
|
| - PageIterator it(this);
|
| - int count = 0;
|
| - while (it.has_next()) {
|
| - it.next();
|
| - count++;
|
| - }
|
| - return count;
|
| -}
|
| -
|
| -
|
| -void PagedSpace::ObtainFreeListStatistics(Page* page, SizeStats* sizes) {
|
| - sizes->huge_size_ = page->available_in_huge_free_list();
|
| - sizes->small_size_ = page->available_in_small_free_list();
|
| - sizes->medium_size_ = page->available_in_medium_free_list();
|
| - sizes->large_size_ = page->available_in_large_free_list();
|
| -}
|
| -
|
| -
|
| -void PagedSpace::ResetFreeListStatistics() {
|
| - PageIterator page_iterator(this);
|
| - while (page_iterator.has_next()) {
|
| - Page* page = page_iterator.next();
|
| - page->ResetFreeListStatistics();
|
| - }
|
| -}
|
| -
|
| -
|
| -void PagedSpace::IncreaseCapacity(int size) {
|
| - accounting_stats_.ExpandSpace(size);
|
| -}
|
| -
|
| -
|
| -void PagedSpace::ReleasePage(Page* page) {
|
| - DCHECK(page->LiveBytes() == 0);
|
| - DCHECK(AreaSize() == page->area_size());
|
| -
|
| - if (page->WasSwept()) {
|
| - intptr_t size = free_list_.EvictFreeListItems(page);
|
| - accounting_stats_.AllocateBytes(size);
|
| - DCHECK_EQ(AreaSize(), static_cast<int>(size));
|
| - } else {
|
| - DecreaseUnsweptFreeBytes(page);
|
| - }
|
| -
|
| - if (page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE)) {
|
| - heap()->decrement_scan_on_scavenge_pages();
|
| - page->ClearFlag(MemoryChunk::SCAN_ON_SCAVENGE);
|
| - }
|
| -
|
| - DCHECK(!free_list_.ContainsPageFreeListItems(page));
|
| -
|
| - if (Page::FromAllocationTop(allocation_info_.top()) == page) {
|
| - allocation_info_.set_top(NULL);
|
| - allocation_info_.set_limit(NULL);
|
| - }
|
| -
|
| - page->Unlink();
|
| - if (page->IsFlagSet(MemoryChunk::CONTAINS_ONLY_DATA)) {
|
| - heap()->isolate()->memory_allocator()->Free(page);
|
| - } else {
|
| - heap()->QueueMemoryChunkForFree(page);
|
| - }
|
| -
|
| - DCHECK(Capacity() > 0);
|
| - accounting_stats_.ShrinkSpace(AreaSize());
|
| -}
|
| -
|
| -
|
| -void PagedSpace::CreateEmergencyMemory() {
|
| - emergency_memory_ = heap()->isolate()->memory_allocator()->AllocateChunk(
|
| - AreaSize(), AreaSize(), executable(), this);
|
| -}
|
| -
|
| -
|
| -void PagedSpace::FreeEmergencyMemory() {
|
| - Page* page = static_cast<Page*>(emergency_memory_);
|
| - DCHECK(page->LiveBytes() == 0);
|
| - DCHECK(AreaSize() == page->area_size());
|
| - DCHECK(!free_list_.ContainsPageFreeListItems(page));
|
| - heap()->isolate()->memory_allocator()->Free(page);
|
| - emergency_memory_ = NULL;
|
| -}
|
| -
|
| -
|
| -void PagedSpace::UseEmergencyMemory() {
|
| - Page* page = Page::Initialize(heap(), emergency_memory_, executable(), this);
|
| - page->InsertAfter(anchor_.prev_page());
|
| - emergency_memory_ = NULL;
|
| -}
|
| -
|
| -
|
| -#ifdef DEBUG
|
| -void PagedSpace::Print() { }
|
| -#endif
|
| -
|
| -#ifdef VERIFY_HEAP
|
| -void PagedSpace::Verify(ObjectVisitor* visitor) {
|
| - // We can only iterate over the pages if they were swept precisely.
|
| - if (!swept_precisely_) return;
|
| -
|
| - bool allocation_pointer_found_in_space =
|
| - (allocation_info_.top() == allocation_info_.limit());
|
| - PageIterator page_iterator(this);
|
| - while (page_iterator.has_next()) {
|
| - Page* page = page_iterator.next();
|
| - CHECK(page->owner() == this);
|
| - if (page == Page::FromAllocationTop(allocation_info_.top())) {
|
| - allocation_pointer_found_in_space = true;
|
| - }
|
| - CHECK(page->WasSweptPrecisely());
|
| - HeapObjectIterator it(page, NULL);
|
| - Address end_of_previous_object = page->area_start();
|
| - Address top = page->area_end();
|
| - int black_size = 0;
|
| - for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
|
| - CHECK(end_of_previous_object <= object->address());
|
| -
|
| - // The first word should be a map, and we expect all map pointers to
|
| - // be in map space.
|
| - Map* map = object->map();
|
| - CHECK(map->IsMap());
|
| - CHECK(heap()->map_space()->Contains(map));
|
| -
|
| - // Perform space-specific object verification.
|
| - VerifyObject(object);
|
| -
|
| - // The object itself should look OK.
|
| - object->ObjectVerify();
|
| -
|
| - // All the interior pointers should be contained in the heap.
|
| - int size = object->Size();
|
| - object->IterateBody(map->instance_type(), size, visitor);
|
| - if (Marking::IsBlack(Marking::MarkBitFrom(object))) {
|
| - black_size += size;
|
| - }
|
| -
|
| - CHECK(object->address() + size <= top);
|
| - end_of_previous_object = object->address() + size;
|
| - }
|
| - CHECK_LE(black_size, page->LiveBytes());
|
| - }
|
| - CHECK(allocation_pointer_found_in_space);
|
| -}
|
| -#endif // VERIFY_HEAP
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// NewSpace implementation
|
| -
|
| -
|
| -bool NewSpace::SetUp(int reserved_semispace_capacity,
|
| - int maximum_semispace_capacity) {
|
| - // Set up new space based on the preallocated memory block defined by
|
| - // start and size. The provided space is divided into two semi-spaces.
|
| - // To support fast containment testing in the new space, the size of
|
| - // this chunk must be a power of two and it must be aligned to its size.
|
| - int initial_semispace_capacity = heap()->InitialSemiSpaceSize();
|
| -
|
| - size_t size = 2 * reserved_semispace_capacity;
|
| - Address base =
|
| - heap()->isolate()->memory_allocator()->ReserveAlignedMemory(
|
| - size, size, &reservation_);
|
| - if (base == NULL) return false;
|
| -
|
| - chunk_base_ = base;
|
| - chunk_size_ = static_cast<uintptr_t>(size);
|
| - LOG(heap()->isolate(), NewEvent("InitialChunk", chunk_base_, chunk_size_));
|
| -
|
| - DCHECK(initial_semispace_capacity <= maximum_semispace_capacity);
|
| - DCHECK(IsPowerOf2(maximum_semispace_capacity));
|
| -
|
| - // Allocate and set up the histogram arrays if necessary.
|
| - allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
|
| - promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
|
| -
|
| -#define SET_NAME(name) allocated_histogram_[name].set_name(#name); \
|
| - promoted_histogram_[name].set_name(#name);
|
| - INSTANCE_TYPE_LIST(SET_NAME)
|
| -#undef SET_NAME
|
| -
|
| - DCHECK(reserved_semispace_capacity == heap()->ReservedSemiSpaceSize());
|
| - DCHECK(static_cast<intptr_t>(chunk_size_) >=
|
| - 2 * heap()->ReservedSemiSpaceSize());
|
| - DCHECK(IsAddressAligned(chunk_base_, 2 * reserved_semispace_capacity, 0));
|
| -
|
| - to_space_.SetUp(chunk_base_,
|
| - initial_semispace_capacity,
|
| - maximum_semispace_capacity);
|
| - from_space_.SetUp(chunk_base_ + reserved_semispace_capacity,
|
| - initial_semispace_capacity,
|
| - maximum_semispace_capacity);
|
| - if (!to_space_.Commit()) {
|
| - return false;
|
| - }
|
| - DCHECK(!from_space_.is_committed()); // No need to use memory yet.
|
| -
|
| - start_ = chunk_base_;
|
| - address_mask_ = ~(2 * reserved_semispace_capacity - 1);
|
| - object_mask_ = address_mask_ | kHeapObjectTagMask;
|
| - object_expected_ = reinterpret_cast<uintptr_t>(start_) | kHeapObjectTag;
|
| -
|
| - ResetAllocationInfo();
|
| -
|
| - return true;
|
| -}
|
| -
|
| -
|
| -void NewSpace::TearDown() {
|
| - if (allocated_histogram_) {
|
| - DeleteArray(allocated_histogram_);
|
| - allocated_histogram_ = NULL;
|
| - }
|
| - if (promoted_histogram_) {
|
| - DeleteArray(promoted_histogram_);
|
| - promoted_histogram_ = NULL;
|
| - }
|
| -
|
| - start_ = NULL;
|
| - allocation_info_.set_top(NULL);
|
| - allocation_info_.set_limit(NULL);
|
| -
|
| - to_space_.TearDown();
|
| - from_space_.TearDown();
|
| -
|
| - LOG(heap()->isolate(), DeleteEvent("InitialChunk", chunk_base_));
|
| -
|
| - DCHECK(reservation_.IsReserved());
|
| - heap()->isolate()->memory_allocator()->FreeMemory(&reservation_,
|
| - NOT_EXECUTABLE);
|
| - chunk_base_ = NULL;
|
| - chunk_size_ = 0;
|
| -}
|
| -
|
| -
|
| -void NewSpace::Flip() {
|
| - SemiSpace::Swap(&from_space_, &to_space_);
|
| -}
|
| -
|
| -
|
| -void NewSpace::Grow() {
|
| - // Double the semispace size but only up to maximum capacity.
|
| - DCHECK(Capacity() < MaximumCapacity());
|
| - int new_capacity = Min(MaximumCapacity(), 2 * static_cast<int>(Capacity()));
|
| - if (to_space_.GrowTo(new_capacity)) {
|
| - // Only grow from space if we managed to grow to-space.
|
| - if (!from_space_.GrowTo(new_capacity)) {
|
| - // If we managed to grow to-space but couldn't grow from-space,
|
| - // attempt to shrink to-space.
|
| - if (!to_space_.ShrinkTo(from_space_.Capacity())) {
|
| - // We are in an inconsistent state because we could not
|
| - // commit/uncommit memory from new space.
|
| - V8::FatalProcessOutOfMemory("Failed to grow new space.");
|
| - }
|
| - }
|
| - }
|
| - DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
|
| -}
|
| -
|
| -
|
| -void NewSpace::Shrink() {
|
| - int new_capacity = Max(InitialCapacity(), 2 * SizeAsInt());
|
| - int rounded_new_capacity = RoundUp(new_capacity, Page::kPageSize);
|
| - if (rounded_new_capacity < Capacity() &&
|
| - to_space_.ShrinkTo(rounded_new_capacity)) {
|
| - // Only shrink from-space if we managed to shrink to-space.
