Index: src/spaces.cc |
diff --git a/src/spaces.cc b/src/spaces.cc |
deleted file mode 100644 |
index ed7437b1f0e907a2f465260269de1e8d4a120744..0000000000000000000000000000000000000000 |
--- a/src/spaces.cc |
+++ /dev/null |
@@ -1,3183 +0,0 @@ |
-// Copyright 2011 the V8 project authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#include "src/v8.h" |
- |
-#include "src/base/platform/platform.h" |
-#include "src/full-codegen.h" |
-#include "src/macro-assembler.h" |
-#include "src/mark-compact.h" |
-#include "src/msan.h" |
- |
-namespace v8 { |
-namespace internal { |
- |
- |
-// ---------------------------------------------------------------------------- |
-// HeapObjectIterator |
- |
-HeapObjectIterator::HeapObjectIterator(PagedSpace* space) { |
- // You can't actually iterate over the anchor page. It is not a real page, |
- // just an anchor for the double linked page list. Initialize as if we have |
- // reached the end of the anchor page, then the first iteration will move on |
- // to the first page. |
- Initialize(space, |
- NULL, |
- NULL, |
- kAllPagesInSpace, |
- NULL); |
-} |
- |
- |
-HeapObjectIterator::HeapObjectIterator(PagedSpace* space, |
- HeapObjectCallback size_func) { |
- // You can't actually iterate over the anchor page. It is not a real page, |
- // just an anchor for the double linked page list. Initialize the current |
- // address and end as NULL, then the first iteration will move on |
- // to the first page. |
- Initialize(space, |
- NULL, |
- NULL, |
- kAllPagesInSpace, |
- size_func); |
-} |
- |
- |
-HeapObjectIterator::HeapObjectIterator(Page* page, |
- HeapObjectCallback size_func) { |
- Space* owner = page->owner(); |
- DCHECK(owner == page->heap()->old_pointer_space() || |
- owner == page->heap()->old_data_space() || |
- owner == page->heap()->map_space() || |
- owner == page->heap()->cell_space() || |
- owner == page->heap()->property_cell_space() || |
- owner == page->heap()->code_space()); |
- Initialize(reinterpret_cast<PagedSpace*>(owner), |
- page->area_start(), |
- page->area_end(), |
- kOnePageOnly, |
- size_func); |
- DCHECK(page->WasSweptPrecisely() || page->SweepingCompleted()); |
-} |
- |
- |
-void HeapObjectIterator::Initialize(PagedSpace* space, |
- Address cur, Address end, |
- HeapObjectIterator::PageMode mode, |
- HeapObjectCallback size_f) { |
- // Check that we actually can iterate this space. |
- DCHECK(space->swept_precisely()); |
- |
- space_ = space; |
- cur_addr_ = cur; |
- cur_end_ = end; |
- page_mode_ = mode; |
- size_func_ = size_f; |
-} |
- |
- |
-// We have hit the end of the page and should advance to the next block of |
-// objects. This happens at the end of the page. |
-bool HeapObjectIterator::AdvanceToNextPage() { |
- DCHECK(cur_addr_ == cur_end_); |
- if (page_mode_ == kOnePageOnly) return false; |
- Page* cur_page; |
- if (cur_addr_ == NULL) { |
- cur_page = space_->anchor(); |
- } else { |
- cur_page = Page::FromAddress(cur_addr_ - 1); |
- DCHECK(cur_addr_ == cur_page->area_end()); |
- } |
- cur_page = cur_page->next_page(); |
- if (cur_page == space_->anchor()) return false; |
- cur_addr_ = cur_page->area_start(); |
- cur_end_ = cur_page->area_end(); |
- DCHECK(cur_page->WasSweptPrecisely()); |
- return true; |
-} |
- |
- |
-// ----------------------------------------------------------------------------- |
-// CodeRange |
- |
- |
-CodeRange::CodeRange(Isolate* isolate) |
- : isolate_(isolate), |
- code_range_(NULL), |
- free_list_(0), |
- allocation_list_(0), |
- current_allocation_block_index_(0) { |
-} |
- |
- |
-bool CodeRange::SetUp(size_t requested) { |
- DCHECK(code_range_ == NULL); |
- |
- if (requested == 0) { |
- // When a target requires the code range feature, we put all code objects |
- // in a kMaximalCodeRangeSize range of virtual address space, so that |
- // they can call each other with near calls. |
- if (kRequiresCodeRange) { |
- requested = kMaximalCodeRangeSize; |
- } else { |
- return true; |
- } |
- } |
- |
- DCHECK(!kRequiresCodeRange || requested <= kMaximalCodeRangeSize); |
- code_range_ = new base::VirtualMemory(requested); |
- CHECK(code_range_ != NULL); |
- if (!code_range_->IsReserved()) { |
- delete code_range_; |
- code_range_ = NULL; |
- return false; |
- } |
- |
- // We are sure that we have mapped a block of requested addresses. |
- DCHECK(code_range_->size() == requested); |
- LOG(isolate_, |
- NewEvent("CodeRange", code_range_->address(), requested)); |
- Address base = reinterpret_cast<Address>(code_range_->address()); |
- Address aligned_base = |
- RoundUp(reinterpret_cast<Address>(code_range_->address()), |
- MemoryChunk::kAlignment); |
- size_t size = code_range_->size() - (aligned_base - base); |
- allocation_list_.Add(FreeBlock(aligned_base, size)); |
- current_allocation_block_index_ = 0; |
- return true; |
-} |
- |
- |
-int CodeRange::CompareFreeBlockAddress(const FreeBlock* left, |
- const FreeBlock* right) { |
- // The entire point of CodeRange is that the difference between two |
- // addresses in the range can be represented as a signed 32-bit int, |
- // so the cast is semantically correct. |
- return static_cast<int>(left->start - right->start); |
-} |
- |
- |
-bool CodeRange::GetNextAllocationBlock(size_t requested) { |
- for (current_allocation_block_index_++; |
- current_allocation_block_index_ < allocation_list_.length(); |
- current_allocation_block_index_++) { |
- if (requested <= allocation_list_[current_allocation_block_index_].size) { |
- return true; // Found a large enough allocation block. |
- } |
- } |
- |
- // Sort and merge the free blocks on the free list and the allocation list. |
- free_list_.AddAll(allocation_list_); |
- allocation_list_.Clear(); |
- free_list_.Sort(&CompareFreeBlockAddress); |
- for (int i = 0; i < free_list_.length();) { |
- FreeBlock merged = free_list_[i]; |
- i++; |
- // Add adjacent free blocks to the current merged block. |
- while (i < free_list_.length() && |
- free_list_[i].start == merged.start + merged.size) { |
- merged.size += free_list_[i].size; |
- i++; |
- } |
- if (merged.size > 0) { |
- allocation_list_.Add(merged); |
- } |
- } |
- free_list_.Clear(); |
- |
- for (current_allocation_block_index_ = 0; |
- current_allocation_block_index_ < allocation_list_.length(); |
- current_allocation_block_index_++) { |
- if (requested <= allocation_list_[current_allocation_block_index_].size) { |
- return true; // Found a large enough allocation block. |
- } |
- } |
- current_allocation_block_index_ = 0; |
- // Code range is full or too fragmented. |
- return false; |
-} |
- |
- |
-Address CodeRange::AllocateRawMemory(const size_t requested_size, |
- const size_t commit_size, |
- size_t* allocated) { |
- DCHECK(commit_size <= requested_size); |
- DCHECK(current_allocation_block_index_ < allocation_list_.length()); |
- if (requested_size > allocation_list_[current_allocation_block_index_].size) { |
- // Find an allocation block large enough. |
- if (!GetNextAllocationBlock(requested_size)) return NULL; |
- } |
- // Commit the requested memory at the start of the current allocation block. |
- size_t aligned_requested = RoundUp(requested_size, MemoryChunk::kAlignment); |
- FreeBlock current = allocation_list_[current_allocation_block_index_]; |
- if (aligned_requested >= (current.size - Page::kPageSize)) { |
- // Don't leave a small free block, useless for a large object or chunk. |
- *allocated = current.size; |
- } else { |
- *allocated = aligned_requested; |
- } |
- DCHECK(*allocated <= current.size); |
- DCHECK(IsAddressAligned(current.start, MemoryChunk::kAlignment)); |
- if (!isolate_->memory_allocator()->CommitExecutableMemory(code_range_, |
- current.start, |
- commit_size, |
- *allocated)) { |
- *allocated = 0; |
- return NULL; |
- } |
- allocation_list_[current_allocation_block_index_].start += *allocated; |
- allocation_list_[current_allocation_block_index_].size -= *allocated; |
- if (*allocated == current.size) { |
- // This block is used up, get the next one. |
- if (!GetNextAllocationBlock(0)) return NULL; |
- } |
- return current.start; |
-} |
- |
- |
-bool CodeRange::CommitRawMemory(Address start, size_t length) { |
- return isolate_->memory_allocator()->CommitMemory(start, length, EXECUTABLE); |
-} |
- |
- |
-bool CodeRange::UncommitRawMemory(Address start, size_t length) { |
- return code_range_->Uncommit(start, length); |
-} |
- |
- |
-void CodeRange::FreeRawMemory(Address address, size_t length) { |
- DCHECK(IsAddressAligned(address, MemoryChunk::kAlignment)); |
- free_list_.Add(FreeBlock(address, length)); |
- code_range_->Uncommit(address, length); |
-} |
- |
- |
-void CodeRange::TearDown() { |
- delete code_range_; // Frees all memory in the virtual memory range. |
- code_range_ = NULL; |
- free_list_.Free(); |
- allocation_list_.Free(); |
-} |
- |
- |
-// ----------------------------------------------------------------------------- |
-// MemoryAllocator |
-// |
- |
-MemoryAllocator::MemoryAllocator(Isolate* isolate) |
- : isolate_(isolate), |
- capacity_(0), |
- capacity_executable_(0), |
- size_(0), |
- size_executable_(0), |
- lowest_ever_allocated_(reinterpret_cast<void*>(-1)), |
- highest_ever_allocated_(reinterpret_cast<void*>(0)) { |
-} |
- |
- |
-bool MemoryAllocator::SetUp(intptr_t capacity, intptr_t capacity_executable) { |
- capacity_ = RoundUp(capacity, Page::kPageSize); |
- capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize); |
- DCHECK_GE(capacity_, capacity_executable_); |
- |
- size_ = 0; |
- size_executable_ = 0; |
- |
- return true; |
-} |
- |
- |
-void MemoryAllocator::TearDown() { |
- // Check that spaces were torn down before MemoryAllocator. |
- DCHECK(size_ == 0); |
- // TODO(gc) this will be true again when we fix FreeMemory. |
- // DCHECK(size_executable_ == 0); |
- capacity_ = 0; |
- capacity_executable_ = 0; |
-} |
- |
- |
-bool MemoryAllocator::CommitMemory(Address base, |
- size_t size, |
- Executability executable) { |
- if (!base::VirtualMemory::CommitRegion(base, size, |
- executable == EXECUTABLE)) { |
- return false; |
- } |
- UpdateAllocatedSpaceLimits(base, base + size); |
- return true; |
-} |
- |
- |
-void MemoryAllocator::FreeMemory(base::VirtualMemory* reservation, |
- Executability executable) { |
- // TODO(gc) make code_range part of memory allocator? |
- DCHECK(reservation->IsReserved()); |
- size_t size = reservation->size(); |
- DCHECK(size_ >= size); |
- size_ -= size; |
- |
- isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size)); |
- |
- if (executable == EXECUTABLE) { |
- DCHECK(size_executable_ >= size); |
- size_executable_ -= size; |
- } |
- // Code which is part of the code-range does not have its own VirtualMemory. |
- DCHECK(isolate_->code_range() == NULL || |
- !isolate_->code_range()->contains( |
- static_cast<Address>(reservation->address()))); |
- DCHECK(executable == NOT_EXECUTABLE || |
- isolate_->code_range() == NULL || |
- !isolate_->code_range()->valid()); |
- reservation->Release(); |
-} |
- |
- |
-void MemoryAllocator::FreeMemory(Address base, |
- size_t size, |
- Executability executable) { |
- // TODO(gc) make code_range part of memory allocator? |
- DCHECK(size_ >= size); |
- size_ -= size; |
- |
- isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size)); |
- |
- if (executable == EXECUTABLE) { |
- DCHECK(size_executable_ >= size); |
- size_executable_ -= size; |
- } |
- if (isolate_->code_range() != NULL && |
- isolate_->code_range()->contains(static_cast<Address>(base))) { |
- DCHECK(executable == EXECUTABLE); |
- isolate_->code_range()->FreeRawMemory(base, size); |
- } else { |
- DCHECK(executable == NOT_EXECUTABLE || |
- isolate_->code_range() == NULL || |
- !isolate_->code_range()->valid()); |
- bool result = base::VirtualMemory::ReleaseRegion(base, size); |
- USE(result); |
- DCHECK(result); |
- } |
-} |
- |
- |
-Address MemoryAllocator::ReserveAlignedMemory(size_t size, |
- size_t alignment, |
- base::VirtualMemory* controller) { |
- base::VirtualMemory reservation(size, alignment); |
- |
- if (!reservation.IsReserved()) return NULL; |
- size_ += reservation.size(); |
- Address base = RoundUp(static_cast<Address>(reservation.address()), |
- alignment); |
- controller->TakeControl(&reservation); |
- return base; |
-} |
- |
- |
-Address MemoryAllocator::AllocateAlignedMemory( |
- size_t reserve_size, size_t commit_size, size_t alignment, |
- Executability executable, base::VirtualMemory* controller) { |
- DCHECK(commit_size <= reserve_size); |
- base::VirtualMemory reservation; |
- Address base = ReserveAlignedMemory(reserve_size, alignment, &reservation); |
- if (base == NULL) return NULL; |
- |
- if (executable == EXECUTABLE) { |
- if (!CommitExecutableMemory(&reservation, |
- base, |
- commit_size, |
- reserve_size)) { |
- base = NULL; |
- } |
- } else { |
- if (reservation.Commit(base, commit_size, false)) { |
