Index: src/spaces.h |
diff --git a/src/spaces.h b/src/spaces.h |
deleted file mode 100644 |
index 2472bd3881952e31d2e18bc06f76517f814dbf65..0000000000000000000000000000000000000000 |
--- a/src/spaces.h |
+++ /dev/null |
@@ -1,3048 +0,0 @@ |
-// Copyright 2011 the V8 project authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#ifndef V8_SPACES_H_ |
-#define V8_SPACES_H_ |
- |
-#include "src/allocation.h" |
-#include "src/base/atomicops.h" |
-#include "src/base/platform/mutex.h" |
-#include "src/hashmap.h" |
-#include "src/list.h" |
-#include "src/log.h" |
-#include "src/utils.h" |
- |
-namespace v8 { |
-namespace internal { |
- |
-class Isolate; |
- |
-// ----------------------------------------------------------------------------- |
-// Heap structures: |
-// |
-// A JS heap consists of a young generation, an old generation, and a large |
-// object space. The young generation is divided into two semispaces. A |
-// scavenger implements Cheney's copying algorithm. The old generation is |
-// separated into a map space and an old object space. The map space contains |
-// all (and only) map objects, the rest of old objects go into the old space. |
-// The old generation is collected by a mark-sweep-compact collector. |
-// |
-// The semispaces of the young generation are contiguous. The old and map |
-// spaces consists of a list of pages. A page has a page header and an object |
-// area. |
-// |
-// There is a separate large object space for objects larger than |
-// Page::kMaxHeapObjectSize, so that they do not have to move during |
-// collection. The large object space is paged. Pages in large object space |
-// may be larger than the page size. |
-// |
-// A store-buffer based write barrier is used to keep track of intergenerational |
-// references. See store-buffer.h. |
-// |
-// During scavenges and mark-sweep collections we sometimes (after a store |
-// buffer overflow) iterate intergenerational pointers without decoding heap |
-// object maps so if the page belongs to old pointer space or large object |
-// space it is essential to guarantee that the page does not contain any |
-// garbage pointers to new space: every pointer aligned word which satisfies |
-// the Heap::InNewSpace() predicate must be a pointer to a live heap object in |
-// new space. Thus objects in old pointer and large object spaces should have a |
-// special layout (e.g. no bare integer fields). This requirement does not |
-// apply to map space which is iterated in a special fashion. However we still |
-// require pointer fields of dead maps to be cleaned. |
-// |
-// To enable lazy cleaning of old space pages we can mark chunks of the page |
-// as being garbage. Garbage sections are marked with a special map. These |
-// sections are skipped when scanning the page, even if we are otherwise |
-// scanning without regard for object boundaries. Garbage sections are chained |
-// together to form a free list after a GC. Garbage sections created outside |
-// of GCs by object trunctation etc. may not be in the free list chain. Very |
-// small free spaces are ignored, they need only be cleaned of bogus pointers |
-// into new space. |
-// |
-// Each page may have up to one special garbage section. The start of this |
-// section is denoted by the top field in the space. The end of the section |
-// is denoted by the limit field in the space. This special garbage section |
-// is not marked with a free space map in the data. The point of this section |
-// is to enable linear allocation without having to constantly update the byte |
-// array every time the top field is updated and a new object is created. The |
-// special garbage section is not in the chain of garbage sections. |
-// |
-// Since the top and limit fields are in the space, not the page, only one page |
-// has a special garbage section, and if the top and limit are equal then there |
-// is no special garbage section. |
- |
-// Some assertion macros used in the debugging mode. |
- |
-#define DCHECK_PAGE_ALIGNED(address) \ |
- DCHECK((OffsetFrom(address) & Page::kPageAlignmentMask) == 0) |
- |
-#define DCHECK_OBJECT_ALIGNED(address) \ |
- DCHECK((OffsetFrom(address) & kObjectAlignmentMask) == 0) |
- |
-#define DCHECK_OBJECT_SIZE(size) \ |
- DCHECK((0 < size) && (size <= Page::kMaxRegularHeapObjectSize)) |
- |
-#define DCHECK_PAGE_OFFSET(offset) \ |
- DCHECK((Page::kObjectStartOffset <= offset) \ |
- && (offset <= Page::kPageSize)) |
- |
-#define DCHECK_MAP_PAGE_INDEX(index) \ |
- DCHECK((0 <= index) && (index <= MapSpace::kMaxMapPageIndex)) |
- |
- |
-class PagedSpace; |
-class MemoryAllocator; |
-class AllocationInfo; |
-class Space; |
-class FreeList; |
-class MemoryChunk; |
- |
-class MarkBit { |
- public: |
- typedef uint32_t CellType; |
- |
- inline MarkBit(CellType* cell, CellType mask, bool data_only) |
- : cell_(cell), mask_(mask), data_only_(data_only) { } |
- |
- inline CellType* cell() { return cell_; } |
- inline CellType mask() { return mask_; } |