|
| - from_space_.Reset();
|
| - if (!from_space_.ShrinkTo(rounded_new_capacity)) {
|
| - // If we managed to shrink to-space but couldn't shrink from
|
| - // space, attempt to grow to-space again.
|
| - if (!to_space_.GrowTo(from_space_.Capacity())) {
|
| - // We are in an inconsistent state because we could not
|
| - // commit/uncommit memory from new space.
|
| - V8::FatalProcessOutOfMemory("Failed to shrink new space.");
|
| - }
|
| - }
|
| - }
|
| - DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
|
| -}
|
| -
|
| -
|
| -void NewSpace::UpdateAllocationInfo() {
|
| - MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
|
| - allocation_info_.set_top(to_space_.page_low());
|
| - allocation_info_.set_limit(to_space_.page_high());
|
| - UpdateInlineAllocationLimit(0);
|
| - DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
|
| -}
|
| -
|
| -
|
| -void NewSpace::ResetAllocationInfo() {
|
| - to_space_.Reset();
|
| - UpdateAllocationInfo();
|
| - pages_used_ = 0;
|
| - // Clear all mark-bits in the to-space.
|
| - NewSpacePageIterator it(&to_space_);
|
| - while (it.has_next()) {
|
| - Bitmap::Clear(it.next());
|
| - }
|
| -}
|
| -
|
| -
|
| -void NewSpace::UpdateInlineAllocationLimit(int size_in_bytes) {
|
| - if (heap()->inline_allocation_disabled()) {
|
| - // Lowest limit when linear allocation was disabled.
|
| - Address high = to_space_.page_high();
|
| - Address new_top = allocation_info_.top() + size_in_bytes;
|
| - allocation_info_.set_limit(Min(new_top, high));
|
| - } else if (inline_allocation_limit_step() == 0) {
|
| - // Normal limit is the end of the current page.
|
| - allocation_info_.set_limit(to_space_.page_high());
|
| - } else {
|
| - // Lower limit during incremental marking.
|
| - Address high = to_space_.page_high();
|
| - Address new_top = allocation_info_.top() + size_in_bytes;
|
| - Address new_limit = new_top + inline_allocation_limit_step_;
|
| - allocation_info_.set_limit(Min(new_limit, high));
|
| - }
|
| - DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
|
| -}
|
| -
|
| -
|
| -bool NewSpace::AddFreshPage() {
|
| - Address top = allocation_info_.top();
|
| - if (NewSpacePage::IsAtStart(top)) {
|
| - // The current page is already empty. Don't try to make another.
|
| -
|
| - // We should only get here if someone asks to allocate more
|
| - // than what can be stored in a single page.
|
| - // TODO(gc): Change the limit on new-space allocation to prevent this
|
| - // from happening (all such allocations should go directly to LOSpace).
|
| - return false;
|
| - }
|
| - if (!to_space_.AdvancePage()) {
|
| - // Failed to get a new page in to-space.
|
| - return false;
|
| - }
|
| -
|
| - // Clear remainder of current page.
|
| - Address limit = NewSpacePage::FromLimit(top)->area_end();
|
| - if (heap()->gc_state() == Heap::SCAVENGE) {
|
| - heap()->promotion_queue()->SetNewLimit(limit);
|
| - heap()->promotion_queue()->ActivateGuardIfOnTheSamePage();
|
| - }
|
| -
|
| - int remaining_in_page = static_cast<int>(limit - top);
|
| - heap()->CreateFillerObjectAt(top, remaining_in_page);
|
| - pages_used_++;
|
| - UpdateAllocationInfo();
|
| -
|
| - return true;
|
| -}
|
| -
|
| -
|
| -AllocationResult NewSpace::SlowAllocateRaw(int size_in_bytes) {
|
| - Address old_top = allocation_info_.top();
|
| - Address high = to_space_.page_high();
|
| - if (allocation_info_.limit() < high) {
|
| - // Either the limit has been lowered because linear allocation was disabled
|
| - // or because incremental marking wants to get a chance to do a step. Set
|
| - // the new limit accordingly.
|
| - Address new_top = old_top + size_in_bytes;
|
| - int bytes_allocated = static_cast<int>(new_top - top_on_previous_step_);
|
| - heap()->incremental_marking()->Step(
|
| - bytes_allocated, IncrementalMarking::GC_VIA_STACK_GUARD);
|
| - UpdateInlineAllocationLimit(size_in_bytes);
|
| - top_on_previous_step_ = new_top;
|
| - return AllocateRaw(size_in_bytes);
|
| - } else if (AddFreshPage()) {
|
| - // Switched to new page. Try allocating again.
|
| - int bytes_allocated = static_cast<int>(old_top - top_on_previous_step_);
|
| - heap()->incremental_marking()->Step(
|
| - bytes_allocated, IncrementalMarking::GC_VIA_STACK_GUARD);
|
| - top_on_previous_step_ = to_space_.page_low();
|
| - return AllocateRaw(size_in_bytes);
|
| - } else {
|
| - return AllocationResult::Retry();
|
| - }
|
| -}
|
| -
|
| -
|
| -#ifdef VERIFY_HEAP
|
| -// We do not use the SemiSpaceIterator because verification doesn't assume
|
| -// that it works (it depends on the invariants we are checking).
|
| -void NewSpace::Verify() {
|
| - // The allocation pointer should be in the space or at the very end.
|
| - DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
|
| -
|
| - // There should be objects packed in from the low address up to the
|
| - // allocation pointer.
|
| - Address current = to_space_.first_page()->area_start();
|
| - CHECK_EQ(current, to_space_.space_start());
|
| -
|
| - while (current != top()) {
|
| - if (!NewSpacePage::IsAtEnd(current)) {
|
| - // The allocation pointer should not be in the middle of an object.
|
| - CHECK(!NewSpacePage::FromLimit(current)->ContainsLimit(top()) ||
|
| - current < top());
|
| -
|
| - HeapObject* object = HeapObject::FromAddress(current);
|
| -
|
| - // The first word should be a map, and we expect all map pointers to
|
| - // be in map space.
|
| - Map* map = object->map();
|
| - CHECK(map->IsMap());
|
| - CHECK(heap()->map_space()->Contains(map));
|
| -
|
| - // The object should not be code or a map.
|
| - CHECK(!object->IsMap());
|
| - CHECK(!object->IsCode());
|
| -
|
| - // The object itself should look OK.
|
| - object->ObjectVerify();
|
| -
|
| - // All the interior pointers should be contained in the heap.
|
| - VerifyPointersVisitor visitor;
|
| - int size = object->Size();
|
| - object->IterateBody(map->instance_type(), size, &visitor);
|
| -
|
| - current += size;
|
| - } else {
|
| - // At end of page, switch to next page.
|
| - NewSpacePage* page = NewSpacePage::FromLimit(current)->next_page();
|
| - // Next page should be valid.
|
| - CHECK(!page->is_anchor());
|
| - current = page->area_start();
|
| - }
|
| - }
|
| -
|
| - // Check semi-spaces.
|
| - CHECK_EQ(from_space_.id(), kFromSpace);
|
| - CHECK_EQ(to_space_.id(), kToSpace);
|
| - from_space_.Verify();
|
| - to_space_.Verify();
|
| -}
|
| -#endif
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// SemiSpace implementation
|
| -
|
| -void SemiSpace::SetUp(Address start,
|
| - int initial_capacity,
|
| - int maximum_capacity) {
|
| - // Creates a space in the young generation. The constructor does not
|
| - // allocate memory from the OS. A SemiSpace is given a contiguous chunk of
|
| - // memory of size 'capacity' when set up, and does not grow or shrink
|
| - // otherwise. In the mark-compact collector, the memory region of the from
|
| - // space is used as the marking stack. It requires contiguous memory
|
| - // addresses.
|
| - DCHECK(maximum_capacity >= Page::kPageSize);
|
| - initial_capacity_ = RoundDown(initial_capacity, Page::kPageSize);
|
| - capacity_ = initial_capacity;
|
| - maximum_capacity_ = RoundDown(maximum_capacity, Page::kPageSize);
|
| - maximum_committed_ = 0;
|
| - committed_ = false;
|
| - start_ = start;
|
| - address_mask_ = ~(maximum_capacity - 1);
|
| - object_mask_ = address_mask_ | kHeapObjectTagMask;
|
| - object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag;
|
| - age_mark_ = start_;
|
| -}
|
| -
|
| -
|
| -void SemiSpace::TearDown() {
|
| - start_ = NULL;
|
| - capacity_ = 0;
|
| -}
|
| -
|
| -
|
| -bool SemiSpace::Commit() {
|
| - DCHECK(!is_committed());
|
| - int pages = capacity_ / Page::kPageSize;
|
| - if (!heap()->isolate()->memory_allocator()->CommitBlock(start_,
|
| - capacity_,
|
| - executable())) {
|
| - return false;
|
| - }
|
| -
|
| - NewSpacePage* current = anchor();
|
| - for (int i = 0; i < pages; i++) {
|
| - NewSpacePage* new_page =
|
| - NewSpacePage::Initialize(heap(), start_ + i * Page::kPageSize, this);
|
| - new_page->InsertAfter(current);
|
| - current = new_page;
|
| - }
|
| -
|
| - SetCapacity(capacity_);
|
| - committed_ = true;
|
| - Reset();
|
| - return true;
|
| -}
|
| -
|
| -
|
| -bool SemiSpace::Uncommit() {
|
| - DCHECK(is_committed());
|
| - Address start = start_ + maximum_capacity_ - capacity_;
|
| - if (!heap()->isolate()->memory_allocator()->UncommitBlock(start, capacity_)) {
|
| - return false;
|
| - }
|
| - anchor()->set_next_page(anchor());
|
| - anchor()->set_prev_page(anchor());
|
| -
|
| - committed_ = false;
|
| - return true;
|
| -}
|
| -
|
| -
|
| -size_t SemiSpace::CommittedPhysicalMemory() {
|
| - if (!is_committed()) return 0;
|
| - size_t size = 0;
|
| - NewSpacePageIterator it(this);
|
| - while (it.has_next()) {
|
| - size += it.next()->CommittedPhysicalMemory();
|
| - }
|
| - return size;
|
| -}
|
| -
|
| -
|
| -bool SemiSpace::GrowTo(int new_capacity) {
|
| - if (!is_committed()) {
|
| - if (!Commit()) return false;
|
| - }
|
| - DCHECK((new_capacity & Page::kPageAlignmentMask) == 0);
|
| - DCHECK(new_capacity <= maximum_capacity_);
|
| - DCHECK(new_capacity > capacity_);
|
| - int pages_before = capacity_ / Page::kPageSize;
|
| - int pages_after = new_capacity / Page::kPageSize;
|
| -
|
| - size_t delta = new_capacity - capacity_;
|
| -
|
| - DCHECK(IsAligned(delta, base::OS::AllocateAlignment()));
|
| - if (!heap()->isolate()->memory_allocator()->CommitBlock(
|
| - start_ + capacity_, delta, executable())) {
|
| - return false;
|
| - }
|
| - SetCapacity(new_capacity);
|
| - NewSpacePage* last_page = anchor()->prev_page();
|
| - DCHECK(last_page != anchor());
|
| - for (int i = pages_before; i < pages_after; i++) {
|
| - Address page_address = start_ + i * Page::kPageSize;
|
| - NewSpacePage* new_page = NewSpacePage::Initialize(heap(),
|
| - page_address,
|
| - this);
|
| - new_page->InsertAfter(last_page);
|
| - Bitmap::Clear(new_page);
|
| - // Duplicate the flags that was set on the old page.