- UpdateAllocatedSpaceLimits(base, base + commit_size); |
- } else { |
- base = NULL; |
- } |
- } |
- |
- if (base == NULL) { |
- // Failed to commit the body. Release the mapping and any partially |
- // commited regions inside it. |
- reservation.Release(); |
- return NULL; |
- } |
- |
- controller->TakeControl(&reservation); |
- return base; |
-} |
- |
- |
-void Page::InitializeAsAnchor(PagedSpace* owner) { |
- set_owner(owner); |
- set_prev_page(this); |
- set_next_page(this); |
-} |
- |
- |
-NewSpacePage* NewSpacePage::Initialize(Heap* heap, |
- Address start, |
- SemiSpace* semi_space) { |
- Address area_start = start + NewSpacePage::kObjectStartOffset; |
- Address area_end = start + Page::kPageSize; |
- |
- MemoryChunk* chunk = MemoryChunk::Initialize(heap, |
- start, |
- Page::kPageSize, |
- area_start, |
- area_end, |
- NOT_EXECUTABLE, |
- semi_space); |
- chunk->set_next_chunk(NULL); |
- chunk->set_prev_chunk(NULL); |
- chunk->initialize_scan_on_scavenge(true); |
- bool in_to_space = (semi_space->id() != kFromSpace); |
- chunk->SetFlag(in_to_space ? MemoryChunk::IN_TO_SPACE |
- : MemoryChunk::IN_FROM_SPACE); |
- DCHECK(!chunk->IsFlagSet(in_to_space ? MemoryChunk::IN_FROM_SPACE |
- : MemoryChunk::IN_TO_SPACE)); |
- NewSpacePage* page = static_cast<NewSpacePage*>(chunk); |
- heap->incremental_marking()->SetNewSpacePageFlags(page); |
- return page; |
-} |
- |
- |
-void NewSpacePage::InitializeAsAnchor(SemiSpace* semi_space) { |
- set_owner(semi_space); |
- set_next_chunk(this); |
- set_prev_chunk(this); |
- // Flags marks this invalid page as not being in new-space. |
- // All real new-space pages will be in new-space. |
- SetFlags(0, ~0); |
-} |
- |
- |
-MemoryChunk* MemoryChunk::Initialize(Heap* heap, |
- Address base, |
- size_t size, |
- Address area_start, |
- Address area_end, |
- Executability executable, |
- Space* owner) { |
- MemoryChunk* chunk = FromAddress(base); |
- |
- DCHECK(base == chunk->address()); |
- |
- chunk->heap_ = heap; |
- chunk->size_ = size; |
- chunk->area_start_ = area_start; |
- chunk->area_end_ = area_end; |
- chunk->flags_ = 0; |
- chunk->set_owner(owner); |
- chunk->InitializeReservedMemory(); |
- chunk->slots_buffer_ = NULL; |
- chunk->skip_list_ = NULL; |
- chunk->write_barrier_counter_ = kWriteBarrierCounterGranularity; |
- chunk->progress_bar_ = 0; |
- chunk->high_water_mark_ = static_cast<int>(area_start - base); |
- chunk->set_parallel_sweeping(SWEEPING_DONE); |
- chunk->available_in_small_free_list_ = 0; |
- chunk->available_in_medium_free_list_ = 0; |
- chunk->available_in_large_free_list_ = 0; |
- chunk->available_in_huge_free_list_ = 0; |
- chunk->non_available_small_blocks_ = 0; |
- chunk->ResetLiveBytes(); |
- Bitmap::Clear(chunk); |
- chunk->initialize_scan_on_scavenge(false); |
- chunk->SetFlag(WAS_SWEPT_PRECISELY); |
- |
- DCHECK(OFFSET_OF(MemoryChunk, flags_) == kFlagsOffset); |
- DCHECK(OFFSET_OF(MemoryChunk, live_byte_count_) == kLiveBytesOffset); |
- |
- if (executable == EXECUTABLE) { |
- chunk->SetFlag(IS_EXECUTABLE); |
- } |
- |
- if (owner == heap->old_data_space()) { |
- chunk->SetFlag(CONTAINS_ONLY_DATA); |
- } |
- |
- return chunk; |
-} |
- |
- |
-// Commit MemoryChunk area to the requested size. |
-bool MemoryChunk::CommitArea(size_t requested) { |
- size_t guard_size = IsFlagSet(IS_EXECUTABLE) ? |
- MemoryAllocator::CodePageGuardSize() : 0; |
- size_t header_size = area_start() - address() - guard_size; |
- size_t commit_size = |
- RoundUp(header_size + requested, base::OS::CommitPageSize()); |
- size_t committed_size = RoundUp(header_size + (area_end() - area_start()), |
- base::OS::CommitPageSize()); |
- |
- if (commit_size > committed_size) { |
- // Commit size should be less or equal than the reserved size. |
- DCHECK(commit_size <= size() - 2 * guard_size); |
- // Append the committed area. |
- Address start = address() + committed_size + guard_size; |
- size_t length = commit_size - committed_size; |
- if (reservation_.IsReserved()) { |
- Executability executable = IsFlagSet(IS_EXECUTABLE) |
- ? EXECUTABLE : NOT_EXECUTABLE; |
- if (!heap()->isolate()->memory_allocator()->CommitMemory( |
- start, length, executable)) { |
- return false; |
- } |
- } else { |
- CodeRange* code_range = heap_->isolate()->code_range(); |
- DCHECK(code_range != NULL && code_range->valid() && |
- IsFlagSet(IS_EXECUTABLE)); |
- if (!code_range->CommitRawMemory(start, length)) return false; |
- } |
- |
- if (Heap::ShouldZapGarbage()) { |
- heap_->isolate()->memory_allocator()->ZapBlock(start, length); |
- } |
- } else if (commit_size < committed_size) { |
- DCHECK(commit_size > 0); |
- // Shrink the committed area. |
- size_t length = committed_size - commit_size; |
- Address start = address() + committed_size + guard_size - length; |
- if (reservation_.IsReserved()) { |
- if (!reservation_.Uncommit(start, length)) return false; |
- } else { |
- CodeRange* code_range = heap_->isolate()->code_range(); |
- DCHECK(code_range != NULL && code_range->valid() && |
- IsFlagSet(IS_EXECUTABLE)); |
- if (!code_range->UncommitRawMemory(start, length)) return false; |
- } |
- } |
- |
- area_end_ = area_start_ + requested; |
- return true; |
-} |
- |
- |
-void MemoryChunk::InsertAfter(MemoryChunk* other) { |
- MemoryChunk* other_next = other->next_chunk(); |
- |
- set_next_chunk(other_next); |
- set_prev_chunk(other); |
- other_next->set_prev_chunk(this); |
- other->set_next_chunk(this); |
-} |
- |
- |
-void MemoryChunk::Unlink() { |
- MemoryChunk* next_element = next_chunk(); |
- MemoryChunk* prev_element = prev_chunk(); |
- next_element->set_prev_chunk(prev_element); |
- prev_element->set_next_chunk(next_element); |
- set_prev_chunk(NULL); |
- set_next_chunk(NULL); |
-} |
- |
- |
-MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t reserve_area_size, |
- intptr_t commit_area_size, |
- Executability executable, |
- Space* owner) { |
- DCHECK(commit_area_size <= reserve_area_size); |
- |
- size_t chunk_size; |
- Heap* heap = isolate_->heap(); |
- Address base = NULL; |
- base::VirtualMemory reservation; |
- Address area_start = NULL; |
- Address area_end = NULL; |
- |
- // |
- // MemoryChunk layout: |
- // |
- // Executable |
- // +----------------------------+<- base aligned with MemoryChunk::kAlignment |
- // | Header | |
- // +----------------------------+<- base + CodePageGuardStartOffset |
- // | Guard | |
- // +----------------------------+<- area_start_ |
- // | Area | |
- // +----------------------------+<- area_end_ (area_start + commit_area_size) |
- // | Committed but not used | |
- // +----------------------------+<- aligned at OS page boundary |
- // | Reserved but not committed | |
- // +----------------------------+<- aligned at OS page boundary |
- // | Guard | |
- // +----------------------------+<- base + chunk_size |
- // |
- // Non-executable |
- // +----------------------------+<- base aligned with MemoryChunk::kAlignment |
- // | Header | |
- // +----------------------------+<- area_start_ (base + kObjectStartOffset) |
- // | Area | |
- // +----------------------------+<- area_end_ (area_start + commit_area_size) |
- // | Committed but not used | |
- // +----------------------------+<- aligned at OS page boundary |
- // | Reserved but not committed | |
- // +----------------------------+<- base + chunk_size |
- // |
- |
- if (executable == EXECUTABLE) { |
- chunk_size = RoundUp(CodePageAreaStartOffset() + reserve_area_size, |
- base::OS::CommitPageSize()) + CodePageGuardSize(); |
- |
- // Check executable memory limit. |
- if (size_executable_ + chunk_size > capacity_executable_) { |
- LOG(isolate_, |
- StringEvent("MemoryAllocator::AllocateRawMemory", |
- "V8 Executable Allocation capacity exceeded")); |
- return NULL; |
- } |
- |
- // Size of header (not executable) plus area (executable). |
- size_t commit_size = RoundUp(CodePageGuardStartOffset() + commit_area_size, |
- base::OS::CommitPageSize()); |
- // Allocate executable memory either from code range or from the |
- // OS. |
- if (isolate_->code_range() != NULL && isolate_->code_range()->valid()) { |
- base = isolate_->code_range()->AllocateRawMemory(chunk_size, |
- commit_size, |
- &chunk_size); |
- DCHECK(IsAligned(reinterpret_cast<intptr_t>(base), |
- MemoryChunk::kAlignment)); |
- if (base == NULL) return NULL; |
- size_ += chunk_size; |
- // Update executable memory size. |
- size_executable_ += chunk_size; |
- } else { |
- base = AllocateAlignedMemory(chunk_size, |
- commit_size, |
- MemoryChunk::kAlignment, |
- executable, |
- &reservation); |
- if (base == NULL) return NULL; |
- // Update executable memory size. |
- size_executable_ += reservation.size(); |
- } |
- |
- if (Heap::ShouldZapGarbage()) { |
- ZapBlock(base, CodePageGuardStartOffset()); |
- ZapBlock(base + CodePageAreaStartOffset(), commit_area_size); |
- } |
- |
- area_start = base + CodePageAreaStartOffset(); |
- area_end = area_start + commit_area_size; |
- } else { |
- chunk_size = RoundUp(MemoryChunk::kObjectStartOffset + reserve_area_size, |
- base::OS::CommitPageSize()); |
- size_t commit_size = RoundUp(MemoryChunk::kObjectStartOffset + |
- commit_area_size, base::OS::CommitPageSize()); |
- base = AllocateAlignedMemory(chunk_size, |
- commit_size, |
- MemoryChunk::kAlignment, |
- executable, |
- &reservation); |
- |
- if (base == NULL) return NULL; |
- |
- if (Heap::ShouldZapGarbage()) { |
- ZapBlock(base, Page::kObjectStartOffset + commit_area_size); |
- } |
- |
- area_start = base + Page::kObjectStartOffset; |
- area_end = area_start + commit_area_size; |
- } |
- |
- // Use chunk_size for statistics and callbacks because we assume that they |
- // treat reserved but not-yet committed memory regions of chunks as allocated. |
- isolate_->counters()->memory_allocated()-> |
- Increment(static_cast<int>(chunk_size)); |
- |
- LOG(isolate_, NewEvent("MemoryChunk", base, chunk_size)); |
- if (owner != NULL) { |
- ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity()); |
- PerformAllocationCallback(space, kAllocationActionAllocate, chunk_size); |
- } |
- |
- MemoryChunk* result = MemoryChunk::Initialize(heap, |
- base, |
- chunk_size, |
- area_start, |
- area_end, |
- executable, |
- owner); |
- result->set_reserved_memory(&reservation); |
- MSAN_MEMORY_IS_INITIALIZED_IN_JIT(base, chunk_size); |
- return result; |
-} |
- |
- |
-void Page::ResetFreeListStatistics() { |
- non_available_small_blocks_ = 0; |
- available_in_small_free_list_ = 0; |
- available_in_medium_free_list_ = 0; |
- available_in_large_free_list_ = 0; |
- available_in_huge_free_list_ = 0; |
-} |
- |
- |
-Page* MemoryAllocator::AllocatePage(intptr_t size, |
- PagedSpace* owner, |
- Executability executable) { |
- MemoryChunk* chunk = AllocateChunk(size, size, executable, owner); |
- |
- if (chunk == NULL) return NULL; |
- |
- return Page::Initialize(isolate_->heap(), chunk, executable, owner); |
-} |
- |
- |
-LargePage* MemoryAllocator::AllocateLargePage(intptr_t object_size, |
- Space* owner, |
- Executability executable) { |
- MemoryChunk* chunk = AllocateChunk(object_size, |
- object_size, |
- executable, |
- owner); |
- if (chunk == NULL) return NULL; |
- return LargePage::Initialize(isolate_->heap(), chunk); |
-} |
- |
- |
-void MemoryAllocator::Free(MemoryChunk* chunk) { |
- LOG(isolate_, DeleteEvent("MemoryChunk", chunk)); |
- if (chunk->owner() != NULL) { |
- ObjectSpace space = |
- static_cast<ObjectSpace>(1 << chunk->owner()->identity()); |
- PerformAllocationCallback(space, kAllocationActionFree, chunk->size()); |
- } |
- |
- isolate_->heap()->RememberUnmappedPage( |
- reinterpret_cast<Address>(chunk), chunk->IsEvacuationCandidate()); |
- |
- delete chunk->slots_buffer(); |
- delete chunk->skip_list(); |
- |
- base::VirtualMemory* reservation = chunk->reserved_memory(); |
- if (reservation->IsReserved()) { |
- FreeMemory(reservation, chunk->executable()); |
- } else { |
- FreeMemory(chunk->address(), |
- chunk->size(), |
- chunk->executable()); |
- } |
-} |
- |
- |
-bool MemoryAllocator::CommitBlock(Address start, |
- size_t size, |
- Executability executable) { |
- if (!CommitMemory(start, size, executable)) return false; |
- |
- if (Heap::ShouldZapGarbage()) { |
- ZapBlock(start, size); |
- } |
- |
- isolate_->counters()->memory_allocated()->Increment(static_cast<int>(size)); |
- return true; |
-} |
- |
- |
-bool MemoryAllocator::UncommitBlock(Address start, size_t size) { |
- if (!base::VirtualMemory::UncommitRegion(start, size)) return false; |
- isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size)); |
- return true; |
-} |
- |
- |
-void MemoryAllocator::ZapBlock(Address start, size_t size) { |
- for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) { |
- Memory::Address_at(start + s) = kZapValue; |
- } |
-} |
- |
- |
-void MemoryAllocator::PerformAllocationCallback(ObjectSpace space, |
- AllocationAction action, |
- size_t size) { |