- |
-#ifdef DEBUG |
- bool operator==(const MarkBit& other) { |
- return cell_ == other.cell_ && mask_ == other.mask_; |
- } |
-#endif |
- |
- inline void Set() { *cell_ |= mask_; } |
- inline bool Get() { return (*cell_ & mask_) != 0; } |
- inline void Clear() { *cell_ &= ~mask_; } |
- |
- inline bool data_only() { return data_only_; } |
- |
- inline MarkBit Next() { |
- CellType new_mask = mask_ << 1; |
- if (new_mask == 0) { |
- return MarkBit(cell_ + 1, 1, data_only_); |
- } else { |
- return MarkBit(cell_, new_mask, data_only_); |
- } |
- } |
- |
- private: |
- CellType* cell_; |
- CellType mask_; |
- // This boolean indicates that the object is in a data-only space with no |
- // pointers. This enables some optimizations when marking. |
- // It is expected that this field is inlined and turned into control flow |
- // at the place where the MarkBit object is created. |
- bool data_only_; |
-}; |
- |
- |
-// Bitmap is a sequence of cells each containing fixed number of bits. |
-class Bitmap { |
- public: |
- static const uint32_t kBitsPerCell = 32; |
- static const uint32_t kBitsPerCellLog2 = 5; |
- static const uint32_t kBitIndexMask = kBitsPerCell - 1; |
- static const uint32_t kBytesPerCell = kBitsPerCell / kBitsPerByte; |
- static const uint32_t kBytesPerCellLog2 = kBitsPerCellLog2 - kBitsPerByteLog2; |
- |
- static const size_t kLength = |
- (1 << kPageSizeBits) >> (kPointerSizeLog2); |
- |
- static const size_t kSize = |
- (1 << kPageSizeBits) >> (kPointerSizeLog2 + kBitsPerByteLog2); |
- |
- |
- static int CellsForLength(int length) { |
- return (length + kBitsPerCell - 1) >> kBitsPerCellLog2; |
- } |
- |
- int CellsCount() { |
- return CellsForLength(kLength); |
- } |
- |
- static int SizeFor(int cells_count) { |
- return sizeof(MarkBit::CellType) * cells_count; |
- } |
- |
- INLINE(static uint32_t IndexToCell(uint32_t index)) { |
- return index >> kBitsPerCellLog2; |
- } |
- |
- INLINE(static uint32_t CellToIndex(uint32_t index)) { |
- return index << kBitsPerCellLog2; |
- } |
- |
- INLINE(static uint32_t CellAlignIndex(uint32_t index)) { |
- return (index + kBitIndexMask) & ~kBitIndexMask; |
- } |
- |
- INLINE(MarkBit::CellType* cells()) { |
- return reinterpret_cast<MarkBit::CellType*>(this); |
- } |
- |
- INLINE(Address address()) { |
- return reinterpret_cast<Address>(this); |
- } |
- |
- INLINE(static Bitmap* FromAddress(Address addr)) { |
- return reinterpret_cast<Bitmap*>(addr); |
- } |
- |
- inline MarkBit MarkBitFromIndex(uint32_t index, bool data_only = false) { |
- MarkBit::CellType mask = 1 << (index & kBitIndexMask); |
- MarkBit::CellType* cell = this->cells() + (index >> kBitsPerCellLog2); |
- return MarkBit(cell, mask, data_only); |
- } |
- |
- static inline void Clear(MemoryChunk* chunk); |
- |
- static void PrintWord(uint32_t word, uint32_t himask = 0) { |
- for (uint32_t mask = 1; mask != 0; mask <<= 1) { |
- if ((mask & himask) != 0) PrintF("["); |
- PrintF((mask & word) ? "1" : "0"); |
- if ((mask & himask) != 0) PrintF("]"); |
- } |
- } |
- |
- class CellPrinter { |
- public: |
- CellPrinter() : seq_start(0), seq_type(0), seq_length(0) { } |
- |
- void Print(uint32_t pos, uint32_t cell) { |
- if (cell == seq_type) { |
- seq_length++; |
- return; |
- } |
- |
- Flush(); |
- |
- if (IsSeq(cell)) { |
- seq_start = pos; |
- seq_length = 0; |
- seq_type = cell; |
- return; |
- } |
- |
- PrintF("%d: ", pos); |
- PrintWord(cell); |
- PrintF("\n"); |
- } |
- |
- void Flush() { |
- if (seq_length > 0) { |
- PrintF("%d: %dx%d\n", |
- seq_start, |
- seq_type == 0 ? 0 : 1, |
- seq_length * kBitsPerCell); |
- seq_length = 0; |
- } |
- } |
- |
- static bool IsSeq(uint32_t cell) { return cell == 0 || cell == 0xFFFFFFFF; } |
- |
- private: |
- uint32_t seq_start; |
- uint32_t seq_type; |
- uint32_t seq_length; |
- }; |
- |
- void Print() { |
- CellPrinter printer; |
- for (int i = 0; i < CellsCount(); i++) { |
- printer.Print(i, cells()[i]); |
- } |
- printer.Flush(); |
- PrintF("\n"); |
- } |
- |
- bool IsClean() { |
- for (int i = 0; i < CellsCount(); i++) { |
- if (cells()[i] != 0) { |
- return false; |
- } |
- } |
- return true; |
- } |
-}; |
- |
- |
-class SkipList; |
-class SlotsBuffer; |
- |
-// MemoryChunk represents a memory region owned by a specific space. |
-// It is divided into the header and the body. Chunk start is always |
-// 1MB aligned. Start of the body is aligned so it can accommodate |
-// any heap object. |
-class MemoryChunk { |
- public: |
- // Only works if the pointer is in the first kPageSize of the MemoryChunk. |
- static MemoryChunk* FromAddress(Address a) { |
- return reinterpret_cast<MemoryChunk*>(OffsetFrom(a) & ~kAlignmentMask); |
- } |
- static const MemoryChunk* FromAddress(const byte* a) { |
- return reinterpret_cast<const MemoryChunk*>( |
- OffsetFrom(a) & ~kAlignmentMask); |
- } |
- |
- // Only works for addresses in pointer spaces, not data or code spaces. |
- static inline MemoryChunk* FromAnyPointerAddress(Heap* heap, Address addr); |