|
| - new_page->SetFlags(last_page->GetFlags(),
|
| - NewSpacePage::kCopyOnFlipFlagsMask);
|
| - last_page = new_page;
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -
|
| -bool SemiSpace::ShrinkTo(int new_capacity) {
|
| - DCHECK((new_capacity & Page::kPageAlignmentMask) == 0);
|
| - DCHECK(new_capacity >= initial_capacity_);
|
| - DCHECK(new_capacity < capacity_);
|
| - if (is_committed()) {
|
| - size_t delta = capacity_ - new_capacity;
|
| - DCHECK(IsAligned(delta, base::OS::AllocateAlignment()));
|
| -
|
| - MemoryAllocator* allocator = heap()->isolate()->memory_allocator();
|
| - if (!allocator->UncommitBlock(start_ + new_capacity, delta)) {
|
| - return false;
|
| - }
|
| -
|
| - int pages_after = new_capacity / Page::kPageSize;
|
| - NewSpacePage* new_last_page =
|
| - NewSpacePage::FromAddress(start_ + (pages_after - 1) * Page::kPageSize);
|
| - new_last_page->set_next_page(anchor());
|
| - anchor()->set_prev_page(new_last_page);
|
| - DCHECK((current_page_ >= first_page()) && (current_page_ <= new_last_page));
|
| - }
|
| -
|
| - SetCapacity(new_capacity);
|
| -
|
| - return true;
|
| -}
|
| -
|
| -
|
| -void SemiSpace::FlipPages(intptr_t flags, intptr_t mask) {
|
| - anchor_.set_owner(this);
|
| - // Fixup back-pointers to anchor. Address of anchor changes
|
| - // when we swap.
|
| - anchor_.prev_page()->set_next_page(&anchor_);
|
| - anchor_.next_page()->set_prev_page(&anchor_);
|
| -
|
| - bool becomes_to_space = (id_ == kFromSpace);
|
| - id_ = becomes_to_space ? kToSpace : kFromSpace;
|
| - NewSpacePage* page = anchor_.next_page();
|
| - while (page != &anchor_) {
|
| - page->set_owner(this);
|
| - page->SetFlags(flags, mask);
|
| - if (becomes_to_space) {
|
| - page->ClearFlag(MemoryChunk::IN_FROM_SPACE);
|
| - page->SetFlag(MemoryChunk::IN_TO_SPACE);
|
| - page->ClearFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
|
| - page->ResetLiveBytes();
|
| - } else {
|
| - page->SetFlag(MemoryChunk::IN_FROM_SPACE);
|
| - page->ClearFlag(MemoryChunk::IN_TO_SPACE);
|
| - }
|
| - DCHECK(page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE));
|
| - DCHECK(page->IsFlagSet(MemoryChunk::IN_TO_SPACE) ||
|
| - page->IsFlagSet(MemoryChunk::IN_FROM_SPACE));
|
| - page = page->next_page();
|
| - }
|
| -}
|
| -
|
| -
|
| -void SemiSpace::Reset() {
|
| - DCHECK(anchor_.next_page() != &anchor_);
|
| - current_page_ = anchor_.next_page();
|
| -}
|
| -
|
| -
|
| -void SemiSpace::Swap(SemiSpace* from, SemiSpace* to) {
|
| - // We won't be swapping semispaces without data in them.
|
| - DCHECK(from->anchor_.next_page() != &from->anchor_);
|
| - DCHECK(to->anchor_.next_page() != &to->anchor_);
|
| -
|
| - // Swap bits.
|
| - SemiSpace tmp = *from;
|
| - *from = *to;
|
| - *to = tmp;
|
| -
|
| - // Fixup back-pointers to the page list anchor now that its address
|
| - // has changed.
|
| - // Swap to/from-space bits on pages.
|
| - // Copy GC flags from old active space (from-space) to new (to-space).
|
| - intptr_t flags = from->current_page()->GetFlags();
|
| - to->FlipPages(flags, NewSpacePage::kCopyOnFlipFlagsMask);
|
| -
|
| - from->FlipPages(0, 0);
|
| -}
|
| -
|
| -
|
| -void SemiSpace::SetCapacity(int new_capacity) {
|
| - capacity_ = new_capacity;
|
| - if (capacity_ > maximum_committed_) {
|
| - maximum_committed_ = capacity_;
|
| - }
|
| -}
|
| -
|
| -
|
| -void SemiSpace::set_age_mark(Address mark) {
|
| - DCHECK(NewSpacePage::FromLimit(mark)->semi_space() == this);
|
| - age_mark_ = mark;
|
| - // Mark all pages up to the one containing mark.
|
| - NewSpacePageIterator it(space_start(), mark);
|
| - while (it.has_next()) {
|
| - it.next()->SetFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
|
| - }
|
| -}
|
| -
|
| -
|
| -#ifdef DEBUG
|
| -void SemiSpace::Print() { }
|
| -#endif
|
| -
|
| -#ifdef VERIFY_HEAP
|
| -void SemiSpace::Verify() {
|
| - bool is_from_space = (id_ == kFromSpace);
|
| - NewSpacePage* page = anchor_.next_page();
|
| - CHECK(anchor_.semi_space() == this);
|
| - while (page != &anchor_) {
|
| - CHECK(page->semi_space() == this);
|
| - CHECK(page->InNewSpace());
|
| - CHECK(page->IsFlagSet(is_from_space ? MemoryChunk::IN_FROM_SPACE
|
| - : MemoryChunk::IN_TO_SPACE));
|
| - CHECK(!page->IsFlagSet(is_from_space ? MemoryChunk::IN_TO_SPACE
|
| - : MemoryChunk::IN_FROM_SPACE));
|
| - CHECK(page->IsFlagSet(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING));
|
| - if (!is_from_space) {
|
| - // The pointers-from-here-are-interesting flag isn't updated dynamically
|
| - // on from-space pages, so it might be out of sync with the marking state.
|
| - if (page->heap()->incremental_marking()->IsMarking()) {
|
| - CHECK(page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
|
| - } else {
|
| - CHECK(!page->IsFlagSet(
|
| - MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
|
| - }
|
| - // TODO(gc): Check that the live_bytes_count_ field matches the
|
| - // black marking on the page (if we make it match in new-space).
|
| - }
|
| - CHECK(page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE));
|
| - CHECK(page->prev_page()->next_page() == page);
|
| - page = page->next_page();
|
| - }
|
| -}
|
| -#endif
|
| -
|
| -#ifdef DEBUG
|
| -void SemiSpace::AssertValidRange(Address start, Address end) {
|
| - // Addresses belong to same semi-space
|
| - NewSpacePage* page = NewSpacePage::FromLimit(start);
|
| - NewSpacePage* end_page = NewSpacePage::FromLimit(end);
|
| - SemiSpace* space = page->semi_space();
|
| - CHECK_EQ(space, end_page->semi_space());
|
| - // Start address is before end address, either on same page,
|
| - // or end address is on a later page in the linked list of
|
| - // semi-space pages.
|
| - if (page == end_page) {
|
| - CHECK(start <= end);
|
| - } else {
|
| - while (page != end_page) {
|
| - page = page->next_page();
|
| - CHECK_NE(page, space->anchor());
|
| - }
|
| - }
|
| -}
|
| -#endif
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// SemiSpaceIterator implementation.
|
| -SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) {
|
| - Initialize(space->bottom(), space->top(), NULL);
|
| -}
|
| -
|
| -
|
| -SemiSpaceIterator::SemiSpaceIterator(NewSpace* space,
|
| - HeapObjectCallback size_func) {
|
| - Initialize(space->bottom(), space->top(), size_func);
|
| -}
|
| -
|
| -
|
| -SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, Address start) {
|
| - Initialize(start, space->top(), NULL);
|
| -}
|
| -
|
| -
|
| -SemiSpaceIterator::SemiSpaceIterator(Address from, Address to) {
|
| - Initialize(from, to, NULL);
|
| -}
|
| -
|
| -
|
| -void SemiSpaceIterator::Initialize(Address start,
|
| - Address end,
|
| - HeapObjectCallback size_func) {
|
| - SemiSpace::AssertValidRange(start, end);
|
| - current_ = start;
|
| - limit_ = end;
|
| - size_func_ = size_func;
|
| -}
|
| -
|
| -
|
| -#ifdef DEBUG
|
| -// heap_histograms is shared, always clear it before using it.
|
| -static void ClearHistograms(Isolate* isolate) {
|
| - // We reset the name each time, though it hasn't changed.
|
| -#define DEF_TYPE_NAME(name) isolate->heap_histograms()[name].set_name(#name);
|
| - INSTANCE_TYPE_LIST(DEF_TYPE_NAME)
|
| -#undef DEF_TYPE_NAME
|
| -
|
| -#define CLEAR_HISTOGRAM(name) isolate->heap_histograms()[name].clear();
|
| - INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM)
|
| -#undef CLEAR_HISTOGRAM
|
| -
|
| - isolate->js_spill_information()->Clear();
|
| -}
|
| -
|
| -
|
| -static void ClearCodeKindStatistics(int* code_kind_statistics) {
|
| - for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
|
| - code_kind_statistics[i] = 0;
|
| - }
|
| -}
|
| -
|
| -
|
| -static void ReportCodeKindStatistics(int* code_kind_statistics) {
|
| - PrintF("\n Code kind histograms: \n");
|
| - for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
|
| - if (code_kind_statistics[i] > 0) {
|
| - PrintF(" %-20s: %10d bytes\n",
|
| - Code::Kind2String(static_cast<Code::Kind>(i)),
|
| - code_kind_statistics[i]);
|
| - }
|
| - }
|
| - PrintF("\n");
|
| -}
|
| -
|
| -
|
| -static int CollectHistogramInfo(HeapObject* obj) {
|
| - Isolate* isolate = obj->GetIsolate();
|
| - InstanceType type = obj->map()->instance_type();
|
| - DCHECK(0 <= type && type <= LAST_TYPE);
|
| - DCHECK(isolate->heap_histograms()[type].name() != NULL);
|
| - isolate->heap_histograms()[type].increment_number(1);
|
| - isolate->heap_histograms()[type].increment_bytes(obj->Size());
|
| -
|
| - if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) {
|
| - JSObject::cast(obj)->IncrementSpillStatistics(
|
| - isolate->js_spill_information());
|
| - }
|
| -
|
| - return obj->Size();
|
| -}
|
| -
|
| -
|
| -static void ReportHistogram(Isolate* isolate, bool print_spill) {
|
| - PrintF("\n Object Histogram:\n");
|
| - for (int i = 0; i <= LAST_TYPE; i++) {
|
| - if (isolate->heap_histograms()[i].number() > 0) {
|
| - PrintF(" %-34s%10d (%10d bytes)\n",
|
| - isolate->heap_histograms()[i].name(),
|
| - isolate->heap_histograms()[i].number(),
|
| - isolate->heap_histograms()[i].bytes());
|
| - }
|
| - }
|
| - PrintF("\n");
|
| -
|
| - // Summarize string types.