- for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) { |
- MemoryAllocationCallbackRegistration registration = |
- memory_allocation_callbacks_[i]; |
- if ((registration.space & space) == space && |
- (registration.action & action) == action) |
- registration.callback(space, action, static_cast<int>(size)); |
- } |
-} |
- |
- |
-bool MemoryAllocator::MemoryAllocationCallbackRegistered( |
- MemoryAllocationCallback callback) { |
- for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) { |
- if (memory_allocation_callbacks_[i].callback == callback) return true; |
- } |
- return false; |
-} |
- |
- |
-void MemoryAllocator::AddMemoryAllocationCallback( |
- MemoryAllocationCallback callback, |
- ObjectSpace space, |
- AllocationAction action) { |
- DCHECK(callback != NULL); |
- MemoryAllocationCallbackRegistration registration(callback, space, action); |
- DCHECK(!MemoryAllocator::MemoryAllocationCallbackRegistered(callback)); |
- return memory_allocation_callbacks_.Add(registration); |
-} |
- |
- |
-void MemoryAllocator::RemoveMemoryAllocationCallback( |
- MemoryAllocationCallback callback) { |
- DCHECK(callback != NULL); |
- for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) { |
- if (memory_allocation_callbacks_[i].callback == callback) { |
- memory_allocation_callbacks_.Remove(i); |
- return; |
- } |
- } |
- UNREACHABLE(); |
-} |
- |
- |
-#ifdef DEBUG |
-void MemoryAllocator::ReportStatistics() { |
- float pct = static_cast<float>(capacity_ - size_) / capacity_; |
- PrintF(" capacity: %" V8_PTR_PREFIX "d" |
- ", used: %" V8_PTR_PREFIX "d" |
- ", available: %%%d\n\n", |
- capacity_, size_, static_cast<int>(pct*100)); |
-} |
-#endif |
- |
- |
-int MemoryAllocator::CodePageGuardStartOffset() { |
- // We are guarding code pages: the first OS page after the header |
- // will be protected as non-writable. |
- return RoundUp(Page::kObjectStartOffset, base::OS::CommitPageSize()); |
-} |
- |
- |
-int MemoryAllocator::CodePageGuardSize() { |
- return static_cast<int>(base::OS::CommitPageSize()); |
-} |
- |
- |
-int MemoryAllocator::CodePageAreaStartOffset() { |
- // We are guarding code pages: the first OS page after the header |
- // will be protected as non-writable. |
- return CodePageGuardStartOffset() + CodePageGuardSize(); |
-} |
- |
- |
-int MemoryAllocator::CodePageAreaEndOffset() { |
- // We are guarding code pages: the last OS page will be protected as |
- // non-writable. |
- return Page::kPageSize - static_cast<int>(base::OS::CommitPageSize()); |
-} |
- |
- |
-bool MemoryAllocator::CommitExecutableMemory(base::VirtualMemory* vm, |
- Address start, |
- size_t commit_size, |
- size_t reserved_size) { |
- // Commit page header (not executable). |
- if (!vm->Commit(start, |
- CodePageGuardStartOffset(), |
- false)) { |
- return false; |
- } |
- |
- // Create guard page after the header. |
- if (!vm->Guard(start + CodePageGuardStartOffset())) { |
- return false; |
- } |
- |
- // Commit page body (executable). |
- if (!vm->Commit(start + CodePageAreaStartOffset(), |
- commit_size - CodePageGuardStartOffset(), |
- true)) { |
- return false; |
- } |
- |
- // Create guard page before the end. |
- if (!vm->Guard(start + reserved_size - CodePageGuardSize())) { |
- return false; |
- } |
- |
- UpdateAllocatedSpaceLimits(start, |
- start + CodePageAreaStartOffset() + |
- commit_size - CodePageGuardStartOffset()); |
- return true; |
-} |
- |
- |
-// ----------------------------------------------------------------------------- |
-// MemoryChunk implementation |
- |
-void MemoryChunk::IncrementLiveBytesFromMutator(Address address, int by) { |
- MemoryChunk* chunk = MemoryChunk::FromAddress(address); |
- if (!chunk->InNewSpace() && !static_cast<Page*>(chunk)->WasSwept()) { |
- static_cast<PagedSpace*>(chunk->owner())->IncrementUnsweptFreeBytes(-by); |
- } |
- chunk->IncrementLiveBytes(by); |
-} |
- |
- |
-// ----------------------------------------------------------------------------- |
-// PagedSpace implementation |
- |
-PagedSpace::PagedSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id, |
- Executability executable) |
- : Space(heap, id, executable), |
- free_list_(this), |
- swept_precisely_(true), |
- unswept_free_bytes_(0), |
- end_of_unswept_pages_(NULL), |
- emergency_memory_(NULL) { |
- if (id == CODE_SPACE) { |
- area_size_ = heap->isolate()->memory_allocator()-> |
- CodePageAreaSize(); |
- } else { |
- area_size_ = Page::kPageSize - Page::kObjectStartOffset; |
- } |
- max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize) |
- * AreaSize(); |
- accounting_stats_.Clear(); |
- |
- allocation_info_.set_top(NULL); |
- allocation_info_.set_limit(NULL); |
- |
- anchor_.InitializeAsAnchor(this); |
-} |
- |
- |
-bool PagedSpace::SetUp() { |
- return true; |
-} |
- |
- |
-bool PagedSpace::HasBeenSetUp() { |
- return true; |
-} |
- |
- |
-void PagedSpace::TearDown() { |
- PageIterator iterator(this); |
- while (iterator.has_next()) { |
- heap()->isolate()->memory_allocator()->Free(iterator.next()); |
- } |
- anchor_.set_next_page(&anchor_); |
- anchor_.set_prev_page(&anchor_); |
- accounting_stats_.Clear(); |
-} |
- |
- |
-size_t PagedSpace::CommittedPhysicalMemory() { |
- if (!base::VirtualMemory::HasLazyCommits()) return CommittedMemory(); |
- MemoryChunk::UpdateHighWaterMark(allocation_info_.top()); |
- size_t size = 0; |
- PageIterator it(this); |
- while (it.has_next()) { |
- size += it.next()->CommittedPhysicalMemory(); |
- } |
- return size; |
-} |
- |
- |
-Object* PagedSpace::FindObject(Address addr) { |
- // Note: this function can only be called on precisely swept spaces. |
- DCHECK(!heap()->mark_compact_collector()->in_use()); |
- |
- if (!Contains(addr)) return Smi::FromInt(0); // Signaling not found. |
- |
- Page* p = Page::FromAddress(addr); |
- HeapObjectIterator it(p, NULL); |
- for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { |
- Address cur = obj->address(); |
- Address next = cur + obj->Size(); |
- if ((cur <= addr) && (addr < next)) return obj; |
- } |
- |
- UNREACHABLE(); |
- return Smi::FromInt(0); |
-} |
- |
- |
-bool PagedSpace::CanExpand() { |
- DCHECK(max_capacity_ % AreaSize() == 0); |
- |
- if (Capacity() == max_capacity_) return false; |
- |
- DCHECK(Capacity() < max_capacity_); |
- |
- // Are we going to exceed capacity for this space? |
- if ((Capacity() + Page::kPageSize) > max_capacity_) return false; |
- |
- return true; |
-} |
- |
- |
-bool PagedSpace::Expand() { |
- if (!CanExpand()) return false; |
- |
- intptr_t size = AreaSize(); |
- |
- if (anchor_.next_page() == &anchor_) { |
- size = SizeOfFirstPage(); |
- } |
- |
- Page* p = heap()->isolate()->memory_allocator()->AllocatePage( |
- size, this, executable()); |
- if (p == NULL) return false; |
- |
- DCHECK(Capacity() <= max_capacity_); |
- |
- p->InsertAfter(anchor_.prev_page()); |
- |
- return true; |
-} |
- |
- |
-intptr_t PagedSpace::SizeOfFirstPage() { |
- int size = 0; |
- switch (identity()) { |
- case OLD_POINTER_SPACE: |
- size = 112 * kPointerSize * KB; |
- break; |
- case OLD_DATA_SPACE: |
- size = 192 * KB; |
- break; |
- case MAP_SPACE: |
- size = 16 * kPointerSize * KB; |
- break; |
- case CELL_SPACE: |
- size = 16 * kPointerSize * KB; |
- break; |
- case PROPERTY_CELL_SPACE: |
- size = 8 * kPointerSize * KB; |
- break; |
- case CODE_SPACE: { |
- CodeRange* code_range = heap()->isolate()->code_range(); |
- if (code_range != NULL && code_range->valid()) { |
- // When code range exists, code pages are allocated in a special way |
- // (from the reserved code range). That part of the code is not yet |
- // upgraded to handle small pages. |
- size = AreaSize(); |
- } else { |
- size = RoundUp( |
- 480 * KB * FullCodeGenerator::kBootCodeSizeMultiplier / 100, |
- kPointerSize); |
- } |
- break; |
- } |
- default: |
- UNREACHABLE(); |
- } |
- return Min(size, AreaSize()); |
-} |
- |
- |
-int PagedSpace::CountTotalPages() { |
- PageIterator it(this); |
- int count = 0; |
- while (it.has_next()) { |
- it.next(); |
- count++; |
- } |
- return count; |
-} |
- |
- |
-void PagedSpace::ObtainFreeListStatistics(Page* page, SizeStats* sizes) { |
- sizes->huge_size_ = page->available_in_huge_free_list(); |
- sizes->small_size_ = page->available_in_small_free_list(); |
- sizes->medium_size_ = page->available_in_medium_free_list(); |
- sizes->large_size_ = page->available_in_large_free_list(); |
-} |
- |
- |
-void PagedSpace::ResetFreeListStatistics() { |
- PageIterator page_iterator(this); |
- while (page_iterator.has_next()) { |
- Page* page = page_iterator.next(); |
- page->ResetFreeListStatistics(); |
- } |
-} |
- |
- |
-void PagedSpace::IncreaseCapacity(int size) { |
- accounting_stats_.ExpandSpace(size); |
-} |
- |
- |
-void PagedSpace::ReleasePage(Page* page) { |
- DCHECK(page->LiveBytes() == 0); |
- DCHECK(AreaSize() == page->area_size()); |
- |
- if (page->WasSwept()) { |
- intptr_t size = free_list_.EvictFreeListItems(page); |
- accounting_stats_.AllocateBytes(size); |
- DCHECK_EQ(AreaSize(), static_cast<int>(size)); |
- } else { |
- DecreaseUnsweptFreeBytes(page); |
- } |
- |
- if (page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE)) { |
- heap()->decrement_scan_on_scavenge_pages(); |
- page->ClearFlag(MemoryChunk::SCAN_ON_SCAVENGE); |
- } |
- |
- DCHECK(!free_list_.ContainsPageFreeListItems(page)); |
- |
- if (Page::FromAllocationTop(allocation_info_.top()) == page) { |
- allocation_info_.set_top(NULL); |
- allocation_info_.set_limit(NULL); |
- } |
- |
- page->Unlink(); |
- if (page->IsFlagSet(MemoryChunk::CONTAINS_ONLY_DATA)) { |
- heap()->isolate()->memory_allocator()->Free(page); |
- } else { |
- heap()->QueueMemoryChunkForFree(page); |
- } |
- |
- DCHECK(Capacity() > 0); |
- accounting_stats_.ShrinkSpace(AreaSize()); |
-} |
- |
- |
-void PagedSpace::CreateEmergencyMemory() { |
- emergency_memory_ = heap()->isolate()->memory_allocator()->AllocateChunk( |
- AreaSize(), AreaSize(), executable(), this); |
-} |
- |
- |
-void PagedSpace::FreeEmergencyMemory() { |
- Page* page = static_cast<Page*>(emergency_memory_); |
- DCHECK(page->LiveBytes() == 0); |
- DCHECK(AreaSize() == page->area_size()); |
- DCHECK(!free_list_.ContainsPageFreeListItems(page)); |
- heap()->isolate()->memory_allocator()->Free(page); |
- emergency_memory_ = NULL; |
-} |
- |
- |
-void PagedSpace::UseEmergencyMemory() { |
- Page* page = Page::Initialize(heap(), emergency_memory_, executable(), this); |
- page->InsertAfter(anchor_.prev_page()); |
- emergency_memory_ = NULL; |
-} |
- |
- |
-#ifdef DEBUG |
-void PagedSpace::Print() { } |
-#endif |
- |
-#ifdef VERIFY_HEAP |
-void PagedSpace::Verify(ObjectVisitor* visitor) { |
- // We can only iterate over the pages if they were swept precisely. |
- if (!swept_precisely_) return; |
- |
- bool allocation_pointer_found_in_space = |
- (allocation_info_.top() == allocation_info_.limit()); |
- PageIterator page_iterator(this); |
- while (page_iterator.has_next()) { |
- Page* page = page_iterator.next(); |
- CHECK(page->owner() == this); |
- if (page == Page::FromAllocationTop(allocation_info_.top())) { |
- allocation_pointer_found_in_space = true; |
- } |
- CHECK(page->WasSweptPrecisely()); |
- HeapObjectIterator it(page, NULL); |
- Address end_of_previous_object = page->area_start(); |
- Address top = page->area_end(); |
- int black_size = 0; |
- for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) { |
- CHECK(end_of_previous_object <= object->address()); |
- |
- // The first word should be a map, and we expect all map pointers to |
- // be in map space. |
- Map* map = object->map(); |
- CHECK(map->IsMap()); |
- CHECK(heap()->map_space()->Contains(map)); |
- |
- // Perform space-specific object verification. |
- VerifyObject(object); |
- |
- // The object itself should look OK. |
- object->ObjectVerify(); |
- |
- // All the interior pointers should be contained in the heap. |
- int size = object->Size(); |
- object->IterateBody(map->instance_type(), size, visitor); |
- if (Marking::IsBlack(Marking::MarkBitFrom(object))) { |
- black_size += size; |
- } |
- |
- CHECK(object->address() + size <= top); |
- end_of_previous_object = object->address() + size; |
- } |
- CHECK_LE(black_size, page->LiveBytes()); |
- } |
- CHECK(allocation_pointer_found_in_space); |
-} |
-#endif // VERIFY_HEAP |
- |
-// ----------------------------------------------------------------------------- |
-// NewSpace implementation |
- |
- |
-bool NewSpace::SetUp(int reserved_semispace_capacity, |
- int maximum_semispace_capacity) { |
- // Set up new space based on the preallocated memory block defined by |
- // start and size. The provided space is divided into two semi-spaces. |
- // To support fast containment testing in the new space, the size of |
- // this chunk must be a power of two and it must be aligned to its size. |
- int initial_semispace_capacity = heap()->InitialSemiSpaceSize(); |
- |