- |
- Address address() { return reinterpret_cast<Address>(this); } |
- |
- bool is_valid() { return address() != NULL; } |
- |
- MemoryChunk* next_chunk() const { |
- return reinterpret_cast<MemoryChunk*>(base::Acquire_Load(&next_chunk_)); |
- } |
- |
- MemoryChunk* prev_chunk() const { |
- return reinterpret_cast<MemoryChunk*>(base::Acquire_Load(&prev_chunk_)); |
- } |
- |
- void set_next_chunk(MemoryChunk* next) { |
- base::Release_Store(&next_chunk_, reinterpret_cast<base::AtomicWord>(next)); |
- } |
- |
- void set_prev_chunk(MemoryChunk* prev) { |
- base::Release_Store(&prev_chunk_, reinterpret_cast<base::AtomicWord>(prev)); |
- } |
- |
- Space* owner() const { |
- if ((reinterpret_cast<intptr_t>(owner_) & kPageHeaderTagMask) == |
- kPageHeaderTag) { |
- return reinterpret_cast<Space*>(reinterpret_cast<intptr_t>(owner_) - |
- kPageHeaderTag); |
- } else { |
- return NULL; |
- } |
- } |
- |
- void set_owner(Space* space) { |
- DCHECK((reinterpret_cast<intptr_t>(space) & kPageHeaderTagMask) == 0); |
- owner_ = reinterpret_cast<Address>(space) + kPageHeaderTag; |
- DCHECK((reinterpret_cast<intptr_t>(owner_) & kPageHeaderTagMask) == |
- kPageHeaderTag); |
- } |
- |
- base::VirtualMemory* reserved_memory() { |
- return &reservation_; |
- } |
- |
- void InitializeReservedMemory() { |
- reservation_.Reset(); |
- } |
- |
- void set_reserved_memory(base::VirtualMemory* reservation) { |
- DCHECK_NOT_NULL(reservation); |
- reservation_.TakeControl(reservation); |
- } |
- |
- bool scan_on_scavenge() { return IsFlagSet(SCAN_ON_SCAVENGE); } |
- void initialize_scan_on_scavenge(bool scan) { |
- if (scan) { |
- SetFlag(SCAN_ON_SCAVENGE); |
- } else { |
- ClearFlag(SCAN_ON_SCAVENGE); |
- } |
- } |
- inline void set_scan_on_scavenge(bool scan); |
- |
- int store_buffer_counter() { return store_buffer_counter_; } |
- void set_store_buffer_counter(int counter) { |
- store_buffer_counter_ = counter; |
- } |
- |
- bool Contains(Address addr) { |
- return addr >= area_start() && addr < area_end(); |
- } |
- |
- // Checks whether addr can be a limit of addresses in this page. |
- // It's a limit if it's in the page, or if it's just after the |
- // last byte of the page. |
- bool ContainsLimit(Address addr) { |
- return addr >= area_start() && addr <= area_end(); |
- } |
- |
- // Every n write barrier invocations we go to runtime even though |
- // we could have handled it in generated code. This lets us check |
- // whether we have hit the limit and should do some more marking. |
- static const int kWriteBarrierCounterGranularity = 500; |
- |
- enum MemoryChunkFlags { |
- IS_EXECUTABLE, |
- ABOUT_TO_BE_FREED, |
- POINTERS_TO_HERE_ARE_INTERESTING, |
- POINTERS_FROM_HERE_ARE_INTERESTING, |
- SCAN_ON_SCAVENGE, |
- IN_FROM_SPACE, // Mutually exclusive with IN_TO_SPACE. |
- IN_TO_SPACE, // All pages in new space has one of these two set. |
- NEW_SPACE_BELOW_AGE_MARK, |
- CONTAINS_ONLY_DATA, |
- EVACUATION_CANDIDATE, |
- RESCAN_ON_EVACUATION, |
- |
- // Pages swept precisely can be iterated, hitting only the live objects. |
- // Whereas those swept conservatively cannot be iterated over. Both flags |
- // indicate that marking bits have been cleared by the sweeper, otherwise |
- // marking bits are still intact. |
- WAS_SWEPT_PRECISELY, |
- WAS_SWEPT_CONSERVATIVELY, |
- |
- // Large objects can have a progress bar in their page header. These object |
- // are scanned in increments and will be kept black while being scanned. |
- // Even if the mutator writes to them they will be kept black and a white |
- // to grey transition is performed in the value. |
- HAS_PROGRESS_BAR, |
- |
- // Last flag, keep at bottom. |
- NUM_MEMORY_CHUNK_FLAGS |
- }; |
- |
- |
- static const int kPointersToHereAreInterestingMask = |
- 1 << POINTERS_TO_HERE_ARE_INTERESTING; |
- |
- static const int kPointersFromHereAreInterestingMask = |
- 1 << POINTERS_FROM_HERE_ARE_INTERESTING; |
- |
- static const int kEvacuationCandidateMask = |
- 1 << EVACUATION_CANDIDATE; |
- |
- static const int kSkipEvacuationSlotsRecordingMask = |
- (1 << EVACUATION_CANDIDATE) | |
- (1 << RESCAN_ON_EVACUATION) | |
- (1 << IN_FROM_SPACE) | |
- (1 << IN_TO_SPACE); |
- |
- |
- void SetFlag(int flag) { |
- flags_ |= static_cast<uintptr_t>(1) << flag; |
- } |
- |
- void ClearFlag(int flag) { |
- flags_ &= ~(static_cast<uintptr_t>(1) << flag); |
- } |
- |
- void SetFlagTo(int flag, bool value) { |
- if (value) { |
- SetFlag(flag); |
- } else { |
- ClearFlag(flag); |
- } |
- } |
- |
- bool IsFlagSet(int flag) { |
- return (flags_ & (static_cast<uintptr_t>(1) << flag)) != 0; |
- } |
- |
- // Set or clear multiple flags at a time. The flags in the mask |
- // are set to the value in "flags", the rest retain the current value |
- // in flags_. |
- void SetFlags(intptr_t flags, intptr_t mask) { |
- flags_ = (flags_ & ~mask) | (flags & mask); |
- } |
- |
- // Return all current flags. |
- intptr_t GetFlags() { return flags_; } |
- |
- |