|
| - int string_number = 0;
|
| - int string_bytes = 0;
|
| -#define INCREMENT(type, size, name, camel_name) \
|
| - string_number += isolate->heap_histograms()[type].number(); \
|
| - string_bytes += isolate->heap_histograms()[type].bytes();
|
| - STRING_TYPE_LIST(INCREMENT)
|
| -#undef INCREMENT
|
| - if (string_number > 0) {
|
| - PrintF(" %-34s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number,
|
| - string_bytes);
|
| - }
|
| -
|
| - if (FLAG_collect_heap_spill_statistics && print_spill) {
|
| - isolate->js_spill_information()->Print();
|
| - }
|
| -}
|
| -#endif // DEBUG
|
| -
|
| -
|
| -// Support for statistics gathering for --heap-stats and --log-gc.
|
| -void NewSpace::ClearHistograms() {
|
| - for (int i = 0; i <= LAST_TYPE; i++) {
|
| - allocated_histogram_[i].clear();
|
| - promoted_histogram_[i].clear();
|
| - }
|
| -}
|
| -
|
| -
|
| -// Because the copying collector does not touch garbage objects, we iterate
|
| -// the new space before a collection to get a histogram of allocated objects.
|
| -// This only happens when --log-gc flag is set.
|
| -void NewSpace::CollectStatistics() {
|
| - ClearHistograms();
|
| - SemiSpaceIterator it(this);
|
| - for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next())
|
| - RecordAllocation(obj);
|
| -}
|
| -
|
| -
|
| -static void DoReportStatistics(Isolate* isolate,
|
| - HistogramInfo* info, const char* description) {
|
| - LOG(isolate, HeapSampleBeginEvent("NewSpace", description));
|
| - // Lump all the string types together.
|
| - int string_number = 0;
|
| - int string_bytes = 0;
|
| -#define INCREMENT(type, size, name, camel_name) \
|
| - string_number += info[type].number(); \
|
| - string_bytes += info[type].bytes();
|
| - STRING_TYPE_LIST(INCREMENT)
|
| -#undef INCREMENT
|
| - if (string_number > 0) {
|
| - LOG(isolate,
|
| - HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes));
|
| - }
|
| -
|
| - // Then do the other types.
|
| - for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) {
|
| - if (info[i].number() > 0) {
|
| - LOG(isolate,
|
| - HeapSampleItemEvent(info[i].name(), info[i].number(),
|
| - info[i].bytes()));
|
| - }
|
| - }
|
| - LOG(isolate, HeapSampleEndEvent("NewSpace", description));
|
| -}
|
| -
|
| -
|
| -void NewSpace::ReportStatistics() {
|
| -#ifdef DEBUG
|
| - if (FLAG_heap_stats) {
|
| - float pct = static_cast<float>(Available()) / Capacity();
|
| - PrintF(" capacity: %" V8_PTR_PREFIX "d"
|
| - ", available: %" V8_PTR_PREFIX "d, %%%d\n",
|
| - Capacity(), Available(), static_cast<int>(pct*100));
|
| - PrintF("\n Object Histogram:\n");
|
| - for (int i = 0; i <= LAST_TYPE; i++) {
|
| - if (allocated_histogram_[i].number() > 0) {
|
| - PrintF(" %-34s%10d (%10d bytes)\n",
|
| - allocated_histogram_[i].name(),
|
| - allocated_histogram_[i].number(),
|
| - allocated_histogram_[i].bytes());
|
| - }
|
| - }
|
| - PrintF("\n");
|
| - }
|
| -#endif // DEBUG
|
| -
|
| - if (FLAG_log_gc) {
|
| - Isolate* isolate = heap()->isolate();
|
| - DoReportStatistics(isolate, allocated_histogram_, "allocated");
|
| - DoReportStatistics(isolate, promoted_histogram_, "promoted");
|
| - }
|
| -}
|
| -
|
| -
|
| -void NewSpace::RecordAllocation(HeapObject* obj) {
|
| - InstanceType type = obj->map()->instance_type();
|
| - DCHECK(0 <= type && type <= LAST_TYPE);
|
| - allocated_histogram_[type].increment_number(1);
|
| - allocated_histogram_[type].increment_bytes(obj->Size());
|
| -}
|
| -
|
| -
|
| -void NewSpace::RecordPromotion(HeapObject* obj) {
|
| - InstanceType type = obj->map()->instance_type();
|
| - DCHECK(0 <= type && type <= LAST_TYPE);
|
| - promoted_histogram_[type].increment_number(1);
|
| - promoted_histogram_[type].increment_bytes(obj->Size());
|
| -}
|
| -
|
| -
|
| -size_t NewSpace::CommittedPhysicalMemory() {
|
| - if (!base::VirtualMemory::HasLazyCommits()) return CommittedMemory();
|
| - MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
|
| - size_t size = to_space_.CommittedPhysicalMemory();
|
| - if (from_space_.is_committed()) {
|
| - size += from_space_.CommittedPhysicalMemory();
|
| - }
|
| - return size;
|
| -}
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// Free lists for old object spaces implementation
|
| -
|
| -void FreeListNode::set_size(Heap* heap, int size_in_bytes) {
|
| - DCHECK(size_in_bytes > 0);
|
| - DCHECK(IsAligned(size_in_bytes, kPointerSize));
|
| -
|
| - // We write a map and possibly size information to the block. If the block
|
| - // is big enough to be a FreeSpace with at least one extra word (the next
|
| - // pointer), we set its map to be the free space map and its size to an
|
| - // appropriate array length for the desired size from HeapObject::Size().
|
| - // If the block is too small (eg, one or two words), to hold both a size
|
| - // field and a next pointer, we give it a filler map that gives it the
|
| - // correct size.
|
| - if (size_in_bytes > FreeSpace::kHeaderSize) {
|
| - // Can't use FreeSpace::cast because it fails during deserialization.
|
| - // We have to set the size first with a release store before we store
|
| - // the map because a concurrent store buffer scan on scavenge must not
|
| - // observe a map with an invalid size.
|
| - FreeSpace* this_as_free_space = reinterpret_cast<FreeSpace*>(this);
|
| - this_as_free_space->nobarrier_set_size(size_in_bytes);
|
| - synchronized_set_map_no_write_barrier(heap->raw_unchecked_free_space_map());
|
| - } else if (size_in_bytes == kPointerSize) {
|
| - set_map_no_write_barrier(heap->raw_unchecked_one_pointer_filler_map());
|
| - } else if (size_in_bytes == 2 * kPointerSize) {
|
| - set_map_no_write_barrier(heap->raw_unchecked_two_pointer_filler_map());
|
| - } else {
|
| - UNREACHABLE();
|
| - }
|
| - // We would like to DCHECK(Size() == size_in_bytes) but this would fail during
|
| - // deserialization because the free space map is not done yet.
|
| -}
|
| -
|
| -
|
| -FreeListNode* FreeListNode::next() {
|
| - DCHECK(IsFreeListNode(this));
|
| - if (map() == GetHeap()->raw_unchecked_free_space_map()) {
|
| - DCHECK(map() == NULL || Size() >= kNextOffset + kPointerSize);
|
| - return reinterpret_cast<FreeListNode*>(
|
| - Memory::Address_at(address() + kNextOffset));
|
| - } else {
|
| - return reinterpret_cast<FreeListNode*>(
|
| - Memory::Address_at(address() + kPointerSize));
|
| - }
|
| -}
|
| -
|
| -
|
| -FreeListNode** FreeListNode::next_address() {
|
| - DCHECK(IsFreeListNode(this));
|
| - if (map() == GetHeap()->raw_unchecked_free_space_map()) {
|
| - DCHECK(Size() >= kNextOffset + kPointerSize);
|
| - return reinterpret_cast<FreeListNode**>(address() + kNextOffset);
|
| - } else {
|
| - return reinterpret_cast<FreeListNode**>(address() + kPointerSize);
|
| - }
|
| -}
|
| -
|
| -
|
| -void FreeListNode::set_next(FreeListNode* next) {
|
| - DCHECK(IsFreeListNode(this));
|
| - // While we are booting the VM the free space map will actually be null. So
|
| - // we have to make sure that we don't try to use it for anything at that
|
| - // stage.
|
| - if (map() == GetHeap()->raw_unchecked_free_space_map()) {
|
| - DCHECK(map() == NULL || Size() >= kNextOffset + kPointerSize);
|
| - base::NoBarrier_Store(
|
| - reinterpret_cast<base::AtomicWord*>(address() + kNextOffset),
|
| - reinterpret_cast<base::AtomicWord>(next));
|
| - } else {
|
| - base::NoBarrier_Store(
|
| - reinterpret_cast<base::AtomicWord*>(address() + kPointerSize),
|
| - reinterpret_cast<base::AtomicWord>(next));
|
| - }
|
| -}
|
| -
|
| -
|
| -intptr_t FreeListCategory::Concatenate(FreeListCategory* category) {
|
| - intptr_t free_bytes = 0;
|
| - if (category->top() != NULL) {
|
| - // This is safe (not going to deadlock) since Concatenate operations
|
| - // are never performed on the same free lists at the same time in
|
| - // reverse order.