- size_t size = 2 * reserved_semispace_capacity; |
- Address base = |
- heap()->isolate()->memory_allocator()->ReserveAlignedMemory( |
- size, size, &reservation_); |
- if (base == NULL) return false; |
- |
- chunk_base_ = base; |
- chunk_size_ = static_cast<uintptr_t>(size); |
- LOG(heap()->isolate(), NewEvent("InitialChunk", chunk_base_, chunk_size_)); |
- |
- DCHECK(initial_semispace_capacity <= maximum_semispace_capacity); |
- DCHECK(IsPowerOf2(maximum_semispace_capacity)); |
- |
- // Allocate and set up the histogram arrays if necessary. |
- allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1); |
- promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1); |
- |
-#define SET_NAME(name) allocated_histogram_[name].set_name(#name); \ |
- promoted_histogram_[name].set_name(#name); |
- INSTANCE_TYPE_LIST(SET_NAME) |
-#undef SET_NAME |
- |
- DCHECK(reserved_semispace_capacity == heap()->ReservedSemiSpaceSize()); |
- DCHECK(static_cast<intptr_t>(chunk_size_) >= |
- 2 * heap()->ReservedSemiSpaceSize()); |
- DCHECK(IsAddressAligned(chunk_base_, 2 * reserved_semispace_capacity, 0)); |
- |
- to_space_.SetUp(chunk_base_, |
- initial_semispace_capacity, |
- maximum_semispace_capacity); |
- from_space_.SetUp(chunk_base_ + reserved_semispace_capacity, |
- initial_semispace_capacity, |
- maximum_semispace_capacity); |
- if (!to_space_.Commit()) { |
- return false; |
- } |
- DCHECK(!from_space_.is_committed()); // No need to use memory yet. |
- |
- start_ = chunk_base_; |
- address_mask_ = ~(2 * reserved_semispace_capacity - 1); |
- object_mask_ = address_mask_ | kHeapObjectTagMask; |
- object_expected_ = reinterpret_cast<uintptr_t>(start_) | kHeapObjectTag; |
- |
- ResetAllocationInfo(); |
- |
- return true; |
-} |
- |
- |
-void NewSpace::TearDown() { |
- if (allocated_histogram_) { |
- DeleteArray(allocated_histogram_); |
- allocated_histogram_ = NULL; |
- } |
- if (promoted_histogram_) { |
- DeleteArray(promoted_histogram_); |
- promoted_histogram_ = NULL; |
- } |
- |
- start_ = NULL; |
- allocation_info_.set_top(NULL); |
- allocation_info_.set_limit(NULL); |
- |
- to_space_.TearDown(); |
- from_space_.TearDown(); |
- |
- LOG(heap()->isolate(), DeleteEvent("InitialChunk", chunk_base_)); |
- |
- DCHECK(reservation_.IsReserved()); |
- heap()->isolate()->memory_allocator()->FreeMemory(&reservation_, |
- NOT_EXECUTABLE); |
- chunk_base_ = NULL; |
- chunk_size_ = 0; |
-} |
- |
- |
-void NewSpace::Flip() { |
- SemiSpace::Swap(&from_space_, &to_space_); |
-} |
- |
- |
-void NewSpace::Grow() { |
- // Double the semispace size but only up to maximum capacity. |
- DCHECK(Capacity() < MaximumCapacity()); |
- int new_capacity = Min(MaximumCapacity(), 2 * static_cast<int>(Capacity())); |
- if (to_space_.GrowTo(new_capacity)) { |
- // Only grow from space if we managed to grow to-space. |
- if (!from_space_.GrowTo(new_capacity)) { |
- // If we managed to grow to-space but couldn't grow from-space, |
- // attempt to shrink to-space. |
- if (!to_space_.ShrinkTo(from_space_.Capacity())) { |
- // We are in an inconsistent state because we could not |
- // commit/uncommit memory from new space. |
- V8::FatalProcessOutOfMemory("Failed to grow new space."); |
- } |
- } |
- } |
- DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); |
-} |
- |
- |
-void NewSpace::Shrink() { |
- int new_capacity = Max(InitialCapacity(), 2 * SizeAsInt()); |
- int rounded_new_capacity = RoundUp(new_capacity, Page::kPageSize); |
- if (rounded_new_capacity < Capacity() && |
- to_space_.ShrinkTo(rounded_new_capacity)) { |
- // Only shrink from-space if we managed to shrink to-space. |
- from_space_.Reset(); |
- if (!from_space_.ShrinkTo(rounded_new_capacity)) { |
- // If we managed to shrink to-space but couldn't shrink from |
- // space, attempt to grow to-space again. |
- if (!to_space_.GrowTo(from_space_.Capacity())) { |
- // We are in an inconsistent state because we could not |
- // commit/uncommit memory from new space. |
- V8::FatalProcessOutOfMemory("Failed to shrink new space."); |
- } |
- } |
- } |
- DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); |
-} |
- |
- |
-void NewSpace::UpdateAllocationInfo() { |
- MemoryChunk::UpdateHighWaterMark(allocation_info_.top()); |
- allocation_info_.set_top(to_space_.page_low()); |
- allocation_info_.set_limit(to_space_.page_high()); |
- UpdateInlineAllocationLimit(0); |
- DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); |
-} |
- |
- |
-void NewSpace::ResetAllocationInfo() { |
- to_space_.Reset(); |
- UpdateAllocationInfo(); |
- pages_used_ = 0; |
- // Clear all mark-bits in the to-space. |
- NewSpacePageIterator it(&to_space_); |
- while (it.has_next()) { |
- Bitmap::Clear(it.next()); |
- } |
-} |
- |
- |
-void NewSpace::UpdateInlineAllocationLimit(int size_in_bytes) { |
- if (heap()->inline_allocation_disabled()) { |
- // Lowest limit when linear allocation was disabled. |
- Address high = to_space_.page_high(); |
- Address new_top = allocation_info_.top() + size_in_bytes; |
- allocation_info_.set_limit(Min(new_top, high)); |
- } else if (inline_allocation_limit_step() == 0) { |
- // Normal limit is the end of the current page. |
- allocation_info_.set_limit(to_space_.page_high()); |
- } else { |
- // Lower limit during incremental marking. |
- Address high = to_space_.page_high(); |
- Address new_top = allocation_info_.top() + size_in_bytes; |
- Address new_limit = new_top + inline_allocation_limit_step_; |
- allocation_info_.set_limit(Min(new_limit, high)); |
- } |
- DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); |
-} |
- |
- |
-bool NewSpace::AddFreshPage() { |
- Address top = allocation_info_.top(); |
- if (NewSpacePage::IsAtStart(top)) { |
- // The current page is already empty. Don't try to make another. |
- |
- // We should only get here if someone asks to allocate more |
- // than what can be stored in a single page. |
- // TODO(gc): Change the limit on new-space allocation to prevent this |
- // from happening (all such allocations should go directly to LOSpace). |
- return false; |
- } |
- if (!to_space_.AdvancePage()) { |
- // Failed to get a new page in to-space. |
- return false; |
- } |
- |
- // Clear remainder of current page. |
- Address limit = NewSpacePage::FromLimit(top)->area_end(); |
- if (heap()->gc_state() == Heap::SCAVENGE) { |
- heap()->promotion_queue()->SetNewLimit(limit); |
- heap()->promotion_queue()->ActivateGuardIfOnTheSamePage(); |
- } |
- |
- int remaining_in_page = static_cast<int>(limit - top); |
- heap()->CreateFillerObjectAt(top, remaining_in_page); |
- pages_used_++; |
- UpdateAllocationInfo(); |
- |
- return true; |
-} |
- |
- |
-AllocationResult NewSpace::SlowAllocateRaw(int size_in_bytes) { |
- Address old_top = allocation_info_.top(); |
- Address high = to_space_.page_high(); |
- if (allocation_info_.limit() < high) { |
- // Either the limit has been lowered because linear allocation was disabled |
- // or because incremental marking wants to get a chance to do a step. Set |
- // the new limit accordingly. |
- Address new_top = old_top + size_in_bytes; |
- int bytes_allocated = static_cast<int>(new_top - top_on_previous_step_); |
- heap()->incremental_marking()->Step( |
- bytes_allocated, IncrementalMarking::GC_VIA_STACK_GUARD); |
- UpdateInlineAllocationLimit(size_in_bytes); |
- top_on_previous_step_ = new_top; |
- return AllocateRaw(size_in_bytes); |
- } else if (AddFreshPage()) { |
- // Switched to new page. Try allocating again. |
- int bytes_allocated = static_cast<int>(old_top - top_on_previous_step_); |
- heap()->incremental_marking()->Step( |
- bytes_allocated, IncrementalMarking::GC_VIA_STACK_GUARD); |
- top_on_previous_step_ = to_space_.page_low(); |
- return AllocateRaw(size_in_bytes); |
- } else { |
- return AllocationResult::Retry(); |
- } |
-} |
- |
- |
-#ifdef VERIFY_HEAP |
-// We do not use the SemiSpaceIterator because verification doesn't assume |
-// that it works (it depends on the invariants we are checking). |
-void NewSpace::Verify() { |
- // The allocation pointer should be in the space or at the very end. |
- DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); |
- |
- // There should be objects packed in from the low address up to the |
- // allocation pointer. |
- Address current = to_space_.first_page()->area_start(); |
- CHECK_EQ(current, to_space_.space_start()); |
- |
- while (current != top()) { |
- if (!NewSpacePage::IsAtEnd(current)) { |
- // The allocation pointer should not be in the middle of an object. |
- CHECK(!NewSpacePage::FromLimit(current)->ContainsLimit(top()) || |
- current < top()); |
- |
- HeapObject* object = HeapObject::FromAddress(current); |
- |
- // The first word should be a map, and we expect all map pointers to |
- // be in map space. |
- Map* map = object->map(); |
- CHECK(map->IsMap()); |
- CHECK(heap()->map_space()->Contains(map)); |
- |
- // The object should not be code or a map. |
- CHECK(!object->IsMap()); |
- CHECK(!object->IsCode()); |
- |
- // The object itself should look OK. |
- object->ObjectVerify(); |
- |
- // All the interior pointers should be contained in the heap. |
- VerifyPointersVisitor visitor; |
- int size = object->Size(); |
- object->IterateBody(map->instance_type(), size, &visitor); |
- |
- current += size; |
- } else { |
- // At end of page, switch to next page. |
- NewSpacePage* page = NewSpacePage::FromLimit(current)->next_page(); |
- // Next page should be valid. |
- CHECK(!page->is_anchor()); |
- current = page->area_start(); |
- } |
- } |
- |
- // Check semi-spaces. |
- CHECK_EQ(from_space_.id(), kFromSpace); |
- CHECK_EQ(to_space_.id(), kToSpace); |
- from_space_.Verify(); |
- to_space_.Verify(); |
-} |
-#endif |
- |
-// ----------------------------------------------------------------------------- |
-// SemiSpace implementation |
- |
-void SemiSpace::SetUp(Address start, |
- int initial_capacity, |
- int maximum_capacity) { |
- // Creates a space in the young generation. The constructor does not |
- // allocate memory from the OS. A SemiSpace is given a contiguous chunk of |
- // memory of size 'capacity' when set up, and does not grow or shrink |
- // otherwise. In the mark-compact collector, the memory region of the from |
- // space is used as the marking stack. It requires contiguous memory |
- // addresses. |
- DCHECK(maximum_capacity >= Page::kPageSize); |
- initial_capacity_ = RoundDown(initial_capacity, Page::kPageSize); |
- capacity_ = initial_capacity; |
- maximum_capacity_ = RoundDown(maximum_capacity, Page::kPageSize); |
- maximum_committed_ = 0; |
- committed_ = false; |
- start_ = start; |
- address_mask_ = ~(maximum_capacity - 1); |
- object_mask_ = address_mask_ | kHeapObjectTagMask; |
- object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag; |
- age_mark_ = start_; |
-} |
- |
- |
-void SemiSpace::TearDown() { |
- start_ = NULL; |
- capacity_ = 0; |
-} |
- |
- |
-bool SemiSpace::Commit() { |
- DCHECK(!is_committed()); |
- int pages = capacity_ / Page::kPageSize; |
- if (!heap()->isolate()->memory_allocator()->CommitBlock(start_, |
- capacity_, |
- executable())) { |
- return false; |
- } |
- |
- NewSpacePage* current = anchor(); |
- for (int i = 0; i < pages; i++) { |
- NewSpacePage* new_page = |
- NewSpacePage::Initialize(heap(), start_ + i * Page::kPageSize, this); |
- new_page->InsertAfter(current); |
- current = new_page; |
- } |
- |
- SetCapacity(capacity_); |
- committed_ = true; |
- Reset(); |
- return true; |
-} |
- |
- |
-bool SemiSpace::Uncommit() { |
- DCHECK(is_committed()); |
- Address start = start_ + maximum_capacity_ - capacity_; |
- if (!heap()->isolate()->memory_allocator()->UncommitBlock(start, capacity_)) { |
- return false; |
- } |
- anchor()->set_next_page(anchor()); |
- anchor()->set_prev_page(anchor()); |
- |
- committed_ = false; |
- return true; |
-} |
- |
- |
-size_t SemiSpace::CommittedPhysicalMemory() { |
- if (!is_committed()) return 0; |
- size_t size = 0; |
- NewSpacePageIterator it(this); |
- while (it.has_next()) { |
- size += it.next()->CommittedPhysicalMemory(); |
- } |
- return size; |
-} |
- |
- |
-bool SemiSpace::GrowTo(int new_capacity) { |
- if (!is_committed()) { |
- if (!Commit()) return false; |
- } |
- DCHECK((new_capacity & Page::kPageAlignmentMask) == 0); |
- DCHECK(new_capacity <= maximum_capacity_); |
- DCHECK(new_capacity > capacity_); |
- int pages_before = capacity_ / Page::kPageSize; |
- int pages_after = new_capacity / Page::kPageSize; |
- |
- size_t delta = new_capacity - capacity_; |
- |
- DCHECK(IsAligned(delta, base::OS::AllocateAlignment())); |
- if (!heap()->isolate()->memory_allocator()->CommitBlock( |
- start_ + capacity_, delta, executable())) { |
- return false; |
- } |
- SetCapacity(new_capacity); |
- NewSpacePage* last_page = anchor()->prev_page(); |
- DCHECK(last_page != anchor()); |
- for (int i = pages_before; i < pages_after; i++) { |
- Address page_address = start_ + i * Page::kPageSize; |