- // SWEEPING_DONE - The page state when sweeping is complete or sweeping must |
- // not be performed on that page. |
- // SWEEPING_FINALIZE - A sweeper thread is done sweeping this page and will |
- // not touch the page memory anymore. |
- // SWEEPING_IN_PROGRESS - This page is currently swept by a sweeper thread. |
- // SWEEPING_PENDING - This page is ready for parallel sweeping. |
- enum ParallelSweepingState { |
- SWEEPING_DONE, |
- SWEEPING_FINALIZE, |
- SWEEPING_IN_PROGRESS, |
- SWEEPING_PENDING |
- }; |
- |
- ParallelSweepingState parallel_sweeping() { |
- return static_cast<ParallelSweepingState>( |
- base::Acquire_Load(¶llel_sweeping_)); |
- } |
- |
- void set_parallel_sweeping(ParallelSweepingState state) { |
- base::Release_Store(¶llel_sweeping_, state); |
- } |
- |
- bool TryParallelSweeping() { |
- return base::Acquire_CompareAndSwap( |
- ¶llel_sweeping_, SWEEPING_PENDING, SWEEPING_IN_PROGRESS) == |
- SWEEPING_PENDING; |
- } |
- |
- bool SweepingCompleted() { return parallel_sweeping() <= SWEEPING_FINALIZE; } |
- |
- // Manage live byte count (count of bytes known to be live, |
- // because they are marked black). |
- void ResetLiveBytes() { |
- if (FLAG_gc_verbose) { |
- PrintF("ResetLiveBytes:%p:%x->0\n", |
- static_cast<void*>(this), live_byte_count_); |
- } |
- live_byte_count_ = 0; |
- } |
- void IncrementLiveBytes(int by) { |
- if (FLAG_gc_verbose) { |
- printf("UpdateLiveBytes:%p:%x%c=%x->%x\n", |
- static_cast<void*>(this), live_byte_count_, |
- ((by < 0) ? '-' : '+'), ((by < 0) ? -by : by), |
- live_byte_count_ + by); |
- } |
- live_byte_count_ += by; |
- DCHECK_LE(static_cast<unsigned>(live_byte_count_), size_); |
- } |
- int LiveBytes() { |
- DCHECK(static_cast<unsigned>(live_byte_count_) <= size_); |
- return live_byte_count_; |
- } |
- |
- int write_barrier_counter() { |
- return static_cast<int>(write_barrier_counter_); |
- } |
- |
- void set_write_barrier_counter(int counter) { |
- write_barrier_counter_ = counter; |
- } |
- |
- int progress_bar() { |
- DCHECK(IsFlagSet(HAS_PROGRESS_BAR)); |
- return progress_bar_; |
- } |
- |
- void set_progress_bar(int progress_bar) { |
- DCHECK(IsFlagSet(HAS_PROGRESS_BAR)); |
- progress_bar_ = progress_bar; |
- } |
- |
- void ResetProgressBar() { |
- if (IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR)) { |
- set_progress_bar(0); |
- ClearFlag(MemoryChunk::HAS_PROGRESS_BAR); |
- } |
- } |
- |
- bool IsLeftOfProgressBar(Object** slot) { |
- Address slot_address = reinterpret_cast<Address>(slot); |
- DCHECK(slot_address > this->address()); |
- return (slot_address - (this->address() + kObjectStartOffset)) < |
- progress_bar(); |
- } |
- |
- static void IncrementLiveBytesFromGC(Address address, int by) { |
- MemoryChunk::FromAddress(address)->IncrementLiveBytes(by); |
- } |
- |
- static void IncrementLiveBytesFromMutator(Address address, int by); |
- |
- static const intptr_t kAlignment = |
- (static_cast<uintptr_t>(1) << kPageSizeBits); |
- |
- static const intptr_t kAlignmentMask = kAlignment - 1; |
- |
- static const intptr_t kSizeOffset = 0; |
- |
- static const intptr_t kLiveBytesOffset = |
- kSizeOffset + kPointerSize + kPointerSize + kPointerSize + |
- kPointerSize + kPointerSize + |
- kPointerSize + kPointerSize + kPointerSize + kIntSize; |
- |
- static const size_t kSlotsBufferOffset = kLiveBytesOffset + kIntSize; |
- |
- static const size_t kWriteBarrierCounterOffset = |
- kSlotsBufferOffset + kPointerSize + kPointerSize; |
- |
- static const size_t kHeaderSize = kWriteBarrierCounterOffset + kPointerSize + |
- kIntSize + kIntSize + kPointerSize + |
- 5 * kPointerSize + |
- kPointerSize + kPointerSize; |
- |
- static const int kBodyOffset = |
- CODE_POINTER_ALIGN(kHeaderSize + Bitmap::kSize); |
- |
- // The start offset of the object area in a page. Aligned to both maps and |
- // code alignment to be suitable for both. Also aligned to 32 words because |
- // the marking bitmap is arranged in 32 bit chunks. |
- static const int kObjectStartAlignment = 32 * kPointerSize; |
- static const int kObjectStartOffset = kBodyOffset - 1 + |
- (kObjectStartAlignment - (kBodyOffset - 1) % kObjectStartAlignment); |
- |
- size_t size() const { return size_; } |
- |
- void set_size(size_t size) { |
- size_ = size; |
- } |
- |
- void SetArea(Address area_start, Address area_end) { |
- area_start_ = area_start; |
- area_end_ = area_end; |
- } |
- |
- Executability executable() { |
- return IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE; |
- } |
- |
- bool ContainsOnlyData() { |
- return IsFlagSet(CONTAINS_ONLY_DATA); |
- } |
- |
- bool InNewSpace() { |
- return (flags_ & ((1 << IN_FROM_SPACE) | (1 << IN_TO_SPACE))) != 0; |
- } |
- |
- bool InToSpace() { |
- return IsFlagSet(IN_TO_SPACE); |
- } |
- |
- bool InFromSpace() { |
- return IsFlagSet(IN_FROM_SPACE); |
- } |
- |
- // --------------------------------------------------------------------- |
- // Markbits support |
- |
- inline Bitmap* markbits() { |
- return Bitmap::FromAddress(address() + kHeaderSize); |