|
| - base::LockGuard<base::Mutex> target_lock_guard(mutex());
|
| - base::LockGuard<base::Mutex> source_lock_guard(category->mutex());
|
| - DCHECK(category->end_ != NULL);
|
| - free_bytes = category->available();
|
| - if (end_ == NULL) {
|
| - end_ = category->end();
|
| - } else {
|
| - category->end()->set_next(top());
|
| - }
|
| - set_top(category->top());
|
| - base::NoBarrier_Store(&top_, category->top_);
|
| - available_ += category->available();
|
| - category->Reset();
|
| - }
|
| - return free_bytes;
|
| -}
|
| -
|
| -
|
| -void FreeListCategory::Reset() {
|
| - set_top(NULL);
|
| - set_end(NULL);
|
| - set_available(0);
|
| -}
|
| -
|
| -
|
| -intptr_t FreeListCategory::EvictFreeListItemsInList(Page* p) {
|
| - int sum = 0;
|
| - FreeListNode* t = top();
|
| - FreeListNode** n = &t;
|
| - while (*n != NULL) {
|
| - if (Page::FromAddress((*n)->address()) == p) {
|
| - FreeSpace* free_space = reinterpret_cast<FreeSpace*>(*n);
|
| - sum += free_space->Size();
|
| - *n = (*n)->next();
|
| - } else {
|
| - n = (*n)->next_address();
|
| - }
|
| - }
|
| - set_top(t);
|
| - if (top() == NULL) {
|
| - set_end(NULL);
|
| - }
|
| - available_ -= sum;
|
| - return sum;
|
| -}
|
| -
|
| -
|
| -bool FreeListCategory::ContainsPageFreeListItemsInList(Page* p) {
|
| - FreeListNode* node = top();
|
| - while (node != NULL) {
|
| - if (Page::FromAddress(node->address()) == p) return true;
|
| - node = node->next();
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -
|
| -FreeListNode* FreeListCategory::PickNodeFromList(int *node_size) {
|
| - FreeListNode* node = top();
|
| -
|
| - if (node == NULL) return NULL;
|
| -
|
| - while (node != NULL &&
|
| - Page::FromAddress(node->address())->IsEvacuationCandidate()) {
|
| - available_ -= reinterpret_cast<FreeSpace*>(node)->Size();
|
| - node = node->next();
|
| - }
|
| -
|
| - if (node != NULL) {
|
| - set_top(node->next());
|
| - *node_size = reinterpret_cast<FreeSpace*>(node)->Size();
|
| - available_ -= *node_size;
|
| - } else {
|
| - set_top(NULL);
|
| - }
|
| -
|
| - if (top() == NULL) {
|
| - set_end(NULL);
|
| - }
|
| -
|
| - return node;
|
| -}
|
| -
|
| -
|
| -FreeListNode* FreeListCategory::PickNodeFromList(int size_in_bytes,
|
| - int *node_size) {
|
| - FreeListNode* node = PickNodeFromList(node_size);
|
| - if (node != NULL && *node_size < size_in_bytes) {
|
| - Free(node, *node_size);
|
| - *node_size = 0;
|
| - return NULL;
|
| - }
|
| - return node;
|
| -}
|
| -
|
| -
|
| -void FreeListCategory::Free(FreeListNode* node, int size_in_bytes) {
|
| - node->set_next(top());
|
| - set_top(node);
|
| - if (end_ == NULL) {
|
| - end_ = node;
|
| - }
|
| - available_ += size_in_bytes;
|
| -}
|
| -
|
| -
|
| -void FreeListCategory::RepairFreeList(Heap* heap) {
|
| - FreeListNode* n = top();
|
| - while (n != NULL) {
|
| - Map** map_location = reinterpret_cast<Map**>(n->address());
|
| - if (*map_location == NULL) {
|
| - *map_location = heap->free_space_map();
|
| - } else {
|
| - DCHECK(*map_location == heap->free_space_map());
|
| - }
|
| - n = n->next();
|
| - }
|
| -}
|
| -
|
| -
|
| -FreeList::FreeList(PagedSpace* owner)
|
| - : owner_(owner), heap_(owner->heap()) {
|
| - Reset();
|
| -}
|
| -
|
| -
|
| -intptr_t FreeList::Concatenate(FreeList* free_list) {
|
| - intptr_t free_bytes = 0;
|
| - free_bytes += small_list_.Concatenate(free_list->small_list());
|
| - free_bytes += medium_list_.Concatenate(free_list->medium_list());
|
| - free_bytes += large_list_.Concatenate(free_list->large_list());
|
| - free_bytes += huge_list_.Concatenate(free_list->huge_list());
|
| - return free_bytes;
|
| -}
|
| -
|
| -
|
| -void FreeList::Reset() {
|
| - small_list_.Reset();
|
| - medium_list_.Reset();
|
| - large_list_.Reset();
|
| - huge_list_.Reset();
|
| -}
|
| -
|
| -
|
| -int FreeList::Free(Address start, int size_in_bytes) {
|
| - if (size_in_bytes == 0) return 0;
|
| -
|
| - FreeListNode* node = FreeListNode::FromAddress(start);
|
| - node->set_size(heap_, size_in_bytes);
|
| - Page* page = Page::FromAddress(start);
|
| -
|
| - // Early return to drop too-small blocks on the floor.
|
| - if (size_in_bytes < kSmallListMin) {
|
| - page->add_non_available_small_blocks(size_in_bytes);
|
| - return size_in_bytes;
|
| - }
|
| -
|
| - // Insert other blocks at the head of a free list of the appropriate
|
| - // magnitude.
|
| - if (size_in_bytes <= kSmallListMax) {
|
| - small_list_.Free(node, size_in_bytes);
|
| - page->add_available_in_small_free_list(size_in_bytes);
|
| - } else if (size_in_bytes <= kMediumListMax) {
|
| - medium_list_.Free(node, size_in_bytes);
|
| - page->add_available_in_medium_free_list(size_in_bytes);
|
| - } else if (size_in_bytes <= kLargeListMax) {
|
| - large_list_.Free(node, size_in_bytes);
|
| - page->add_available_in_large_free_list(size_in_bytes);
|
| - } else {
|
| - huge_list_.Free(node, size_in_bytes);
|
| - page->add_available_in_huge_free_list(size_in_bytes);
|
| - }
|
| -
|
| - DCHECK(IsVeryLong() || available() == SumFreeLists());
|
| - return 0;
|
| -}
|
| -
|
| -
|
| -FreeListNode* FreeList::FindNodeFor(int size_in_bytes, int* node_size) {
|
| - FreeListNode* node = NULL;
|
| - Page* page = NULL;
|
| -
|
| - if (size_in_bytes <= kSmallAllocationMax) {
|
| - node = small_list_.PickNodeFromList(node_size);
|
| - if (node != NULL) {
|
| - DCHECK(size_in_bytes <= *node_size);
|
| - page = Page::FromAddress(node->address());
|
| - page->add_available_in_small_free_list(-(*node_size));
|
| - DCHECK(IsVeryLong() || available() == SumFreeLists());
|
| - return node;
|
| - }
|
| - }
|
| -
|
| - if (size_in_bytes <= kMediumAllocationMax) {
|
| - node = medium_list_.PickNodeFromList(node_size);
|
| - if (node != NULL) {
|
| - DCHECK(size_in_bytes <= *node_size);
|
| - page = Page::FromAddress(node->address());
|
| - page->add_available_in_medium_free_list(-(*node_size));
|
| - DCHECK(IsVeryLong() || available() == SumFreeLists());
|
| - return node;
|
| - }
|
| - }
|
| -
|
| - if (size_in_bytes <= kLargeAllocationMax) {
|
| - node = large_list_.PickNodeFromList(node_size);
|
| - if (node != NULL) {
|
| - DCHECK(size_in_bytes <= *node_size);
|
| - page = Page::FromAddress(node->address());
|
| - page->add_available_in_large_free_list(-(*node_size));
|
| - DCHECK(IsVeryLong() || available() == SumFreeLists());
|
| - return node;
|
| - }
|
| - }
|
| -
|
| - int huge_list_available = huge_list_.available();
|
| - FreeListNode* top_node = huge_list_.top();
|
| - for (FreeListNode** cur = &top_node;
|
| - *cur != NULL;
|
| - cur = (*cur)->next_address()) {
|
| - FreeListNode* cur_node = *cur;
|
| - while (cur_node != NULL &&
|
| - Page::FromAddress(cur_node->address())->IsEvacuationCandidate()) {
|
| - int size = reinterpret_cast<FreeSpace*>(cur_node)->Size();
|
| - huge_list_available -= size;
|
| - page = Page::FromAddress(cur_node->address());
|
| - page->add_available_in_huge_free_list(-size);
|
| - cur_node = cur_node->next();
|
| - }
|
| -
|
| - *cur = cur_node;
|
| - if (cur_node == NULL) {
|
| - huge_list_.set_end(NULL);
|
| - break;
|
| - }
|
| -
|
| - DCHECK((*cur)->map() == heap_->raw_unchecked_free_space_map());
|
| - FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(*cur);
|
| - int size = cur_as_free_space->Size();
|
| - if (size >= size_in_bytes) {
|
| - // Large enough node found. Unlink it from the list.
|
| - node = *cur;
|
| - *cur = node->next();
|
| - *node_size = size;
|
| - huge_list_available -= size;
|
| - page = Page::FromAddress(node->address());
|
| - page->add_available_in_huge_free_list(-size);
|
| - break;
|
| - }
|
| - }
|
| -
|
| - huge_list_.set_top(top_node);
|
| - if (huge_list_.top() == NULL) {
|
| - huge_list_.set_end(NULL);
|
| - }
|
| - huge_list_.set_available(huge_list_available);
|
| -
|
| - if (node != NULL) {
|
| - DCHECK(IsVeryLong() || available() == SumFreeLists());
|
| - return node;
|
| - }
|
| -
|
| - if (size_in_bytes <= kSmallListMax) {
|
| - node = small_list_.PickNodeFromList(size_in_bytes, node_size);
|
| - if (node != NULL) {
|
| - DCHECK(size_in_bytes <= *node_size);
|
| - page = Page::FromAddress(node->address());
|
| - page->add_available_in_small_free_list(-(*node_size));
|
| - }
|
| - } else if (size_in_bytes <= kMediumListMax) {
|
| - node = medium_list_.PickNodeFromList(size_in_bytes, node_size);
|
| - if (node != NULL) {
|
| - DCHECK(size_in_bytes <= *node_size);
|
| - page = Page::FromAddress(node->address());
|
| - page->add_available_in_medium_free_list(-(*node_size));
|
| - }
|
| - } else if (size_in_bytes <= kLargeListMax) {
|
| - node = large_list_.PickNodeFromList(size_in_bytes, node_size);
|
| - if (node != NULL) {
|
| - DCHECK(size_in_bytes <= *node_size);
|
| - page = Page::FromAddress(node->address());
|
| - page->add_available_in_large_free_list(-(*node_size));
|
| - }
|
| - }
|
| -
|
| - DCHECK(IsVeryLong() || available() == SumFreeLists());
|
| - return node;
|
| -}
|
| -
|
| -
|
| -// Allocation on the old space free list. If it succeeds then a new linear
|
| -// allocation space has been set up with the top and limit of the space. If
|
| -// the allocation fails then NULL is returned, and the caller can perform a GC
|
| -// or allocate a new page before retrying.