- NewSpacePage* new_page = NewSpacePage::Initialize(heap(), |
- page_address, |
- this); |
- new_page->InsertAfter(last_page); |
- Bitmap::Clear(new_page); |
- // Duplicate the flags that was set on the old page. |
- new_page->SetFlags(last_page->GetFlags(), |
- NewSpacePage::kCopyOnFlipFlagsMask); |
- last_page = new_page; |
- } |
- return true; |
-} |
- |
- |
-bool SemiSpace::ShrinkTo(int new_capacity) { |
- DCHECK((new_capacity & Page::kPageAlignmentMask) == 0); |
- DCHECK(new_capacity >= initial_capacity_); |
- DCHECK(new_capacity < capacity_); |
- if (is_committed()) { |
- size_t delta = capacity_ - new_capacity; |
- DCHECK(IsAligned(delta, base::OS::AllocateAlignment())); |
- |
- MemoryAllocator* allocator = heap()->isolate()->memory_allocator(); |
- if (!allocator->UncommitBlock(start_ + new_capacity, delta)) { |
- return false; |
- } |
- |
- int pages_after = new_capacity / Page::kPageSize; |
- NewSpacePage* new_last_page = |
- NewSpacePage::FromAddress(start_ + (pages_after - 1) * Page::kPageSize); |
- new_last_page->set_next_page(anchor()); |
- anchor()->set_prev_page(new_last_page); |
- DCHECK((current_page_ >= first_page()) && (current_page_ <= new_last_page)); |
- } |
- |
- SetCapacity(new_capacity); |
- |
- return true; |
-} |
- |
- |
-void SemiSpace::FlipPages(intptr_t flags, intptr_t mask) { |
- anchor_.set_owner(this); |
- // Fixup back-pointers to anchor. Address of anchor changes |
- // when we swap. |
- anchor_.prev_page()->set_next_page(&anchor_); |
- anchor_.next_page()->set_prev_page(&anchor_); |
- |
- bool becomes_to_space = (id_ == kFromSpace); |
- id_ = becomes_to_space ? kToSpace : kFromSpace; |
- NewSpacePage* page = anchor_.next_page(); |
- while (page != &anchor_) { |
- page->set_owner(this); |
- page->SetFlags(flags, mask); |
- if (becomes_to_space) { |
- page->ClearFlag(MemoryChunk::IN_FROM_SPACE); |
- page->SetFlag(MemoryChunk::IN_TO_SPACE); |
- page->ClearFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK); |
- page->ResetLiveBytes(); |
- } else { |
- page->SetFlag(MemoryChunk::IN_FROM_SPACE); |
- page->ClearFlag(MemoryChunk::IN_TO_SPACE); |
- } |
- DCHECK(page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE)); |
- DCHECK(page->IsFlagSet(MemoryChunk::IN_TO_SPACE) || |
- page->IsFlagSet(MemoryChunk::IN_FROM_SPACE)); |
- page = page->next_page(); |
- } |
-} |
- |
- |
-void SemiSpace::Reset() { |
- DCHECK(anchor_.next_page() != &anchor_); |
- current_page_ = anchor_.next_page(); |
-} |
- |
- |
-void SemiSpace::Swap(SemiSpace* from, SemiSpace* to) { |
- // We won't be swapping semispaces without data in them. |
- DCHECK(from->anchor_.next_page() != &from->anchor_); |
- DCHECK(to->anchor_.next_page() != &to->anchor_); |
- |
- // Swap bits. |
- SemiSpace tmp = *from; |
- *from = *to; |
- *to = tmp; |
- |
- // Fixup back-pointers to the page list anchor now that its address |
- // has changed. |
- // Swap to/from-space bits on pages. |
- // Copy GC flags from old active space (from-space) to new (to-space). |
- intptr_t flags = from->current_page()->GetFlags(); |
- to->FlipPages(flags, NewSpacePage::kCopyOnFlipFlagsMask); |
- |
- from->FlipPages(0, 0); |
-} |
- |
- |
-void SemiSpace::SetCapacity(int new_capacity) { |
- capacity_ = new_capacity; |
- if (capacity_ > maximum_committed_) { |
- maximum_committed_ = capacity_; |
- } |
-} |
- |
- |
-void SemiSpace::set_age_mark(Address mark) { |
- DCHECK(NewSpacePage::FromLimit(mark)->semi_space() == this); |
- age_mark_ = mark; |
- // Mark all pages up to the one containing mark. |
- NewSpacePageIterator it(space_start(), mark); |
- while (it.has_next()) { |
- it.next()->SetFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK); |
- } |
-} |
- |
- |
-#ifdef DEBUG |
-void SemiSpace::Print() { } |
-#endif |
- |
-#ifdef VERIFY_HEAP |
-void SemiSpace::Verify() { |
- bool is_from_space = (id_ == kFromSpace); |
- NewSpacePage* page = anchor_.next_page(); |
- CHECK(anchor_.semi_space() == this); |
- while (page != &anchor_) { |
- CHECK(page->semi_space() == this); |
- CHECK(page->InNewSpace()); |
- CHECK(page->IsFlagSet(is_from_space ? MemoryChunk::IN_FROM_SPACE |
- : MemoryChunk::IN_TO_SPACE)); |
- CHECK(!page->IsFlagSet(is_from_space ? MemoryChunk::IN_TO_SPACE |
- : MemoryChunk::IN_FROM_SPACE)); |
- CHECK(page->IsFlagSet(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING)); |
- if (!is_from_space) { |
- // The pointers-from-here-are-interesting flag isn't updated dynamically |
- // on from-space pages, so it might be out of sync with the marking state. |
- if (page->heap()->incremental_marking()->IsMarking()) { |
- CHECK(page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING)); |
- } else { |
- CHECK(!page->IsFlagSet( |
- MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING)); |
- } |
- // TODO(gc): Check that the live_bytes_count_ field matches the |
- // black marking on the page (if we make it match in new-space). |
- } |
- CHECK(page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE)); |
- CHECK(page->prev_page()->next_page() == page); |
- page = page->next_page(); |
- } |
-} |
-#endif |
- |
-#ifdef DEBUG |
-void SemiSpace::AssertValidRange(Address start, Address end) { |
- // Addresses belong to same semi-space |
- NewSpacePage* page = NewSpacePage::FromLimit(start); |
- NewSpacePage* end_page = NewSpacePage::FromLimit(end); |
- SemiSpace* space = page->semi_space(); |
- CHECK_EQ(space, end_page->semi_space()); |
- // Start address is before end address, either on same page, |
- // or end address is on a later page in the linked list of |
- // semi-space pages. |
- if (page == end_page) { |
- CHECK(start <= end); |
- } else { |
- while (page != end_page) { |
- page = page->next_page(); |
- CHECK_NE(page, space->anchor()); |
- } |
- } |
-} |
-#endif |
- |
- |
-// ----------------------------------------------------------------------------- |
-// SemiSpaceIterator implementation. |
-SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) { |
- Initialize(space->bottom(), space->top(), NULL); |
-} |
- |
- |
-SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, |
- HeapObjectCallback size_func) { |
- Initialize(space->bottom(), space->top(), size_func); |
-} |
- |
- |
-SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, Address start) { |
- Initialize(start, space->top(), NULL); |
-} |
- |
- |
-SemiSpaceIterator::SemiSpaceIterator(Address from, Address to) { |
- Initialize(from, to, NULL); |
-} |
- |
- |
-void SemiSpaceIterator::Initialize(Address start, |
- Address end, |
- HeapObjectCallback size_func) { |
- SemiSpace::AssertValidRange(start, end); |
- current_ = start; |
- limit_ = end; |
- size_func_ = size_func; |
-} |
- |
- |
-#ifdef DEBUG |
-// heap_histograms is shared, always clear it before using it. |
-static void ClearHistograms(Isolate* isolate) { |
- // We reset the name each time, though it hasn't changed. |
-#define DEF_TYPE_NAME(name) isolate->heap_histograms()[name].set_name(#name); |
- INSTANCE_TYPE_LIST(DEF_TYPE_NAME) |
-#undef DEF_TYPE_NAME |
- |
-#define CLEAR_HISTOGRAM(name) isolate->heap_histograms()[name].clear(); |
- INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM) |
-#undef CLEAR_HISTOGRAM |
- |
- isolate->js_spill_information()->Clear(); |
-} |
- |
- |
-static void ClearCodeKindStatistics(int* code_kind_statistics) { |
- for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { |
- code_kind_statistics[i] = 0; |
- } |
-} |
- |
- |
-static void ReportCodeKindStatistics(int* code_kind_statistics) { |
- PrintF("\n Code kind histograms: \n"); |
- for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { |
- if (code_kind_statistics[i] > 0) { |
- PrintF(" %-20s: %10d bytes\n", |
- Code::Kind2String(static_cast<Code::Kind>(i)), |
- code_kind_statistics[i]); |
- } |
- } |
- PrintF("\n"); |
-} |
- |
- |
-static int CollectHistogramInfo(HeapObject* obj) { |
- Isolate* isolate = obj->GetIsolate(); |
- InstanceType type = obj->map()->instance_type(); |
- DCHECK(0 <= type && type <= LAST_TYPE); |
- DCHECK(isolate->heap_histograms()[type].name() != NULL); |
- isolate->heap_histograms()[type].increment_number(1); |
- isolate->heap_histograms()[type].increment_bytes(obj->Size()); |
- |
- if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) { |
- JSObject::cast(obj)->IncrementSpillStatistics( |
- isolate->js_spill_information()); |
- } |
- |
- return obj->Size(); |
-} |
- |
- |
-static void ReportHistogram(Isolate* isolate, bool print_spill) { |
- PrintF("\n Object Histogram:\n"); |
- for (int i = 0; i <= LAST_TYPE; i++) { |
- if (isolate->heap_histograms()[i].number() > 0) { |
- PrintF(" %-34s%10d (%10d bytes)\n", |
- isolate->heap_histograms()[i].name(), |
- isolate->heap_histograms()[i].number(), |
- isolate->heap_histograms()[i].bytes()); |
- } |
- } |
- PrintF("\n"); |
- |
- // Summarize string types. |
- int string_number = 0; |
- int string_bytes = 0; |
-#define INCREMENT(type, size, name, camel_name) \ |
- string_number += isolate->heap_histograms()[type].number(); \ |
- string_bytes += isolate->heap_histograms()[type].bytes(); |
- STRING_TYPE_LIST(INCREMENT) |
-#undef INCREMENT |
- if (string_number > 0) { |
- PrintF(" %-34s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number, |
- string_bytes); |
- } |
- |
- if (FLAG_collect_heap_spill_statistics && print_spill) { |
- isolate->js_spill_information()->Print(); |
- } |
-} |
-#endif // DEBUG |
- |
- |
-// Support for statistics gathering for --heap-stats and --log-gc. |
-void NewSpace::ClearHistograms() { |
- for (int i = 0; i <= LAST_TYPE; i++) { |
- allocated_histogram_[i].clear(); |
- promoted_histogram_[i].clear(); |
- } |
-} |
- |
- |
-// Because the copying collector does not touch garbage objects, we iterate |
-// the new space before a collection to get a histogram of allocated objects. |
-// This only happens when --log-gc flag is set. |
-void NewSpace::CollectStatistics() { |
- ClearHistograms(); |
- SemiSpaceIterator it(this); |
- for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) |
- RecordAllocation(obj); |
-} |
- |
- |
-static void DoReportStatistics(Isolate* isolate, |
- HistogramInfo* info, const char* description) { |
- LOG(isolate, HeapSampleBeginEvent("NewSpace", description)); |
- // Lump all the string types together. |
- int string_number = 0; |
- int string_bytes = 0; |
-#define INCREMENT(type, size, name, camel_name) \ |
- string_number += info[type].number(); \ |
- string_bytes += info[type].bytes(); |
- STRING_TYPE_LIST(INCREMENT) |
-#undef INCREMENT |
- if (string_number > 0) { |
- LOG(isolate, |
- HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes)); |
- } |
- |
- // Then do the other types. |
- for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) { |
- if (info[i].number() > 0) { |
- LOG(isolate, |
- HeapSampleItemEvent(info[i].name(), info[i].number(), |
- info[i].bytes())); |
- } |
- } |
- LOG(isolate, HeapSampleEndEvent("NewSpace", description)); |
-} |
- |
- |
-void NewSpace::ReportStatistics() { |
-#ifdef DEBUG |
- if (FLAG_heap_stats) { |
- float pct = static_cast<float>(Available()) / Capacity(); |
- PrintF(" capacity: %" V8_PTR_PREFIX "d" |
- ", available: %" V8_PTR_PREFIX "d, %%%d\n", |
- Capacity(), Available(), static_cast<int>(pct*100)); |
- PrintF("\n Object Histogram:\n"); |
- for (int i = 0; i <= LAST_TYPE; i++) { |
- if (allocated_histogram_[i].number() > 0) { |
- PrintF(" %-34s%10d (%10d bytes)\n", |
- allocated_histogram_[i].name(), |
- allocated_histogram_[i].number(), |
- allocated_histogram_[i].bytes()); |
- } |
- } |
- PrintF("\n"); |
- } |
-#endif // DEBUG |
- |
- if (FLAG_log_gc) { |
- Isolate* isolate = heap()->isolate(); |
- DoReportStatistics(isolate, allocated_histogram_, "allocated"); |
- DoReportStatistics(isolate, promoted_histogram_, "promoted"); |
- } |
-} |
- |
- |
-void NewSpace::RecordAllocation(HeapObject* obj) { |
- InstanceType type = obj->map()->instance_type(); |
- DCHECK(0 <= type && type <= LAST_TYPE); |
- allocated_histogram_[type].increment_number(1); |
- allocated_histogram_[type].increment_bytes(obj->Size()); |
-} |
- |
- |
-void NewSpace::RecordPromotion(HeapObject* obj) { |
- InstanceType type = obj->map()->instance_type(); |
- DCHECK(0 <= type && type <= LAST_TYPE); |
- promoted_histogram_[type].increment_number(1); |
- promoted_histogram_[type].increment_bytes(obj->Size()); |
-} |
- |
- |
-size_t NewSpace::CommittedPhysicalMemory() { |
- if (!base::VirtualMemory::HasLazyCommits()) return CommittedMemory(); |
- MemoryChunk::UpdateHighWaterMark(allocation_info_.top()); |
- size_t size = to_space_.CommittedPhysicalMemory(); |
- if (from_space_.is_committed()) { |
- size += from_space_.CommittedPhysicalMemory(); |
- } |
- return size; |
-} |
- |
- |
-// ----------------------------------------------------------------------------- |
-// Free lists for old object spaces implementation |
- |