- } |
- |
- void PrintMarkbits() { markbits()->Print(); } |
- |
- inline uint32_t AddressToMarkbitIndex(Address addr) { |
- return static_cast<uint32_t>(addr - this->address()) >> kPointerSizeLog2; |
- } |
- |
- inline static uint32_t FastAddressToMarkbitIndex(Address addr) { |
- const intptr_t offset = |
- reinterpret_cast<intptr_t>(addr) & kAlignmentMask; |
- |
- return static_cast<uint32_t>(offset) >> kPointerSizeLog2; |
- } |
- |
- inline Address MarkbitIndexToAddress(uint32_t index) { |
- return this->address() + (index << kPointerSizeLog2); |
- } |
- |
- void InsertAfter(MemoryChunk* other); |
- void Unlink(); |
- |
- inline Heap* heap() const { return heap_; } |
- |
- static const int kFlagsOffset = kPointerSize; |
- |
- bool IsEvacuationCandidate() { return IsFlagSet(EVACUATION_CANDIDATE); } |
- |
- bool ShouldSkipEvacuationSlotRecording() { |
- return (flags_ & kSkipEvacuationSlotsRecordingMask) != 0; |
- } |
- |
- inline SkipList* skip_list() { |
- return skip_list_; |
- } |
- |
- inline void set_skip_list(SkipList* skip_list) { |
- skip_list_ = skip_list; |
- } |
- |
- inline SlotsBuffer* slots_buffer() { |
- return slots_buffer_; |
- } |
- |
- inline SlotsBuffer** slots_buffer_address() { |
- return &slots_buffer_; |
- } |
- |
- void MarkEvacuationCandidate() { |
- DCHECK(slots_buffer_ == NULL); |
- SetFlag(EVACUATION_CANDIDATE); |
- } |
- |
- void ClearEvacuationCandidate() { |
- DCHECK(slots_buffer_ == NULL); |
- ClearFlag(EVACUATION_CANDIDATE); |
- } |
- |
- Address area_start() { return area_start_; } |
- Address area_end() { return area_end_; } |
- int area_size() { |
- return static_cast<int>(area_end() - area_start()); |
- } |
- bool CommitArea(size_t requested); |
- |
- // Approximate amount of physical memory committed for this chunk. |
- size_t CommittedPhysicalMemory() { |
- return high_water_mark_; |
- } |
- |
- static inline void UpdateHighWaterMark(Address mark); |
- |
- protected: |
- size_t size_; |
- intptr_t flags_; |
- |
- // Start and end of allocatable memory on this chunk. |
- Address area_start_; |
- Address area_end_; |
- |
- // If the chunk needs to remember its memory reservation, it is stored here. |
- base::VirtualMemory reservation_; |
- // The identity of the owning space. This is tagged as a failure pointer, but |
- // no failure can be in an object, so this can be distinguished from any entry |
- // in a fixed array. |
- Address owner_; |
- Heap* heap_; |
- // Used by the store buffer to keep track of which pages to mark scan-on- |
- // scavenge. |
- int store_buffer_counter_; |
- // Count of bytes marked black on page. |
- int live_byte_count_; |
- SlotsBuffer* slots_buffer_; |
- SkipList* skip_list_; |
- intptr_t write_barrier_counter_; |
- // Used by the incremental marker to keep track of the scanning progress in |
- // large objects that have a progress bar and are scanned in increments. |
- int progress_bar_; |
- // Assuming the initial allocation on a page is sequential, |
- // count highest number of bytes ever allocated on the page. |
- int high_water_mark_; |
- |
- base::AtomicWord parallel_sweeping_; |
- |
- // PagedSpace free-list statistics. |
- intptr_t available_in_small_free_list_; |
- intptr_t available_in_medium_free_list_; |
- intptr_t available_in_large_free_list_; |
- intptr_t available_in_huge_free_list_; |
- intptr_t non_available_small_blocks_; |
- |
- static MemoryChunk* Initialize(Heap* heap, |
- Address base, |
- size_t size, |
- Address area_start, |
- Address area_end, |
- Executability executable, |
- Space* owner); |
- |
- private: |
- // next_chunk_ holds a pointer of type MemoryChunk |
- base::AtomicWord next_chunk_; |
- // prev_chunk_ holds a pointer of type MemoryChunk |
- base::AtomicWord prev_chunk_; |
- |
- friend class MemoryAllocator; |
-}; |
- |
- |
-STATIC_ASSERT(sizeof(MemoryChunk) <= MemoryChunk::kHeaderSize); |
- |
- |
-// ----------------------------------------------------------------------------- |
-// A page is a memory chunk of a size 1MB. Large object pages may be larger. |
-// |
-// The only way to get a page pointer is by calling factory methods: |
-// Page* p = Page::FromAddress(addr); or |
-// Page* p = Page::FromAllocationTop(top); |
-class Page : public MemoryChunk { |
- public: |
- // Returns the page containing a given address. The address ranges |
- // from [page_addr .. page_addr + kPageSize[ |
- // This only works if the object is in fact in a page. See also MemoryChunk:: |
- // FromAddress() and FromAnyAddress(). |
- INLINE(static Page* FromAddress(Address a)) { |
- return reinterpret_cast<Page*>(OffsetFrom(a) & ~kPageAlignmentMask); |
- } |
- |
- // Returns the page containing an allocation top. Because an allocation |
- // top address can be the upper bound of the page, we need to subtract |
- // it with kPointerSize first. The address ranges from |
- // [page_addr + kObjectStartOffset .. page_addr + kPageSize]. |
- INLINE(static Page* FromAllocationTop(Address top)) { |