|
| -HeapObject* FreeList::Allocate(int size_in_bytes) {
|
| - DCHECK(0 < size_in_bytes);
|
| - DCHECK(size_in_bytes <= kMaxBlockSize);
|
| - DCHECK(IsAligned(size_in_bytes, kPointerSize));
|
| - // Don't free list allocate if there is linear space available.
|
| - DCHECK(owner_->limit() - owner_->top() < size_in_bytes);
|
| -
|
| - int old_linear_size = static_cast<int>(owner_->limit() - owner_->top());
|
| - // Mark the old linear allocation area with a free space map so it can be
|
| - // skipped when scanning the heap. This also puts it back in the free list
|
| - // if it is big enough.
|
| - owner_->Free(owner_->top(), old_linear_size);
|
| -
|
| - owner_->heap()->incremental_marking()->OldSpaceStep(
|
| - size_in_bytes - old_linear_size);
|
| -
|
| - int new_node_size = 0;
|
| - FreeListNode* new_node = FindNodeFor(size_in_bytes, &new_node_size);
|
| - if (new_node == NULL) {
|
| - owner_->SetTopAndLimit(NULL, NULL);
|
| - return NULL;
|
| - }
|
| -
|
| - int bytes_left = new_node_size - size_in_bytes;
|
| - DCHECK(bytes_left >= 0);
|
| -
|
| -#ifdef DEBUG
|
| - for (int i = 0; i < size_in_bytes / kPointerSize; i++) {
|
| - reinterpret_cast<Object**>(new_node->address())[i] =
|
| - Smi::FromInt(kCodeZapValue);
|
| - }
|
| -#endif
|
| -
|
| - // The old-space-step might have finished sweeping and restarted marking.
|
| - // Verify that it did not turn the page of the new node into an evacuation
|
| - // candidate.
|
| - DCHECK(!MarkCompactCollector::IsOnEvacuationCandidate(new_node));
|
| -
|
| - const int kThreshold = IncrementalMarking::kAllocatedThreshold;
|
| -
|
| - // Memory in the linear allocation area is counted as allocated. We may free
|
| - // a little of this again immediately - see below.
|
| - owner_->Allocate(new_node_size);
|
| -
|
| - if (owner_->heap()->inline_allocation_disabled()) {
|
| - // Keep the linear allocation area empty if requested to do so, just
|
| - // return area back to the free list instead.
|
| - owner_->Free(new_node->address() + size_in_bytes, bytes_left);
|
| - DCHECK(owner_->top() == NULL && owner_->limit() == NULL);
|
| - } else if (bytes_left > kThreshold &&
|
| - owner_->heap()->incremental_marking()->IsMarkingIncomplete() &&
|
| - FLAG_incremental_marking_steps) {
|
| - int linear_size = owner_->RoundSizeDownToObjectAlignment(kThreshold);
|
| - // We don't want to give too large linear areas to the allocator while
|
| - // incremental marking is going on, because we won't check again whether
|
| - // we want to do another increment until the linear area is used up.
|
| - owner_->Free(new_node->address() + size_in_bytes + linear_size,
|
| - new_node_size - size_in_bytes - linear_size);
|
| - owner_->SetTopAndLimit(new_node->address() + size_in_bytes,
|
| - new_node->address() + size_in_bytes + linear_size);
|
| - } else if (bytes_left > 0) {
|
| - // Normally we give the rest of the node to the allocator as its new
|
| - // linear allocation area.
|
| - owner_->SetTopAndLimit(new_node->address() + size_in_bytes,
|
| - new_node->address() + new_node_size);
|
| - } else {
|
| - // TODO(gc) Try not freeing linear allocation region when bytes_left
|
| - // are zero.
|
| - owner_->SetTopAndLimit(NULL, NULL);
|
| - }
|
| -
|
| - return new_node;
|
| -}
|
| -
|
| -
|
| -intptr_t FreeList::EvictFreeListItems(Page* p) {
|
| - intptr_t sum = huge_list_.EvictFreeListItemsInList(p);
|
| - p->set_available_in_huge_free_list(0);
|
| -
|
| - if (sum < p->area_size()) {
|
| - sum += small_list_.EvictFreeListItemsInList(p) +
|
| - medium_list_.EvictFreeListItemsInList(p) +
|
| - large_list_.EvictFreeListItemsInList(p);
|
| - p->set_available_in_small_free_list(0);
|
| - p->set_available_in_medium_free_list(0);
|
| - p->set_available_in_large_free_list(0);
|
| - }
|
| -
|
| - return sum;
|
| -}
|
| -
|
| -
|
| -bool FreeList::ContainsPageFreeListItems(Page* p) {
|
| - return huge_list_.EvictFreeListItemsInList(p) ||
|
| - small_list_.EvictFreeListItemsInList(p) ||
|
| - medium_list_.EvictFreeListItemsInList(p) ||
|
| - large_list_.EvictFreeListItemsInList(p);
|
| -}
|
| -
|
| -
|
| -void FreeList::RepairLists(Heap* heap) {
|
| - small_list_.RepairFreeList(heap);
|
| - medium_list_.RepairFreeList(heap);
|
| - large_list_.RepairFreeList(heap);
|
| - huge_list_.RepairFreeList(heap);
|
| -}
|
| -
|
| -
|
| -#ifdef DEBUG
|
| -intptr_t FreeListCategory::SumFreeList() {
|
| - intptr_t sum = 0;
|
| - FreeListNode* cur = top();
|
| - while (cur != NULL) {
|
| - DCHECK(cur->map() == cur->GetHeap()->raw_unchecked_free_space_map());
|
| - FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(cur);
|
| - sum += cur_as_free_space->nobarrier_size();
|
| - cur = cur->next();
|
| - }
|
| - return sum;
|
| -}
|
| -
|
| -
|
| -static const int kVeryLongFreeList = 500;
|
| -
|
| -
|
| -int FreeListCategory::FreeListLength() {
|
| - int length = 0;
|
| - FreeListNode* cur = top();
|
| - while (cur != NULL) {
|
| - length++;
|
| - cur = cur->next();
|
| - if (length == kVeryLongFreeList) return length;
|
| - }
|
| - return length;
|
| -}
|
| -
|
| -
|
| -bool FreeList::IsVeryLong() {
|
| - if (small_list_.FreeListLength() == kVeryLongFreeList) return true;
|
| - if (medium_list_.FreeListLength() == kVeryLongFreeList) return true;
|
| - if (large_list_.FreeListLength() == kVeryLongFreeList) return true;
|
| - if (huge_list_.FreeListLength() == kVeryLongFreeList) return true;
|
| - return false;
|
| -}
|
| -
|
| -
|
| -// This can take a very long time because it is linear in the number of entries
|
| -// on the free list, so it should not be called if FreeListLength returns
|
| -// kVeryLongFreeList.
|
| -intptr_t FreeList::SumFreeLists() {
|
| - intptr_t sum = small_list_.SumFreeList();
|
| - sum += medium_list_.SumFreeList();
|
| - sum += large_list_.SumFreeList();
|
| - sum += huge_list_.SumFreeList();
|
| - return sum;
|
| -}
|
| -#endif
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// OldSpace implementation
|
| -
|
| -void PagedSpace::PrepareForMarkCompact() {
|
| - // We don't have a linear allocation area while sweeping. It will be restored
|
| - // on the first allocation after the sweep.
|
| - EmptyAllocationInfo();
|
| -
|
| - // This counter will be increased for pages which will be swept by the
|
| - // sweeper threads.
|
| - unswept_free_bytes_ = 0;
|
| -
|
| - // Clear the free list before a full GC---it will be rebuilt afterward.
|
| - free_list_.Reset();
|
| -}
|
| -
|
| -
|
| -intptr_t PagedSpace::SizeOfObjects() {
|
| - DCHECK(heap()->mark_compact_collector()->sweeping_in_progress() ||
|
| - (unswept_free_bytes_ == 0));
|
| - return Size() - unswept_free_bytes_ - (limit() - top());
|
| -}
|
| -
|
| -
|
| -// After we have booted, we have created a map which represents free space
|
| -// on the heap. If there was already a free list then the elements on it
|
| -// were created with the wrong FreeSpaceMap (normally NULL), so we need to
|
| -// fix them.
|
| -void PagedSpace::RepairFreeListsAfterBoot() {
|
| - free_list_.RepairLists(heap());
|
| -}
|
| -
|
| -
|
| -void PagedSpace::EvictEvacuationCandidatesFromFreeLists() {
|
| - if (allocation_info_.top() >= allocation_info_.limit()) return;
|
| -
|
| - if (Page::FromAllocationTop(allocation_info_.top())->
|
| - IsEvacuationCandidate()) {
|
| - // Create filler object to keep page iterable if it was iterable.
|
| - int remaining =
|
| - static_cast<int>(allocation_info_.limit() - allocation_info_.top());
|
| - heap()->CreateFillerObjectAt(allocation_info_.top(), remaining);
|
| -
|
| - allocation_info_.set_top(NULL);
|
| - allocation_info_.set_limit(NULL);
|
| - }
|
| -}
|
| -
|
| -
|
| -HeapObject* PagedSpace::WaitForSweeperThreadsAndRetryAllocation(
|
| - int size_in_bytes) {
|
| - MarkCompactCollector* collector = heap()->mark_compact_collector();
|
| - if (collector->sweeping_in_progress()) {
|
| - // Wait for the sweeper threads here and complete the sweeping phase.
|
| - collector->EnsureSweepingCompleted();
|
| -
|
| - // After waiting for the sweeper threads, there may be new free-list
|
| - // entries.
|
| - return free_list_.Allocate(size_in_bytes);
|
| - }
|
| - return NULL;
|
| -}
|
| -
|
| -
|
| -HeapObject* PagedSpace::SlowAllocateRaw(int size_in_bytes) {
|
| - // Allocation in this space has failed.
|
| -
|
| - MarkCompactCollector* collector = heap()->mark_compact_collector();
|
| - // Sweeping is still in progress.
|
| - if (collector->sweeping_in_progress()) {
|
| - // First try to refill the free-list, concurrent sweeper threads
|
| - // may have freed some objects in the meantime.
|
| - collector->RefillFreeList(this);
|
| -
|
| - // Retry the free list allocation.
|
| - HeapObject* object = free_list_.Allocate(size_in_bytes);
|
| - if (object != NULL) return object;
|
| -
|
| - // If sweeping is still in progress try to sweep pages on the main thread.
|
| - int free_chunk =
|
| - collector->SweepInParallel(this, size_in_bytes);
|
| - collector->RefillFreeList(this);
|
| - if (free_chunk >= size_in_bytes) {
|
| - HeapObject* object = free_list_.Allocate(size_in_bytes);
|
| - // We should be able to allocate an object here since we just freed that
|
| - // much memory.
|
| - DCHECK(object != NULL);
|
| - if (object != NULL) return object;
|
| - }
|
| - }
|
| -
|
| - // Free list allocation failed and there is no next page. Fail if we have
|
| - // hit the old generation size limit that should cause a garbage
|
| - // collection.