-void FreeListNode::set_size(Heap* heap, int size_in_bytes) { |
- DCHECK(size_in_bytes > 0); |
- DCHECK(IsAligned(size_in_bytes, kPointerSize)); |
- |
- // We write a map and possibly size information to the block. If the block |
- // is big enough to be a FreeSpace with at least one extra word (the next |
- // pointer), we set its map to be the free space map and its size to an |
- // appropriate array length for the desired size from HeapObject::Size(). |
- // If the block is too small (eg, one or two words), to hold both a size |
- // field and a next pointer, we give it a filler map that gives it the |
- // correct size. |
- if (size_in_bytes > FreeSpace::kHeaderSize) { |
- // Can't use FreeSpace::cast because it fails during deserialization. |
- // We have to set the size first with a release store before we store |
- // the map because a concurrent store buffer scan on scavenge must not |
- // observe a map with an invalid size. |
- FreeSpace* this_as_free_space = reinterpret_cast<FreeSpace*>(this); |
- this_as_free_space->nobarrier_set_size(size_in_bytes); |
- synchronized_set_map_no_write_barrier(heap->raw_unchecked_free_space_map()); |
- } else if (size_in_bytes == kPointerSize) { |
- set_map_no_write_barrier(heap->raw_unchecked_one_pointer_filler_map()); |
- } else if (size_in_bytes == 2 * kPointerSize) { |
- set_map_no_write_barrier(heap->raw_unchecked_two_pointer_filler_map()); |
- } else { |
- UNREACHABLE(); |
- } |
- // We would like to DCHECK(Size() == size_in_bytes) but this would fail during |
- // deserialization because the free space map is not done yet. |
-} |
- |
- |
-FreeListNode* FreeListNode::next() { |
- DCHECK(IsFreeListNode(this)); |
- if (map() == GetHeap()->raw_unchecked_free_space_map()) { |
- DCHECK(map() == NULL || Size() >= kNextOffset + kPointerSize); |
- return reinterpret_cast<FreeListNode*>( |
- Memory::Address_at(address() + kNextOffset)); |
- } else { |
- return reinterpret_cast<FreeListNode*>( |
- Memory::Address_at(address() + kPointerSize)); |
- } |
-} |
- |
- |
-FreeListNode** FreeListNode::next_address() { |
- DCHECK(IsFreeListNode(this)); |
- if (map() == GetHeap()->raw_unchecked_free_space_map()) { |
- DCHECK(Size() >= kNextOffset + kPointerSize); |
- return reinterpret_cast<FreeListNode**>(address() + kNextOffset); |
- } else { |
- return reinterpret_cast<FreeListNode**>(address() + kPointerSize); |
- } |
-} |
- |
- |
-void FreeListNode::set_next(FreeListNode* next) { |
- DCHECK(IsFreeListNode(this)); |
- // While we are booting the VM the free space map will actually be null. So |
- // we have to make sure that we don't try to use it for anything at that |
- // stage. |
- if (map() == GetHeap()->raw_unchecked_free_space_map()) { |
- DCHECK(map() == NULL || Size() >= kNextOffset + kPointerSize); |
- base::NoBarrier_Store( |
- reinterpret_cast<base::AtomicWord*>(address() + kNextOffset), |
- reinterpret_cast<base::AtomicWord>(next)); |
- } else { |
- base::NoBarrier_Store( |
- reinterpret_cast<base::AtomicWord*>(address() + kPointerSize), |
- reinterpret_cast<base::AtomicWord>(next)); |
- } |
-} |
- |
- |
-intptr_t FreeListCategory::Concatenate(FreeListCategory* category) { |
- intptr_t free_bytes = 0; |
- if (category->top() != NULL) { |
- // This is safe (not going to deadlock) since Concatenate operations |
- // are never performed on the same free lists at the same time in |
- // reverse order. |
- base::LockGuard<base::Mutex> target_lock_guard(mutex()); |
- base::LockGuard<base::Mutex> source_lock_guard(category->mutex()); |
- DCHECK(category->end_ != NULL); |
- free_bytes = category->available(); |
- if (end_ == NULL) { |
- end_ = category->end(); |
- } else { |
- category->end()->set_next(top()); |
- } |
- set_top(category->top()); |
- base::NoBarrier_Store(&top_, category->top_); |
- available_ += category->available(); |
- category->Reset(); |
- } |
- return free_bytes; |
-} |
- |
- |
-void FreeListCategory::Reset() { |
- set_top(NULL); |
- set_end(NULL); |
- set_available(0); |
-} |
- |
- |
-intptr_t FreeListCategory::EvictFreeListItemsInList(Page* p) { |
- int sum = 0; |
- FreeListNode* t = top(); |
- FreeListNode** n = &t; |
- while (*n != NULL) { |
- if (Page::FromAddress((*n)->address()) == p) { |
- FreeSpace* free_space = reinterpret_cast<FreeSpace*>(*n); |
- sum += free_space->Size(); |
- *n = (*n)->next(); |
- } else { |
- n = (*n)->next_address(); |
- } |
- } |
- set_top(t); |
- if (top() == NULL) { |
- set_end(NULL); |
- } |
- available_ -= sum; |
- return sum; |
-} |
- |
- |
-bool FreeListCategory::ContainsPageFreeListItemsInList(Page* p) { |
- FreeListNode* node = top(); |
- while (node != NULL) { |
- if (Page::FromAddress(node->address()) == p) return true; |
- node = node->next(); |
- } |
- return false; |
-} |
- |
- |
-FreeListNode* FreeListCategory::PickNodeFromList(int *node_size) { |
- FreeListNode* node = top(); |
- |
- if (node == NULL) return NULL; |
- |
- while (node != NULL && |
- Page::FromAddress(node->address())->IsEvacuationCandidate()) { |
- available_ -= reinterpret_cast<FreeSpace*>(node)->Size(); |
- node = node->next(); |
- } |
- |
- if (node != NULL) { |
- set_top(node->next()); |
- *node_size = reinterpret_cast<FreeSpace*>(node)->Size(); |
- available_ -= *node_size; |
- } else { |
- set_top(NULL); |
- } |
- |
- if (top() == NULL) { |
- set_end(NULL); |
- } |
- |
- return node; |
-} |
- |
- |
-FreeListNode* FreeListCategory::PickNodeFromList(int size_in_bytes, |
- int *node_size) { |
- FreeListNode* node = PickNodeFromList(node_size); |
- if (node != NULL && *node_size < size_in_bytes) { |
- Free(node, *node_size); |
- *node_size = 0; |
- return NULL; |
- } |
- return node; |
-} |
- |
- |
-void FreeListCategory::Free(FreeListNode* node, int size_in_bytes) { |
- node->set_next(top()); |
- set_top(node); |
- if (end_ == NULL) { |
- end_ = node; |
- } |
- available_ += size_in_bytes; |
-} |
- |
- |
-void FreeListCategory::RepairFreeList(Heap* heap) { |
- FreeListNode* n = top(); |
- while (n != NULL) { |
- Map** map_location = reinterpret_cast<Map**>(n->address()); |
- if (*map_location == NULL) { |
- *map_location = heap->free_space_map(); |
- } else { |
- DCHECK(*map_location == heap->free_space_map()); |
- } |
- n = n->next(); |
- } |
-} |
- |
- |
-FreeList::FreeList(PagedSpace* owner) |
- : owner_(owner), heap_(owner->heap()) { |
- Reset(); |
-} |
- |
- |
-intptr_t FreeList::Concatenate(FreeList* free_list) { |
- intptr_t free_bytes = 0; |
- free_bytes += small_list_.Concatenate(free_list->small_list()); |
- free_bytes += medium_list_.Concatenate(free_list->medium_list()); |
- free_bytes += large_list_.Concatenate(free_list->large_list()); |
- free_bytes += huge_list_.Concatenate(free_list->huge_list()); |
- return free_bytes; |
-} |
- |
- |
-void FreeList::Reset() { |
- small_list_.Reset(); |
- medium_list_.Reset(); |
- large_list_.Reset(); |
- huge_list_.Reset(); |
-} |
- |
- |
-int FreeList::Free(Address start, int size_in_bytes) { |
- if (size_in_bytes == 0) return 0; |
- |
- FreeListNode* node = FreeListNode::FromAddress(start); |
- node->set_size(heap_, size_in_bytes); |
- Page* page = Page::FromAddress(start); |
- |
- // Early return to drop too-small blocks on the floor. |
- if (size_in_bytes < kSmallListMin) { |
- page->add_non_available_small_blocks(size_in_bytes); |
- return size_in_bytes; |
- } |
- |
- // Insert other blocks at the head of a free list of the appropriate |
- // magnitude. |
- if (size_in_bytes <= kSmallListMax) { |
- small_list_.Free(node, size_in_bytes); |
- page->add_available_in_small_free_list(size_in_bytes); |
- } else if (size_in_bytes <= kMediumListMax) { |
- medium_list_.Free(node, size_in_bytes); |
- page->add_available_in_medium_free_list(size_in_bytes); |
- } else if (size_in_bytes <= kLargeListMax) { |
- large_list_.Free(node, size_in_bytes); |
- page->add_available_in_large_free_list(size_in_bytes); |
- } else { |
- huge_list_.Free(node, size_in_bytes); |
- page->add_available_in_huge_free_list(size_in_bytes); |
- } |
- |
- DCHECK(IsVeryLong() || available() == SumFreeLists()); |
- return 0; |
-} |
- |
- |
-FreeListNode* FreeList::FindNodeFor(int size_in_bytes, int* node_size) { |
- FreeListNode* node = NULL; |
- Page* page = NULL; |
- |
- if (size_in_bytes <= kSmallAllocationMax) { |
- node = small_list_.PickNodeFromList(node_size); |
- if (node != NULL) { |
- DCHECK(size_in_bytes <= *node_size); |
- page = Page::FromAddress(node->address()); |
- page->add_available_in_small_free_list(-(*node_size)); |
- DCHECK(IsVeryLong() || available() == SumFreeLists()); |
- return node; |
- } |
- } |
- |
- if (size_in_bytes <= kMediumAllocationMax) { |
- node = medium_list_.PickNodeFromList(node_size); |
- if (node != NULL) { |
- DCHECK(size_in_bytes <= *node_size); |
- page = Page::FromAddress(node->address()); |
- page->add_available_in_medium_free_list(-(*node_size)); |
- DCHECK(IsVeryLong() || available() == SumFreeLists()); |
- return node; |
- } |
- } |
- |
- if (size_in_bytes <= kLargeAllocationMax) { |
- node = large_list_.PickNodeFromList(node_size); |
- if (node != NULL) { |
- DCHECK(size_in_bytes <= *node_size); |
- page = Page::FromAddress(node->address()); |
- page->add_available_in_large_free_list(-(*node_size)); |
- DCHECK(IsVeryLong() || available() == SumFreeLists()); |
- return node; |
- } |
- } |
- |
- int huge_list_available = huge_list_.available(); |
- FreeListNode* top_node = huge_list_.top(); |
- for (FreeListNode** cur = &top_node; |
- *cur != NULL; |
- cur = (*cur)->next_address()) { |
- FreeListNode* cur_node = *cur; |
- while (cur_node != NULL && |
- Page::FromAddress(cur_node->address())->IsEvacuationCandidate()) { |
- int size = reinterpret_cast<FreeSpace*>(cur_node)->Size(); |
- huge_list_available -= size; |
- page = Page::FromAddress(cur_node->address()); |
- page->add_available_in_huge_free_list(-size); |
- cur_node = cur_node->next(); |
- } |
- |
- *cur = cur_node; |
- if (cur_node == NULL) { |
- huge_list_.set_end(NULL); |
- break; |
- } |
- |
- DCHECK((*cur)->map() == heap_->raw_unchecked_free_space_map()); |
- FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(*cur); |
- int size = cur_as_free_space->Size(); |
- if (size >= size_in_bytes) { |
- // Large enough node found. Unlink it from the list. |
- node = *cur; |
- *cur = node->next(); |
- *node_size = size; |
- huge_list_available -= size; |
- page = Page::FromAddress(node->address()); |
- page->add_available_in_huge_free_list(-size); |
- break; |
- } |
- } |
- |
- huge_list_.set_top(top_node); |
- if (huge_list_.top() == NULL) { |
- huge_list_.set_end(NULL); |
- } |
- huge_list_.set_available(huge_list_available); |
- |
- if (node != NULL) { |
- DCHECK(IsVeryLong() || available() == SumFreeLists()); |
- return node; |
- } |
- |
- if (size_in_bytes <= kSmallListMax) { |
- node = small_list_.PickNodeFromList(size_in_bytes, node_size); |
- if (node != NULL) { |
- DCHECK(size_in_bytes <= *node_size); |
- page = Page::FromAddress(node->address()); |
- page->add_available_in_small_free_list(-(*node_size)); |
- } |
- } else if (size_in_bytes <= kMediumListMax) { |
- node = medium_list_.PickNodeFromList(size_in_bytes, node_size); |
- if (node != NULL) { |
- DCHECK(size_in_bytes <= *node_size); |
- page = Page::FromAddress(node->address()); |
- page->add_available_in_medium_free_list(-(*node_size)); |
- } |
- } else if (size_in_bytes <= kLargeListMax) { |
- node = large_list_.PickNodeFromList(size_in_bytes, node_size); |
- if (node != NULL) { |
- DCHECK(size_in_bytes <= *node_size); |
- page = Page::FromAddress(node->address()); |
- page->add_available_in_large_free_list(-(*node_size)); |
- } |
- } |
- |
- DCHECK(IsVeryLong() || available() == SumFreeLists()); |
- return node; |
-} |
- |
- |
-// Allocation on the old space free list. If it succeeds then a new linear |
-// allocation space has been set up with the top and limit of the space. If |
-// the allocation fails then NULL is returned, and the caller can perform a GC |
-// or allocate a new page before retrying. |
-HeapObject* FreeList::Allocate(int size_in_bytes) { |
- DCHECK(0 < size_in_bytes); |
- DCHECK(size_in_bytes <= kMaxBlockSize); |
- DCHECK(IsAligned(size_in_bytes, kPointerSize)); |
- // Don't free list allocate if there is linear space available. |
- DCHECK(owner_->limit() - owner_->top() < size_in_bytes); |
- |
- int old_linear_size = static_cast<int>(owner_->limit() - owner_->top()); |
- // Mark the old linear allocation area with a free space map so it can be |
- // skipped when scanning the heap. This also puts it back in the free list |
- // if it is big enough. |
- owner_->Free(owner_->top(), old_linear_size); |
- |
- owner_->heap()->incremental_marking()->OldSpaceStep( |
- size_in_bytes - old_linear_size); |
- |
- int new_node_size = 0; |
- FreeListNode* new_node = FindNodeFor(size_in_bytes, &new_node_size); |
- if (new_node == NULL) { |
- owner_->SetTopAndLimit(NULL, NULL); |