- Page* p = FromAddress(top - kPointerSize); |
- return p; |
- } |
- |
- // Returns the next page in the chain of pages owned by a space. |
- inline Page* next_page(); |
- inline Page* prev_page(); |
- inline void set_next_page(Page* page); |
- inline void set_prev_page(Page* page); |
- |
- // Checks whether an address is page aligned. |
- static bool IsAlignedToPageSize(Address a) { |
- return 0 == (OffsetFrom(a) & kPageAlignmentMask); |
- } |
- |
- // Returns the offset of a given address to this page. |
- INLINE(int Offset(Address a)) { |
- int offset = static_cast<int>(a - address()); |
- return offset; |
- } |
- |
- // Returns the address for a given offset to the this page. |
- Address OffsetToAddress(int offset) { |
- DCHECK_PAGE_OFFSET(offset); |
- return address() + offset; |
- } |
- |
- // --------------------------------------------------------------------- |
- |
- // Page size in bytes. This must be a multiple of the OS page size. |
- static const int kPageSize = 1 << kPageSizeBits; |
- |
- // Maximum object size that fits in a page. Objects larger than that size |
- // are allocated in large object space and are never moved in memory. This |
- // also applies to new space allocation, since objects are never migrated |
- // from new space to large object space. Takes double alignment into account. |
- static const int kMaxRegularHeapObjectSize = kPageSize - kObjectStartOffset; |
- |
- // Page size mask. |
- static const intptr_t kPageAlignmentMask = (1 << kPageSizeBits) - 1; |
- |
- inline void ClearGCFields(); |
- |
- static inline Page* Initialize(Heap* heap, |
- MemoryChunk* chunk, |
- Executability executable, |
- PagedSpace* owner); |
- |
- void InitializeAsAnchor(PagedSpace* owner); |
- |
- bool WasSweptPrecisely() { return IsFlagSet(WAS_SWEPT_PRECISELY); } |
- bool WasSweptConservatively() { return IsFlagSet(WAS_SWEPT_CONSERVATIVELY); } |
- bool WasSwept() { return WasSweptPrecisely() || WasSweptConservatively(); } |
- |
- void MarkSweptPrecisely() { SetFlag(WAS_SWEPT_PRECISELY); } |
- void MarkSweptConservatively() { SetFlag(WAS_SWEPT_CONSERVATIVELY); } |
- |
- void ClearSweptPrecisely() { ClearFlag(WAS_SWEPT_PRECISELY); } |
- void ClearSweptConservatively() { ClearFlag(WAS_SWEPT_CONSERVATIVELY); } |
- |
- void ResetFreeListStatistics(); |
- |
-#define FRAGMENTATION_STATS_ACCESSORS(type, name) \ |
- type name() { return name##_; } \ |
- void set_##name(type name) { name##_ = name; } \ |
- void add_##name(type name) { name##_ += name; } |
- |
- FRAGMENTATION_STATS_ACCESSORS(intptr_t, non_available_small_blocks) |
- FRAGMENTATION_STATS_ACCESSORS(intptr_t, available_in_small_free_list) |
- FRAGMENTATION_STATS_ACCESSORS(intptr_t, available_in_medium_free_list) |
- FRAGMENTATION_STATS_ACCESSORS(intptr_t, available_in_large_free_list) |
- FRAGMENTATION_STATS_ACCESSORS(intptr_t, available_in_huge_free_list) |
- |
-#undef FRAGMENTATION_STATS_ACCESSORS |
- |
-#ifdef DEBUG |
- void Print(); |
-#endif // DEBUG |
- |
- friend class MemoryAllocator; |
-}; |
- |
- |
-STATIC_ASSERT(sizeof(Page) <= MemoryChunk::kHeaderSize); |
- |
- |
-class LargePage : public MemoryChunk { |
- public: |
- HeapObject* GetObject() { |
- return HeapObject::FromAddress(area_start()); |
- } |
- |
- inline LargePage* next_page() const { |
- return static_cast<LargePage*>(next_chunk()); |
- } |
- |
- inline void set_next_page(LargePage* page) { |
- set_next_chunk(page); |
- } |
- private: |
- static inline LargePage* Initialize(Heap* heap, MemoryChunk* chunk); |
- |
- friend class MemoryAllocator; |
-}; |
- |
-STATIC_ASSERT(sizeof(LargePage) <= MemoryChunk::kHeaderSize); |
- |
-// ---------------------------------------------------------------------------- |
-// Space is the abstract superclass for all allocation spaces. |
-class Space : public Malloced { |
- public: |
- Space(Heap* heap, AllocationSpace id, Executability executable) |
- : heap_(heap), id_(id), executable_(executable) {} |
- |
- virtual ~Space() {} |
- |
- Heap* heap() const { return heap_; } |
- |
- // Does the space need executable memory? |
- Executability executable() { return executable_; } |
- |
- // Identity used in error reporting. |
- AllocationSpace identity() { return id_; } |
- |
- // Returns allocated size. |
- virtual intptr_t Size() = 0; |
- |
- // Returns size of objects. Can differ from the allocated size |
- // (e.g. see LargeObjectSpace). |
- virtual intptr_t SizeOfObjects() { return Size(); } |
- |
- virtual int RoundSizeDownToObjectAlignment(int size) { |
- if (id_ == CODE_SPACE) { |
- return RoundDown(size, kCodeAlignment); |
- } else { |
- return RoundDown(size, kPointerSize); |
- } |
- } |
- |
-#ifdef DEBUG |
- virtual void Print() = 0; |
-#endif |
- |
- private: |
- Heap* heap_; |
- AllocationSpace id_; |
- Executability executable_; |
-}; |
- |
- |
-// ---------------------------------------------------------------------------- |
-// All heap objects containing executable code (code objects) must be allocated |