|
| - if (!heap()->always_allocate()
|
| - && heap()->OldGenerationAllocationLimitReached()) {
|
| - // If sweeper threads are active, wait for them at that point and steal
|
| - // elements form their free-lists.
|
| - HeapObject* object = WaitForSweeperThreadsAndRetryAllocation(size_in_bytes);
|
| - if (object != NULL) return object;
|
| - }
|
| -
|
| - // Try to expand the space and allocate in the new next page.
|
| - if (Expand()) {
|
| - DCHECK(CountTotalPages() > 1 || size_in_bytes <= free_list_.available());
|
| - return free_list_.Allocate(size_in_bytes);
|
| - }
|
| -
|
| - // If sweeper threads are active, wait for them at that point and steal
|
| - // elements form their free-lists. Allocation may still fail their which
|
| - // would indicate that there is not enough memory for the given allocation.
|
| - return WaitForSweeperThreadsAndRetryAllocation(size_in_bytes);
|
| -}
|
| -
|
| -
|
| -#ifdef DEBUG
|
| -void PagedSpace::ReportCodeStatistics(Isolate* isolate) {
|
| - CommentStatistic* comments_statistics =
|
| - isolate->paged_space_comments_statistics();
|
| - ReportCodeKindStatistics(isolate->code_kind_statistics());
|
| - PrintF("Code comment statistics (\" [ comment-txt : size/ "
|
| - "count (average)\"):\n");
|
| - for (int i = 0; i <= CommentStatistic::kMaxComments; i++) {
|
| - const CommentStatistic& cs = comments_statistics[i];
|
| - if (cs.size > 0) {
|
| - PrintF(" %-30s: %10d/%6d (%d)\n", cs.comment, cs.size, cs.count,
|
| - cs.size/cs.count);
|
| - }
|
| - }
|
| - PrintF("\n");
|
| -}
|
| -
|
| -
|
| -void PagedSpace::ResetCodeStatistics(Isolate* isolate) {
|
| - CommentStatistic* comments_statistics =
|
| - isolate->paged_space_comments_statistics();
|
| - ClearCodeKindStatistics(isolate->code_kind_statistics());
|
| - for (int i = 0; i < CommentStatistic::kMaxComments; i++) {
|
| - comments_statistics[i].Clear();
|
| - }
|
| - comments_statistics[CommentStatistic::kMaxComments].comment = "Unknown";
|
| - comments_statistics[CommentStatistic::kMaxComments].size = 0;
|
| - comments_statistics[CommentStatistic::kMaxComments].count = 0;
|
| -}
|
| -
|
| -
|
| -// Adds comment to 'comment_statistics' table. Performance OK as long as
|
| -// 'kMaxComments' is small
|
| -static void EnterComment(Isolate* isolate, const char* comment, int delta) {
|
| - CommentStatistic* comments_statistics =
|
| - isolate->paged_space_comments_statistics();
|
| - // Do not count empty comments
|
| - if (delta <= 0) return;
|
| - CommentStatistic* cs = &comments_statistics[CommentStatistic::kMaxComments];
|
| - // Search for a free or matching entry in 'comments_statistics': 'cs'
|
| - // points to result.
|
| - for (int i = 0; i < CommentStatistic::kMaxComments; i++) {
|
| - if (comments_statistics[i].comment == NULL) {
|
| - cs = &comments_statistics[i];
|
| - cs->comment = comment;
|
| - break;
|
| - } else if (strcmp(comments_statistics[i].comment, comment) == 0) {
|
| - cs = &comments_statistics[i];
|
| - break;
|
| - }
|
| - }
|
| - // Update entry for 'comment'
|
| - cs->size += delta;
|
| - cs->count += 1;
|
| -}
|
| -
|
| -
|
| -// Call for each nested comment start (start marked with '[ xxx', end marked
|
| -// with ']'. RelocIterator 'it' must point to a comment reloc info.
|
| -static void CollectCommentStatistics(Isolate* isolate, RelocIterator* it) {
|
| - DCHECK(!it->done());
|
| - DCHECK(it->rinfo()->rmode() == RelocInfo::COMMENT);
|
| - const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data());
|
| - if (tmp[0] != '[') {
|
| - // Not a nested comment; skip
|
| - return;
|
| - }
|
| -
|
| - // Search for end of nested comment or a new nested comment
|
| - const char* const comment_txt =
|
| - reinterpret_cast<const char*>(it->rinfo()->data());
|
| - const byte* prev_pc = it->rinfo()->pc();
|
| - int flat_delta = 0;
|
| - it->next();
|
| - while (true) {
|
| - // All nested comments must be terminated properly, and therefore exit
|
| - // from loop.
|
| - DCHECK(!it->done());
|
| - if (it->rinfo()->rmode() == RelocInfo::COMMENT) {
|
| - const char* const txt =
|
| - reinterpret_cast<const char*>(it->rinfo()->data());
|
| - flat_delta += static_cast<int>(it->rinfo()->pc() - prev_pc);
|
| - if (txt[0] == ']') break; // End of nested comment
|
| - // A new comment
|
| - CollectCommentStatistics(isolate, it);
|
| - // Skip code that was covered with previous comment
|
| - prev_pc = it->rinfo()->pc();
|
| - }
|
| - it->next();
|
| - }
|
| - EnterComment(isolate, comment_txt, flat_delta);
|
| -}
|
| -
|
| -
|
| -// Collects code size statistics:
|
| -// - by code kind
|
| -// - by code comment
|
| -void PagedSpace::CollectCodeStatistics() {
|
| - Isolate* isolate = heap()->isolate();
|
| - HeapObjectIterator obj_it(this);
|
| - for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) {
|
| - if (obj->IsCode()) {
|
| - Code* code = Code::cast(obj);
|
| - isolate->code_kind_statistics()[code->kind()] += code->Size();
|
| - RelocIterator it(code);
|
| - int delta = 0;
|
| - const byte* prev_pc = code->instruction_start();
|
| - while (!it.done()) {
|
| - if (it.rinfo()->rmode() == RelocInfo::COMMENT) {
|
| - delta += static_cast<int>(it.rinfo()->pc() - prev_pc);
|
| - CollectCommentStatistics(isolate, &it);
|
| - prev_pc = it.rinfo()->pc();
|
| - }
|
| - it.next();
|
| - }
|
| -
|
| - DCHECK(code->instruction_start() <= prev_pc &&
|
| - prev_pc <= code->instruction_end());
|
| - delta += static_cast<int>(code->instruction_end() - prev_pc);
|
| - EnterComment(isolate, "NoComment", delta);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void PagedSpace::ReportStatistics() {
|
| - int pct = static_cast<int>(Available() * 100 / Capacity());
|
| - PrintF(" capacity: %" V8_PTR_PREFIX "d"
|
| - ", waste: %" V8_PTR_PREFIX "d"
|
| - ", available: %" V8_PTR_PREFIX "d, %%%d\n",
|
| - Capacity(), Waste(), Available(), pct);
|
| -
|
| - if (!swept_precisely_) return;
|
| - ClearHistograms(heap()->isolate());
|
| - HeapObjectIterator obj_it(this);
|
| - for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next())
|
| - CollectHistogramInfo(obj);
|
| - ReportHistogram(heap()->isolate(), true);
|
| -}
|
| -#endif
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// MapSpace implementation
|
| -// TODO(mvstanton): this is weird...the compiler can't make a vtable unless
|
| -// there is at least one non-inlined virtual function. I would prefer to hide
|
| -// the VerifyObject definition behind VERIFY_HEAP.
|
| -
|
| -void MapSpace::VerifyObject(HeapObject* object) {
|
| - CHECK(object->IsMap());
|
| -}
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// CellSpace and PropertyCellSpace implementation
|
| -// TODO(mvstanton): this is weird...the compiler can't make a vtable unless
|
| -// there is at least one non-inlined virtual function. I would prefer to hide
|
| -// the VerifyObject definition behind VERIFY_HEAP.
|
| -
|
| -void CellSpace::VerifyObject(HeapObject* object) {
|
| - CHECK(object->IsCell());
|
| -}
|
| -
|
| -
|
| -void PropertyCellSpace::VerifyObject(HeapObject* object) {
|
| - CHECK(object->IsPropertyCell());
|
| -}
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// LargeObjectIterator
|
| -
|
| -LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) {
|
| - current_ = space->first_page_;
|
| - size_func_ = NULL;
|
| -}
|
| -
|
| -
|
| -LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space,
|
| - HeapObjectCallback size_func) {
|
| - current_ = space->first_page_;
|
| - size_func_ = size_func;
|
| -}
|
| -
|
| -
|
| -HeapObject* LargeObjectIterator::Next() {
|
| - if (current_ == NULL) return NULL;
|
| -
|
| - HeapObject* object = current_->GetObject();
|
| - current_ = current_->next_page();
|
| - return object;
|
| -}
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// LargeObjectSpace
|
| -static bool ComparePointers(void* key1, void* key2) {
|
| - return key1 == key2;
|
| -}
|
| -
|
| -
|
| -LargeObjectSpace::LargeObjectSpace(Heap* heap,
|
| - intptr_t max_capacity,
|
| - AllocationSpace id)
|
| - : Space(heap, id, NOT_EXECUTABLE), // Managed on a per-allocation basis
|
| - max_capacity_(max_capacity),
|
| - first_page_(NULL),
|
| - size_(0),
|
| - page_count_(0),
|
| - objects_size_(0),
|
| - chunk_map_(ComparePointers, 1024) {}
|
| -
|
| -
|
| -bool LargeObjectSpace::SetUp() {
|
| - first_page_ = NULL;
|
| - size_ = 0;
|
| - maximum_committed_ = 0;
|
| - page_count_ = 0;
|
| - objects_size_ = 0;
|
| - chunk_map_.Clear();
|
| - return true;
|
| -}
|
| -
|
| -
|
| -void LargeObjectSpace::TearDown() {
|
| - while (first_page_ != NULL) {
|
| - LargePage* page = first_page_;
|
| - first_page_ = first_page_->next_page();
|
| - LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", page->address()));
|
| -
|
| - ObjectSpace space = static_cast<ObjectSpace>(1 << identity());
|
| - heap()->isolate()->memory_allocator()->PerformAllocationCallback(
|
| - space, kAllocationActionFree, page->size());
|
| - heap()->isolate()->memory_allocator()->Free(page);
|
| - }
|
| - SetUp();
|
| -}
|
| -
|
| -
|
| -AllocationResult LargeObjectSpace::AllocateRaw(int object_size,
|
| - Executability executable) {
|
| - // Check if we want to force a GC before growing the old space further.
|
| - // If so, fail the allocation.