- return NULL; |
- } |
- |
- int bytes_left = new_node_size - size_in_bytes; |
- DCHECK(bytes_left >= 0); |
- |
-#ifdef DEBUG |
- for (int i = 0; i < size_in_bytes / kPointerSize; i++) { |
- reinterpret_cast<Object**>(new_node->address())[i] = |
- Smi::FromInt(kCodeZapValue); |
- } |
-#endif |
- |
- // The old-space-step might have finished sweeping and restarted marking. |
- // Verify that it did not turn the page of the new node into an evacuation |
- // candidate. |
- DCHECK(!MarkCompactCollector::IsOnEvacuationCandidate(new_node)); |
- |
- const int kThreshold = IncrementalMarking::kAllocatedThreshold; |
- |
- // Memory in the linear allocation area is counted as allocated. We may free |
- // a little of this again immediately - see below. |
- owner_->Allocate(new_node_size); |
- |
- if (owner_->heap()->inline_allocation_disabled()) { |
- // Keep the linear allocation area empty if requested to do so, just |
- // return area back to the free list instead. |
- owner_->Free(new_node->address() + size_in_bytes, bytes_left); |
- DCHECK(owner_->top() == NULL && owner_->limit() == NULL); |
- } else if (bytes_left > kThreshold && |
- owner_->heap()->incremental_marking()->IsMarkingIncomplete() && |
- FLAG_incremental_marking_steps) { |
- int linear_size = owner_->RoundSizeDownToObjectAlignment(kThreshold); |
- // We don't want to give too large linear areas to the allocator while |
- // incremental marking is going on, because we won't check again whether |
- // we want to do another increment until the linear area is used up. |
- owner_->Free(new_node->address() + size_in_bytes + linear_size, |
- new_node_size - size_in_bytes - linear_size); |
- owner_->SetTopAndLimit(new_node->address() + size_in_bytes, |
- new_node->address() + size_in_bytes + linear_size); |
- } else if (bytes_left > 0) { |
- // Normally we give the rest of the node to the allocator as its new |
- // linear allocation area. |
- owner_->SetTopAndLimit(new_node->address() + size_in_bytes, |
- new_node->address() + new_node_size); |
- } else { |
- // TODO(gc) Try not freeing linear allocation region when bytes_left |
- // are zero. |
- owner_->SetTopAndLimit(NULL, NULL); |
- } |
- |
- return new_node; |
-} |
- |
- |
-intptr_t FreeList::EvictFreeListItems(Page* p) { |
- intptr_t sum = huge_list_.EvictFreeListItemsInList(p); |
- p->set_available_in_huge_free_list(0); |
- |
- if (sum < p->area_size()) { |
- sum += small_list_.EvictFreeListItemsInList(p) + |
- medium_list_.EvictFreeListItemsInList(p) + |
- large_list_.EvictFreeListItemsInList(p); |
- p->set_available_in_small_free_list(0); |
- p->set_available_in_medium_free_list(0); |
- p->set_available_in_large_free_list(0); |
- } |
- |
- return sum; |
-} |
- |
- |
-bool FreeList::ContainsPageFreeListItems(Page* p) { |
- return huge_list_.EvictFreeListItemsInList(p) || |
- small_list_.EvictFreeListItemsInList(p) || |
- medium_list_.EvictFreeListItemsInList(p) || |
- large_list_.EvictFreeListItemsInList(p); |
-} |
- |
- |
-void FreeList::RepairLists(Heap* heap) { |
- small_list_.RepairFreeList(heap); |
- medium_list_.RepairFreeList(heap); |
- large_list_.RepairFreeList(heap); |
- huge_list_.RepairFreeList(heap); |
-} |
- |
- |
-#ifdef DEBUG |
-intptr_t FreeListCategory::SumFreeList() { |
- intptr_t sum = 0; |
- FreeListNode* cur = top(); |
- while (cur != NULL) { |
- DCHECK(cur->map() == cur->GetHeap()->raw_unchecked_free_space_map()); |
- FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(cur); |
- sum += cur_as_free_space->nobarrier_size(); |
- cur = cur->next(); |
- } |
- return sum; |
-} |
- |
- |
-static const int kVeryLongFreeList = 500; |
- |
- |
-int FreeListCategory::FreeListLength() { |
- int length = 0; |
- FreeListNode* cur = top(); |
- while (cur != NULL) { |
- length++; |
- cur = cur->next(); |
- if (length == kVeryLongFreeList) return length; |
- } |
- return length; |
-} |
- |
- |
-bool FreeList::IsVeryLong() { |
- if (small_list_.FreeListLength() == kVeryLongFreeList) return true; |
- if (medium_list_.FreeListLength() == kVeryLongFreeList) return true; |
- if (large_list_.FreeListLength() == kVeryLongFreeList) return true; |
- if (huge_list_.FreeListLength() == kVeryLongFreeList) return true; |
- return false; |
-} |
- |
- |
-// This can take a very long time because it is linear in the number of entries |
-// on the free list, so it should not be called if FreeListLength returns |
-// kVeryLongFreeList. |
-intptr_t FreeList::SumFreeLists() { |
- intptr_t sum = small_list_.SumFreeList(); |
- sum += medium_list_.SumFreeList(); |
- sum += large_list_.SumFreeList(); |
- sum += huge_list_.SumFreeList(); |
- return sum; |
-} |
-#endif |
- |
- |
-// ----------------------------------------------------------------------------- |
-// OldSpace implementation |
- |
-void PagedSpace::PrepareForMarkCompact() { |
- // We don't have a linear allocation area while sweeping. It will be restored |
- // on the first allocation after the sweep. |
- EmptyAllocationInfo(); |
- |
- // This counter will be increased for pages which will be swept by the |
- // sweeper threads. |
- unswept_free_bytes_ = 0; |
- |
- // Clear the free list before a full GC---it will be rebuilt afterward. |
- free_list_.Reset(); |
-} |
- |
- |
-intptr_t PagedSpace::SizeOfObjects() { |
- DCHECK(heap()->mark_compact_collector()->sweeping_in_progress() || |
- (unswept_free_bytes_ == 0)); |
- return Size() - unswept_free_bytes_ - (limit() - top()); |
-} |
- |
- |
-// After we have booted, we have created a map which represents free space |
-// on the heap. If there was already a free list then the elements on it |
-// were created with the wrong FreeSpaceMap (normally NULL), so we need to |
-// fix them. |
-void PagedSpace::RepairFreeListsAfterBoot() { |
- free_list_.RepairLists(heap()); |
-} |
- |
- |
-void PagedSpace::EvictEvacuationCandidatesFromFreeLists() { |
- if (allocation_info_.top() >= allocation_info_.limit()) return; |
- |
- if (Page::FromAllocationTop(allocation_info_.top())-> |
- IsEvacuationCandidate()) { |
- // Create filler object to keep page iterable if it was iterable. |
- int remaining = |
- static_cast<int>(allocation_info_.limit() - allocation_info_.top()); |
- heap()->CreateFillerObjectAt(allocation_info_.top(), remaining); |
- |
- allocation_info_.set_top(NULL); |
- allocation_info_.set_limit(NULL); |
- } |
-} |
- |
- |
-HeapObject* PagedSpace::WaitForSweeperThreadsAndRetryAllocation( |
- int size_in_bytes) { |
- MarkCompactCollector* collector = heap()->mark_compact_collector(); |
- if (collector->sweeping_in_progress()) { |
- // Wait for the sweeper threads here and complete the sweeping phase. |
- collector->EnsureSweepingCompleted(); |
- |
- // After waiting for the sweeper threads, there may be new free-list |
- // entries. |
- return free_list_.Allocate(size_in_bytes); |
- } |
- return NULL; |
-} |
- |
- |
-HeapObject* PagedSpace::SlowAllocateRaw(int size_in_bytes) { |
- // Allocation in this space has failed. |
- |
- MarkCompactCollector* collector = heap()->mark_compact_collector(); |
- // Sweeping is still in progress. |
- if (collector->sweeping_in_progress()) { |
- // First try to refill the free-list, concurrent sweeper threads |
- // may have freed some objects in the meantime. |
- collector->RefillFreeList(this); |
- |
- // Retry the free list allocation. |
- HeapObject* object = free_list_.Allocate(size_in_bytes); |
- if (object != NULL) return object; |
- |
- // If sweeping is still in progress try to sweep pages on the main thread. |
- int free_chunk = |
- collector->SweepInParallel(this, size_in_bytes); |
- collector->RefillFreeList(this); |
- if (free_chunk >= size_in_bytes) { |
- HeapObject* object = free_list_.Allocate(size_in_bytes); |
- // We should be able to allocate an object here since we just freed that |
- // much memory. |
- DCHECK(object != NULL); |
- if (object != NULL) return object; |
- } |
- } |
- |
- // Free list allocation failed and there is no next page. Fail if we have |
- // hit the old generation size limit that should cause a garbage |
- // collection. |
- if (!heap()->always_allocate() |
- && heap()->OldGenerationAllocationLimitReached()) { |
- // If sweeper threads are active, wait for them at that point and steal |
- // elements form their free-lists. |
- HeapObject* object = WaitForSweeperThreadsAndRetryAllocation(size_in_bytes); |
- if (object != NULL) return object; |
- } |
- |
- // Try to expand the space and allocate in the new next page. |
- if (Expand()) { |
- DCHECK(CountTotalPages() > 1 || size_in_bytes <= free_list_.available()); |
- return free_list_.Allocate(size_in_bytes); |
- } |
- |
- // If sweeper threads are active, wait for them at that point and steal |
- // elements form their free-lists. Allocation may still fail their which |
- // would indicate that there is not enough memory for the given allocation. |
- return WaitForSweeperThreadsAndRetryAllocation(size_in_bytes); |
-} |
- |
- |
-#ifdef DEBUG |
-void PagedSpace::ReportCodeStatistics(Isolate* isolate) { |
- CommentStatistic* comments_statistics = |
- isolate->paged_space_comments_statistics(); |
- ReportCodeKindStatistics(isolate->code_kind_statistics()); |
- PrintF("Code comment statistics (\" [ comment-txt : size/ " |
- "count (average)\"):\n"); |
- for (int i = 0; i <= CommentStatistic::kMaxComments; i++) { |
- const CommentStatistic& cs = comments_statistics[i]; |
- if (cs.size > 0) { |
- PrintF(" %-30s: %10d/%6d (%d)\n", cs.comment, cs.size, cs.count, |
- cs.size/cs.count); |
- } |
- } |
- PrintF("\n"); |
-} |
- |
- |
-void PagedSpace::ResetCodeStatistics(Isolate* isolate) { |
- CommentStatistic* comments_statistics = |
- isolate->paged_space_comments_statistics(); |
- ClearCodeKindStatistics(isolate->code_kind_statistics()); |
- for (int i = 0; i < CommentStatistic::kMaxComments; i++) { |
- comments_statistics[i].Clear(); |
- } |
- comments_statistics[CommentStatistic::kMaxComments].comment = "Unknown"; |
- comments_statistics[CommentStatistic::kMaxComments].size = 0; |
- comments_statistics[CommentStatistic::kMaxComments].count = 0; |
-} |
- |
- |
-// Adds comment to 'comment_statistics' table. Performance OK as long as |
-// 'kMaxComments' is small |
-static void EnterComment(Isolate* isolate, const char* comment, int delta) { |
- CommentStatistic* comments_statistics = |
- isolate->paged_space_comments_statistics(); |
- // Do not count empty comments |
- if (delta <= 0) return; |
- CommentStatistic* cs = &comments_statistics[CommentStatistic::kMaxComments]; |
- // Search for a free or matching entry in 'comments_statistics': 'cs' |
- // points to result. |
- for (int i = 0; i < CommentStatistic::kMaxComments; i++) { |
- if (comments_statistics[i].comment == NULL) { |
- cs = &comments_statistics[i]; |
- cs->comment = comment; |
- break; |
- } else if (strcmp(comments_statistics[i].comment, comment) == 0) { |
- cs = &comments_statistics[i]; |
- break; |
- } |
- } |
- // Update entry for 'comment' |
- cs->size += delta; |
- cs->count += 1; |
-} |
- |
- |
-// Call for each nested comment start (start marked with '[ xxx', end marked |
-// with ']'. RelocIterator 'it' must point to a comment reloc info. |
-static void CollectCommentStatistics(Isolate* isolate, RelocIterator* it) { |
- DCHECK(!it->done()); |
- DCHECK(it->rinfo()->rmode() == RelocInfo::COMMENT); |
- const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data()); |
- if (tmp[0] != '[') { |
- // Not a nested comment; skip |
- return; |
- } |
- |
- // Search for end of nested comment or a new nested comment |
- const char* const comment_txt = |
- reinterpret_cast<const char*>(it->rinfo()->data()); |
- const byte* prev_pc = it->rinfo()->pc(); |
- int flat_delta = 0; |
- it->next(); |
- while (true) { |
- // All nested comments must be terminated properly, and therefore exit |
- // from loop. |
- DCHECK(!it->done()); |
- if (it->rinfo()->rmode() == RelocInfo::COMMENT) { |
- const char* const txt = |
- reinterpret_cast<const char*>(it->rinfo()->data()); |
- flat_delta += static_cast<int>(it->rinfo()->pc() - prev_pc); |
- if (txt[0] == ']') break; // End of nested comment |
- // A new comment |
- CollectCommentStatistics(isolate, it); |
- // Skip code that was covered with previous comment |
- prev_pc = it->rinfo()->pc(); |
- } |
- it->next(); |
- } |
- EnterComment(isolate, comment_txt, flat_delta); |
-} |
- |
- |
-// Collects code size statistics: |
-// - by code kind |
-// - by code comment |
-void PagedSpace::CollectCodeStatistics() { |
- Isolate* isolate = heap()->isolate(); |
- HeapObjectIterator obj_it(this); |
- for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) { |
- if (obj->IsCode()) { |
- Code* code = Code::cast(obj); |
- isolate->code_kind_statistics()[code->kind()] += code->Size(); |
- RelocIterator it(code); |
- int delta = 0; |
- const byte* prev_pc = code->instruction_start(); |