-// from a 2 GB range of memory, so that they can call each other using 32-bit |
-// displacements. This happens automatically on 32-bit platforms, where 32-bit |
-// displacements cover the entire 4GB virtual address space. On 64-bit |
-// platforms, we support this using the CodeRange object, which reserves and |
-// manages a range of virtual memory. |
-class CodeRange { |
- public: |
- explicit CodeRange(Isolate* isolate); |
- ~CodeRange() { TearDown(); } |
- |
- // Reserves a range of virtual memory, but does not commit any of it. |
- // Can only be called once, at heap initialization time. |
- // Returns false on failure. |
- bool SetUp(size_t requested_size); |
- |
- // Frees the range of virtual memory, and frees the data structures used to |
- // manage it. |
- void TearDown(); |
- |
- bool valid() { return code_range_ != NULL; } |
- Address start() { |
- DCHECK(valid()); |
- return static_cast<Address>(code_range_->address()); |
- } |
- bool contains(Address address) { |
- if (!valid()) return false; |
- Address start = static_cast<Address>(code_range_->address()); |
- return start <= address && address < start + code_range_->size(); |
- } |
- |
- // Allocates a chunk of memory from the large-object portion of |
- // the code range. On platforms with no separate code range, should |
- // not be called. |
- MUST_USE_RESULT Address AllocateRawMemory(const size_t requested_size, |
- const size_t commit_size, |
- size_t* allocated); |
- bool CommitRawMemory(Address start, size_t length); |
- bool UncommitRawMemory(Address start, size_t length); |
- void FreeRawMemory(Address buf, size_t length); |
- |
- private: |
- Isolate* isolate_; |
- |
- // The reserved range of virtual memory that all code objects are put in. |
- base::VirtualMemory* code_range_; |
- // Plain old data class, just a struct plus a constructor. |
- class FreeBlock { |
- public: |
- FreeBlock(Address start_arg, size_t size_arg) |
- : start(start_arg), size(size_arg) { |
- DCHECK(IsAddressAligned(start, MemoryChunk::kAlignment)); |
- DCHECK(size >= static_cast<size_t>(Page::kPageSize)); |
- } |
- FreeBlock(void* start_arg, size_t size_arg) |
- : start(static_cast<Address>(start_arg)), size(size_arg) { |
- DCHECK(IsAddressAligned(start, MemoryChunk::kAlignment)); |
- DCHECK(size >= static_cast<size_t>(Page::kPageSize)); |
- } |
- |
- Address start; |
- size_t size; |
- }; |
- |
- // Freed blocks of memory are added to the free list. When the allocation |
- // list is exhausted, the free list is sorted and merged to make the new |
- // allocation list. |
- List<FreeBlock> free_list_; |
- // Memory is allocated from the free blocks on the allocation list. |
- // The block at current_allocation_block_index_ is the current block. |
- List<FreeBlock> allocation_list_; |
- int current_allocation_block_index_; |
- |
- // Finds a block on the allocation list that contains at least the |
- // requested amount of memory. If none is found, sorts and merges |
- // the existing free memory blocks, and searches again. |
- // If none can be found, returns false. |
- bool GetNextAllocationBlock(size_t requested); |
- // Compares the start addresses of two free blocks. |
- static int CompareFreeBlockAddress(const FreeBlock* left, |
- const FreeBlock* right); |
- |
- DISALLOW_COPY_AND_ASSIGN(CodeRange); |
-}; |
- |
- |
-class SkipList { |
- public: |
- SkipList() { |
- Clear(); |
- } |
- |
- void Clear() { |
- for (int idx = 0; idx < kSize; idx++) { |
- starts_[idx] = reinterpret_cast<Address>(-1); |
- } |
- } |
- |
- Address StartFor(Address addr) { |
- return starts_[RegionNumber(addr)]; |
- } |
- |
- void AddObject(Address addr, int size) { |
- int start_region = RegionNumber(addr); |
- int end_region = RegionNumber(addr + size - kPointerSize); |
- for (int idx = start_region; idx <= end_region; idx++) { |
- if (starts_[idx] > addr) starts_[idx] = addr; |
- } |
- } |
- |
- static inline int RegionNumber(Address addr) { |
- return (OffsetFrom(addr) & Page::kPageAlignmentMask) >> kRegionSizeLog2; |
- } |
- |
- static void Update(Address addr, int size) { |
- Page* page = Page::FromAddress(addr); |
- SkipList* list = page->skip_list(); |
- if (list == NULL) { |
- list = new SkipList(); |
- page->set_skip_list(list); |
- } |
- |
- list->AddObject(addr, size); |
- } |
- |
- private: |
- static const int kRegionSizeLog2 = 13; |
- static const int kRegionSize = 1 << kRegionSizeLog2; |
- static const int kSize = Page::kPageSize / kRegionSize; |
- |
- STATIC_ASSERT(Page::kPageSize % kRegionSize == 0); |
- |
- Address starts_[kSize]; |
-}; |
- |
- |
-// ---------------------------------------------------------------------------- |
-// A space acquires chunks of memory from the operating system. The memory |
-// allocator allocated and deallocates pages for the paged heap spaces and large |
-// pages for large object space. |
-// |
-// Each space has to manage it's own pages. |
-// |
-class MemoryAllocator { |
- public: |
- explicit MemoryAllocator(Isolate* isolate); |
- |