|
| - if (!heap()->always_allocate() &&
|
| - heap()->OldGenerationAllocationLimitReached()) {
|
| - return AllocationResult::Retry(identity());
|
| - }
|
| -
|
| - if (Size() + object_size > max_capacity_) {
|
| - return AllocationResult::Retry(identity());
|
| - }
|
| -
|
| - LargePage* page = heap()->isolate()->memory_allocator()->
|
| - AllocateLargePage(object_size, this, executable);
|
| - if (page == NULL) return AllocationResult::Retry(identity());
|
| - DCHECK(page->area_size() >= object_size);
|
| -
|
| - size_ += static_cast<int>(page->size());
|
| - objects_size_ += object_size;
|
| - page_count_++;
|
| - page->set_next_page(first_page_);
|
| - first_page_ = page;
|
| -
|
| - if (size_ > maximum_committed_) {
|
| - maximum_committed_ = size_;
|
| - }
|
| -
|
| - // Register all MemoryChunk::kAlignment-aligned chunks covered by
|
| - // this large page in the chunk map.
|
| - uintptr_t base = reinterpret_cast<uintptr_t>(page) / MemoryChunk::kAlignment;
|
| - uintptr_t limit = base + (page->size() - 1) / MemoryChunk::kAlignment;
|
| - for (uintptr_t key = base; key <= limit; key++) {
|
| - HashMap::Entry* entry = chunk_map_.Lookup(reinterpret_cast<void*>(key),
|
| - static_cast<uint32_t>(key),
|
| - true);
|
| - DCHECK(entry != NULL);
|
| - entry->value = page;
|
| - }
|
| -
|
| - HeapObject* object = page->GetObject();
|
| -
|
| - if (Heap::ShouldZapGarbage()) {
|
| - // Make the object consistent so the heap can be verified in OldSpaceStep.
|
| - // We only need to do this in debug builds or if verify_heap is on.
|
| - reinterpret_cast<Object**>(object->address())[0] =
|
| - heap()->fixed_array_map();
|
| - reinterpret_cast<Object**>(object->address())[1] = Smi::FromInt(0);
|
| - }
|
| -
|
| - heap()->incremental_marking()->OldSpaceStep(object_size);
|
| - return object;
|
| -}
|
| -
|
| -
|
| -size_t LargeObjectSpace::CommittedPhysicalMemory() {
|
| - if (!base::VirtualMemory::HasLazyCommits()) return CommittedMemory();
|
| - size_t size = 0;
|
| - LargePage* current = first_page_;
|
| - while (current != NULL) {
|
| - size += current->CommittedPhysicalMemory();
|
| - current = current->next_page();
|
| - }
|
| - return size;
|
| -}
|
| -
|
| -
|
| -// GC support
|
| -Object* LargeObjectSpace::FindObject(Address a) {
|
| - LargePage* page = FindPage(a);
|
| - if (page != NULL) {
|
| - return page->GetObject();
|
| - }
|
| - return Smi::FromInt(0); // Signaling not found.
|
| -}
|
| -
|
| -
|
| -LargePage* LargeObjectSpace::FindPage(Address a) {
|
| - uintptr_t key = reinterpret_cast<uintptr_t>(a) / MemoryChunk::kAlignment;
|
| - HashMap::Entry* e = chunk_map_.Lookup(reinterpret_cast<void*>(key),
|
| - static_cast<uint32_t>(key),
|
| - false);
|
| - if (e != NULL) {
|
| - DCHECK(e->value != NULL);
|
| - LargePage* page = reinterpret_cast<LargePage*>(e->value);
|
| - DCHECK(page->is_valid());
|
| - if (page->Contains(a)) {
|
| - return page;
|
| - }
|
| - }
|
| - return NULL;
|
| -}
|
| -
|
| -
|
| -void LargeObjectSpace::FreeUnmarkedObjects() {
|
| - LargePage* previous = NULL;
|
| - LargePage* current = first_page_;
|
| - while (current != NULL) {
|
| - HeapObject* object = current->GetObject();
|
| - // Can this large page contain pointers to non-trivial objects. No other
|
| - // pointer object is this big.
|
| - bool is_pointer_object = object->IsFixedArray();
|
| - MarkBit mark_bit = Marking::MarkBitFrom(object);
|
| - if (mark_bit.Get()) {
|
| - mark_bit.Clear();
|
| - Page::FromAddress(object->address())->ResetProgressBar();
|
| - Page::FromAddress(object->address())->ResetLiveBytes();
|
| - previous = current;
|
| - current = current->next_page();
|
| - } else {
|
| - LargePage* page = current;
|
| - // Cut the chunk out from the chunk list.
|
| - current = current->next_page();
|
| - if (previous == NULL) {
|
| - first_page_ = current;
|
| - } else {
|
| - previous->set_next_page(current);
|
| - }
|
| -
|
| - // Free the chunk.
|
| - heap()->mark_compact_collector()->ReportDeleteIfNeeded(
|
| - object, heap()->isolate());
|
| - size_ -= static_cast<int>(page->size());
|
| - objects_size_ -= object->Size();
|
| - page_count_--;
|
| -
|
| - // Remove entries belonging to this page.
|
| - // Use variable alignment to help pass length check (<= 80 characters)
|
| - // of single line in tools/presubmit.py.
|
| - const intptr_t alignment = MemoryChunk::kAlignment;
|
| - uintptr_t base = reinterpret_cast<uintptr_t>(page)/alignment;
|
| - uintptr_t limit = base + (page->size()-1)/alignment;
|
| - for (uintptr_t key = base; key <= limit; key++) {
|
| - chunk_map_.Remove(reinterpret_cast<void*>(key),
|
| - static_cast<uint32_t>(key));
|
| - }
|
| -
|
| - if (is_pointer_object) {
|
| - heap()->QueueMemoryChunkForFree(page);
|
| - } else {
|
| - heap()->isolate()->memory_allocator()->Free(page);
|
| - }
|
| - }
|
| - }
|
| - heap()->FreeQueuedChunks();
|
| -}
|
| -
|
| -
|
| -bool LargeObjectSpace::Contains(HeapObject* object) {
|
| - Address address = object->address();
|
| - MemoryChunk* chunk = MemoryChunk::FromAddress(address);
|
| -
|
| - bool owned = (chunk->owner() == this);
|
| -
|
| - SLOW_DCHECK(!owned || FindObject(address)->IsHeapObject());
|
| -
|
| - return owned;
|
| -}
|
| -
|
| -
|
| -#ifdef VERIFY_HEAP
|
| -// We do not assume that the large object iterator works, because it depends
|
| -// on the invariants we are checking during verification.
|
| -void LargeObjectSpace::Verify() {
|
| - for (LargePage* chunk = first_page_;
|
| - chunk != NULL;
|
| - chunk = chunk->next_page()) {
|
| - // Each chunk contains an object that starts at the large object page's
|
| - // object area start.
|
| - HeapObject* object = chunk->GetObject();
|
| - Page* page = Page::FromAddress(object->address());
|
| - CHECK(object->address() == page->area_start());
|
| -
|
| - // The first word should be a map, and we expect all map pointers to be
|
| - // in map space.
|
| - Map* map = object->map();
|
| - CHECK(map->IsMap());
|
| - CHECK(heap()->map_space()->Contains(map));
|
| -
|
| - // We have only code, sequential strings, external strings
|
| - // (sequential strings that have been morphed into external
|
| - // strings), fixed arrays, byte arrays, and constant pool arrays in the
|
| - // large object space.
|
| - CHECK(object->IsCode() || object->IsSeqString() ||
|
| - object->IsExternalString() || object->IsFixedArray() ||
|
| - object->IsFixedDoubleArray() || object->IsByteArray() ||
|
| - object->IsConstantPoolArray());
|
| -
|
| - // The object itself should look OK.
|
| - object->ObjectVerify();
|
| -
|
| - // Byte arrays and strings don't have interior pointers.
|
| - if (object->IsCode()) {
|
| - VerifyPointersVisitor code_visitor;
|
| - object->IterateBody(map->instance_type(),
|
| - object->Size(),
|
| - &code_visitor);
|
| - } else if (object->IsFixedArray()) {
|
| - FixedArray* array = FixedArray::cast(object);
|
| - for (int j = 0; j < array->length(); j++) {
|
| - Object* element = array->get(j);
|
| - if (element->IsHeapObject()) {
|
| - HeapObject* element_object = HeapObject::cast(element);
|
| - CHECK(heap()->Contains(element_object));
|
| - CHECK(element_object->map()->IsMap());
|
| - }
|
| - }
|
| - }
|
| - }
|
| -}
|
| -#endif
|
| -
|
| -
|
| -#ifdef DEBUG
|
| -void LargeObjectSpace::Print() {
|
| - OFStream os(stdout);
|
| - LargeObjectIterator it(this);
|
| - for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
|
| - obj->Print(os);
|
| - }
|
| -}
|
| -
|
| -
|
| -void LargeObjectSpace::ReportStatistics() {
|
| - PrintF(" size: %" V8_PTR_PREFIX "d\n", size_);
|
| - int num_objects = 0;
|
| - ClearHistograms(heap()->isolate());
|
| - LargeObjectIterator it(this);
|
| - for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
|
| - num_objects++;
|
| - CollectHistogramInfo(obj);
|
| - }
|
| -
|
| - PrintF(" number of objects %d, "
|
| - "size of objects %" V8_PTR_PREFIX "d\n", num_objects, objects_size_);
|
| - if (num_objects > 0) ReportHistogram(heap()->isolate(), false);
|
| -}
|
| -
|
| -
|
| -void LargeObjectSpace::CollectCodeStatistics() {
|
| - Isolate* isolate = heap()->isolate();
|
| - LargeObjectIterator obj_it(this);
|
| - for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) {
|
| - if (obj->IsCode()) {
|
| - Code* code = Code::cast(obj);
|
| - isolate->code_kind_statistics()[code->kind()] += code->Size();
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void Page::Print() {
|
| - // Make a best-effort to print the objects in the page.
|
| - PrintF("Page@%p in %s\n",
|
| - this->address(),
|
| - AllocationSpaceName(this->owner()->identity()));
|
| - printf(" --------------------------------------\n");
|
| - HeapObjectIterator objects(this, heap()->GcSafeSizeOfOldObjectFunction());
|
| - unsigned mark_size = 0;
|
| - for (HeapObject* object = objects.Next();
|
| - object != NULL;
|
| - object = objects.Next()) {
|
| - bool is_marked = Marking::MarkBitFrom(object).Get();
|
| - PrintF(" %c ", (is_marked ? '!' : ' ')); // Indent a little.
|
| - if (is_marked) {
|
| - mark_size += heap()->GcSafeSizeOfOldObjectFunction()(object);
|
| - }
|
| - object->ShortPrint();
|
| - PrintF("\n");
|
| - }
|
| - printf(" --------------------------------------\n");
|
| - printf(" Marked: %x, LiveCount: %x\n", mark_size, LiveBytes());
|
| -}
|
| -
|
| -#endif // DEBUG
|
| -
|
| -} } // namespace v8::internal
|
|
|