- while (!it.done()) { |
- if (it.rinfo()->rmode() == RelocInfo::COMMENT) { |
- delta += static_cast<int>(it.rinfo()->pc() - prev_pc); |
- CollectCommentStatistics(isolate, &it); |
- prev_pc = it.rinfo()->pc(); |
- } |
- it.next(); |
- } |
- |
- DCHECK(code->instruction_start() <= prev_pc && |
- prev_pc <= code->instruction_end()); |
- delta += static_cast<int>(code->instruction_end() - prev_pc); |
- EnterComment(isolate, "NoComment", delta); |
- } |
- } |
-} |
- |
- |
-void PagedSpace::ReportStatistics() { |
- int pct = static_cast<int>(Available() * 100 / Capacity()); |
- PrintF(" capacity: %" V8_PTR_PREFIX "d" |
- ", waste: %" V8_PTR_PREFIX "d" |
- ", available: %" V8_PTR_PREFIX "d, %%%d\n", |
- Capacity(), Waste(), Available(), pct); |
- |
- if (!swept_precisely_) return; |
- ClearHistograms(heap()->isolate()); |
- HeapObjectIterator obj_it(this); |
- for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) |
- CollectHistogramInfo(obj); |
- ReportHistogram(heap()->isolate(), true); |
-} |
-#endif |
- |
- |
-// ----------------------------------------------------------------------------- |
-// MapSpace implementation |
-// TODO(mvstanton): this is weird...the compiler can't make a vtable unless |
-// there is at least one non-inlined virtual function. I would prefer to hide |
-// the VerifyObject definition behind VERIFY_HEAP. |
- |
-void MapSpace::VerifyObject(HeapObject* object) { |
- CHECK(object->IsMap()); |
-} |
- |
- |
-// ----------------------------------------------------------------------------- |
-// CellSpace and PropertyCellSpace implementation |
-// TODO(mvstanton): this is weird...the compiler can't make a vtable unless |
-// there is at least one non-inlined virtual function. I would prefer to hide |
-// the VerifyObject definition behind VERIFY_HEAP. |
- |
-void CellSpace::VerifyObject(HeapObject* object) { |
- CHECK(object->IsCell()); |
-} |
- |
- |
-void PropertyCellSpace::VerifyObject(HeapObject* object) { |
- CHECK(object->IsPropertyCell()); |
-} |
- |
- |
-// ----------------------------------------------------------------------------- |
-// LargeObjectIterator |
- |
-LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) { |
- current_ = space->first_page_; |
- size_func_ = NULL; |
-} |
- |
- |
-LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space, |
- HeapObjectCallback size_func) { |
- current_ = space->first_page_; |
- size_func_ = size_func; |
-} |
- |
- |
-HeapObject* LargeObjectIterator::Next() { |
- if (current_ == NULL) return NULL; |
- |
- HeapObject* object = current_->GetObject(); |
- current_ = current_->next_page(); |
- return object; |
-} |
- |
- |
-// ----------------------------------------------------------------------------- |
-// LargeObjectSpace |
-static bool ComparePointers(void* key1, void* key2) { |
- return key1 == key2; |
-} |
- |
- |
-LargeObjectSpace::LargeObjectSpace(Heap* heap, |
- intptr_t max_capacity, |
- AllocationSpace id) |
- : Space(heap, id, NOT_EXECUTABLE), // Managed on a per-allocation basis |
- max_capacity_(max_capacity), |
- first_page_(NULL), |
- size_(0), |
- page_count_(0), |
- objects_size_(0), |
- chunk_map_(ComparePointers, 1024) {} |
- |
- |
-bool LargeObjectSpace::SetUp() { |
- first_page_ = NULL; |
- size_ = 0; |
- maximum_committed_ = 0; |
- page_count_ = 0; |
- objects_size_ = 0; |
- chunk_map_.Clear(); |
- return true; |
-} |
- |
- |
-void LargeObjectSpace::TearDown() { |
- while (first_page_ != NULL) { |
- LargePage* page = first_page_; |
- first_page_ = first_page_->next_page(); |
- LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", page->address())); |
- |
- ObjectSpace space = static_cast<ObjectSpace>(1 << identity()); |
- heap()->isolate()->memory_allocator()->PerformAllocationCallback( |
- space, kAllocationActionFree, page->size()); |
- heap()->isolate()->memory_allocator()->Free(page); |
- } |
- SetUp(); |
-} |
- |
- |
-AllocationResult LargeObjectSpace::AllocateRaw(int object_size, |
- Executability executable) { |
- // Check if we want to force a GC before growing the old space further. |
- // If so, fail the allocation. |
- if (!heap()->always_allocate() && |
- heap()->OldGenerationAllocationLimitReached()) { |
- return AllocationResult::Retry(identity()); |
- } |
- |
- if (Size() + object_size > max_capacity_) { |
- return AllocationResult::Retry(identity()); |
- } |
- |
- LargePage* page = heap()->isolate()->memory_allocator()-> |
- AllocateLargePage(object_size, this, executable); |
- if (page == NULL) return AllocationResult::Retry(identity()); |
- DCHECK(page->area_size() >= object_size); |
- |
- size_ += static_cast<int>(page->size()); |
- objects_size_ += object_size; |
- page_count_++; |
- page->set_next_page(first_page_); |
- first_page_ = page; |
- |
- if (size_ > maximum_committed_) { |
- maximum_committed_ = size_; |
- } |
- |
- // Register all MemoryChunk::kAlignment-aligned chunks covered by |
- // this large page in the chunk map. |
- uintptr_t base = reinterpret_cast<uintptr_t>(page) / MemoryChunk::kAlignment; |
- uintptr_t limit = base + (page->size() - 1) / MemoryChunk::kAlignment; |
- for (uintptr_t key = base; key <= limit; key++) { |
- HashMap::Entry* entry = chunk_map_.Lookup(reinterpret_cast<void*>(key), |
- static_cast<uint32_t>(key), |
- true); |
- DCHECK(entry != NULL); |
- entry->value = page; |
- } |
- |
- HeapObject* object = page->GetObject(); |
- |
- if (Heap::ShouldZapGarbage()) { |
- // Make the object consistent so the heap can be verified in OldSpaceStep. |
- // We only need to do this in debug builds or if verify_heap is on. |
- reinterpret_cast<Object**>(object->address())[0] = |
- heap()->fixed_array_map(); |
- reinterpret_cast<Object**>(object->address())[1] = Smi::FromInt(0); |
- } |
- |
- heap()->incremental_marking()->OldSpaceStep(object_size); |
- return object; |
-} |
- |
- |
-size_t LargeObjectSpace::CommittedPhysicalMemory() { |
- if (!base::VirtualMemory::HasLazyCommits()) return CommittedMemory(); |
- size_t size = 0; |
- LargePage* current = first_page_; |
- while (current != NULL) { |
- size += current->CommittedPhysicalMemory(); |
- current = current->next_page(); |
- } |
- return size; |
-} |
- |
- |
-// GC support |
-Object* LargeObjectSpace::FindObject(Address a) { |
- LargePage* page = FindPage(a); |
- if (page != NULL) { |
- return page->GetObject(); |
- } |
- return Smi::FromInt(0); // Signaling not found. |
-} |
- |
- |
-LargePage* LargeObjectSpace::FindPage(Address a) { |
- uintptr_t key = reinterpret_cast<uintptr_t>(a) / MemoryChunk::kAlignment; |
- HashMap::Entry* e = chunk_map_.Lookup(reinterpret_cast<void*>(key), |
- static_cast<uint32_t>(key), |
- false); |
- if (e != NULL) { |
- DCHECK(e->value != NULL); |
- LargePage* page = reinterpret_cast<LargePage*>(e->value); |
- DCHECK(page->is_valid()); |
- if (page->Contains(a)) { |
- return page; |
- } |
- } |
- return NULL; |
-} |
- |
- |
-void LargeObjectSpace::FreeUnmarkedObjects() { |
- LargePage* previous = NULL; |
- LargePage* current = first_page_; |
- while (current != NULL) { |
- HeapObject* object = current->GetObject(); |
- // Can this large page contain pointers to non-trivial objects. No other |
- // pointer object is this big. |
- bool is_pointer_object = object->IsFixedArray(); |
- MarkBit mark_bit = Marking::MarkBitFrom(object); |
- if (mark_bit.Get()) { |
- mark_bit.Clear(); |
- Page::FromAddress(object->address())->ResetProgressBar(); |
- Page::FromAddress(object->address())->ResetLiveBytes(); |
- previous = current; |
- current = current->next_page(); |
- } else { |
- LargePage* page = current; |
- // Cut the chunk out from the chunk list. |
- current = current->next_page(); |
- if (previous == NULL) { |
- first_page_ = current; |
- } else { |
- previous->set_next_page(current); |
- } |
- |
- // Free the chunk. |
- heap()->mark_compact_collector()->ReportDeleteIfNeeded( |
- object, heap()->isolate()); |
- size_ -= static_cast<int>(page->size()); |
- objects_size_ -= object->Size(); |
- page_count_--; |
- |
- // Remove entries belonging to this page. |
- // Use variable alignment to help pass length check (<= 80 characters) |
- // of single line in tools/presubmit.py. |
- const intptr_t alignment = MemoryChunk::kAlignment; |
- uintptr_t base = reinterpret_cast<uintptr_t>(page)/alignment; |
- uintptr_t limit = base + (page->size()-1)/alignment; |
- for (uintptr_t key = base; key <= limit; key++) { |
- chunk_map_.Remove(reinterpret_cast<void*>(key), |
- static_cast<uint32_t>(key)); |
- } |
- |
- if (is_pointer_object) { |
- heap()->QueueMemoryChunkForFree(page); |
- } else { |
- heap()->isolate()->memory_allocator()->Free(page); |
- } |
- } |
- } |
- heap()->FreeQueuedChunks(); |
-} |
- |
- |
-bool LargeObjectSpace::Contains(HeapObject* object) { |
- Address address = object->address(); |
- MemoryChunk* chunk = MemoryChunk::FromAddress(address); |
- |
- bool owned = (chunk->owner() == this); |
- |
- SLOW_DCHECK(!owned || FindObject(address)->IsHeapObject()); |
- |
- return owned; |
-} |
- |
- |
-#ifdef VERIFY_HEAP |
-// We do not assume that the large object iterator works, because it depends |
-// on the invariants we are checking during verification. |
-void LargeObjectSpace::Verify() { |
- for (LargePage* chunk = first_page_; |
- chunk != NULL; |
- chunk = chunk->next_page()) { |
- // Each chunk contains an object that starts at the large object page's |
- // object area start. |
- HeapObject* object = chunk->GetObject(); |
- Page* page = Page::FromAddress(object->address()); |
- CHECK(object->address() == page->area_start()); |
- |
- // The first word should be a map, and we expect all map pointers to be |
- // in map space. |
- Map* map = object->map(); |
- CHECK(map->IsMap()); |
- CHECK(heap()->map_space()->Contains(map)); |
- |
- // We have only code, sequential strings, external strings |
- // (sequential strings that have been morphed into external |
- // strings), fixed arrays, byte arrays, and constant pool arrays in the |
- // large object space. |
- CHECK(object->IsCode() || object->IsSeqString() || |
- object->IsExternalString() || object->IsFixedArray() || |
- object->IsFixedDoubleArray() || object->IsByteArray() || |
- object->IsConstantPoolArray()); |
- |
- // The object itself should look OK. |
- object->ObjectVerify(); |
- |
- // Byte arrays and strings don't have interior pointers. |
- if (object->IsCode()) { |
- VerifyPointersVisitor code_visitor; |
- object->IterateBody(map->instance_type(), |
- object->Size(), |
- &code_visitor); |
- } else if (object->IsFixedArray()) { |
- FixedArray* array = FixedArray::cast(object); |
- for (int j = 0; j < array->length(); j++) { |
- Object* element = array->get(j); |
- if (element->IsHeapObject()) { |
- HeapObject* element_object = HeapObject::cast(element); |
- CHECK(heap()->Contains(element_object)); |
- CHECK(element_object->map()->IsMap()); |
- } |
- } |
- } |
- } |
-} |
-#endif |
- |
- |
-#ifdef DEBUG |
-void LargeObjectSpace::Print() { |
- OFStream os(stdout); |
- LargeObjectIterator it(this); |
- for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { |
- obj->Print(os); |
- } |
-} |
- |
- |
-void LargeObjectSpace::ReportStatistics() { |
- PrintF(" size: %" V8_PTR_PREFIX "d\n", size_); |
- int num_objects = 0; |
- ClearHistograms(heap()->isolate()); |
- LargeObjectIterator it(this); |
- for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { |
- num_objects++; |
- CollectHistogramInfo(obj); |
- } |
- |
- PrintF(" number of objects %d, " |
- "size of objects %" V8_PTR_PREFIX "d\n", num_objects, objects_size_); |
- if (num_objects > 0) ReportHistogram(heap()->isolate(), false); |
-} |
- |
- |
-void LargeObjectSpace::CollectCodeStatistics() { |
- Isolate* isolate = heap()->isolate(); |
- LargeObjectIterator obj_it(this); |
- for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) { |
- if (obj->IsCode()) { |
- Code* code = Code::cast(obj); |
- isolate->code_kind_statistics()[code->kind()] += code->Size(); |
- } |
- } |
-} |
- |
- |
-void Page::Print() { |
- // Make a best-effort to print the objects in the page. |
- PrintF("Page@%p in %s\n", |
- this->address(), |
- AllocationSpaceName(this->owner()->identity())); |
- printf(" --------------------------------------\n"); |
- HeapObjectIterator objects(this, heap()->GcSafeSizeOfOldObjectFunction()); |
- unsigned mark_size = 0; |
- for (HeapObject* object = objects.Next(); |
- object != NULL; |
- object = objects.Next()) { |
- bool is_marked = Marking::MarkBitFrom(object).Get(); |
- PrintF(" %c ", (is_marked ? '!' : ' ')); // Indent a little. |
- if (is_marked) { |
- mark_size += heap()->GcSafeSizeOfOldObjectFunction()(object); |
- } |
- object->ShortPrint(); |
- PrintF("\n"); |
- } |
- printf(" --------------------------------------\n"); |
- printf(" Marked: %x, LiveCount: %x\n", mark_size, LiveBytes()); |
-} |
- |
-#endif // DEBUG |
- |
-} } // namespace v8::internal |