- // Initializes its internal bookkeeping structures. |
- // Max capacity of the total space and executable memory limit. |
- bool SetUp(intptr_t max_capacity, intptr_t capacity_executable); |
- |
- void TearDown(); |
- |
- Page* AllocatePage( |
- intptr_t size, PagedSpace* owner, Executability executable); |
- |
- LargePage* AllocateLargePage( |
- intptr_t object_size, Space* owner, Executability executable); |
- |
- void Free(MemoryChunk* chunk); |
- |
- // Returns the maximum available bytes of heaps. |
- intptr_t Available() { return capacity_ < size_ ? 0 : capacity_ - size_; } |
- |
- // Returns allocated spaces in bytes. |
- intptr_t Size() { return size_; } |
- |
- // Returns the maximum available executable bytes of heaps. |
- intptr_t AvailableExecutable() { |
- if (capacity_executable_ < size_executable_) return 0; |
- return capacity_executable_ - size_executable_; |
- } |
- |
- // Returns allocated executable spaces in bytes. |
- intptr_t SizeExecutable() { return size_executable_; } |
- |
- // Returns maximum available bytes that the old space can have. |
- intptr_t MaxAvailable() { |
- return (Available() / Page::kPageSize) * Page::kMaxRegularHeapObjectSize; |
- } |
- |
- // Returns an indication of whether a pointer is in a space that has |
- // been allocated by this MemoryAllocator. |
- V8_INLINE bool IsOutsideAllocatedSpace(const void* address) const { |
- return address < lowest_ever_allocated_ || |
- address >= highest_ever_allocated_; |
- } |
- |
-#ifdef DEBUG |
- // Reports statistic info of the space. |
- void ReportStatistics(); |
-#endif |
- |
- // Returns a MemoryChunk in which the memory region from commit_area_size to |
- // reserve_area_size of the chunk area is reserved but not committed, it |
- // could be committed later by calling MemoryChunk::CommitArea. |
- MemoryChunk* AllocateChunk(intptr_t reserve_area_size, |
- intptr_t commit_area_size, |
- Executability executable, |
- Space* space); |
- |
- Address ReserveAlignedMemory(size_t requested, |
- size_t alignment, |
- base::VirtualMemory* controller); |
- Address AllocateAlignedMemory(size_t reserve_size, |
- size_t commit_size, |
- size_t alignment, |
- Executability executable, |
- base::VirtualMemory* controller); |
- |
- bool CommitMemory(Address addr, size_t size, Executability executable); |
- |
- void FreeMemory(base::VirtualMemory* reservation, Executability executable); |
- void FreeMemory(Address addr, size_t size, Executability executable); |
- |
- // Commit a contiguous block of memory from the initial chunk. Assumes that |
- // the address is not NULL, the size is greater than zero, and that the |
- // block is contained in the initial chunk. Returns true if it succeeded |
- // and false otherwise. |
- bool CommitBlock(Address start, size_t size, Executability executable); |
- |
- // Uncommit a contiguous block of memory [start..(start+size)[. |
- // start is not NULL, the size is greater than zero, and the |
- // block is contained in the initial chunk. Returns true if it succeeded |
- // and false otherwise. |
- bool UncommitBlock(Address start, size_t size); |
- |
- // Zaps a contiguous block of memory [start..(start+size)[ thus |
- // filling it up with a recognizable non-NULL bit pattern. |
- void ZapBlock(Address start, size_t size); |
- |
- void PerformAllocationCallback(ObjectSpace space, |
- AllocationAction action, |
- size_t size); |
- |
- void AddMemoryAllocationCallback(MemoryAllocationCallback callback, |
- ObjectSpace space, |
- AllocationAction action); |
- |
- void RemoveMemoryAllocationCallback( |
- MemoryAllocationCallback callback); |
- |
- bool MemoryAllocationCallbackRegistered( |
- MemoryAllocationCallback callback); |
- |
- static int CodePageGuardStartOffset(); |
- |
- static int CodePageGuardSize(); |
- |
- static int CodePageAreaStartOffset(); |
- |
- static int CodePageAreaEndOffset(); |
- |
- static int CodePageAreaSize() { |
- return CodePageAreaEndOffset() - CodePageAreaStartOffset(); |
- } |
- |
- MUST_USE_RESULT bool CommitExecutableMemory(base::VirtualMemory* vm, |
- Address start, |
- size_t commit_size, |
- size_t reserved_size); |
- |
- private: |
- Isolate* isolate_; |
- |
- // Maximum space size in bytes. |
- size_t capacity_; |
- // Maximum subset of capacity_ that can be executable |
- size_t capacity_executable_; |
- |
- // Allocated space size in bytes. |
- size_t size_; |
- // Allocated executable space size in bytes. |
- size_t size_executable_; |
- |
- // We keep the lowest and highest addresses allocated as a quick way |
- // of determining that pointers are outside the heap. The estimate is |
- // conservative, i.e. not all addrsses in 'allocated' space are allocated |
- // to our heap. The range is [lowest, highest[, inclusive on the low end |
- // and exclusive on the high end. |
- void* lowest_ever_allocated_; |
- void* highest_ever_allocated_; |
- |
- struct MemoryAllocationCallbackRegistration { |
- MemoryAllocationCallbackRegistration(MemoryAllocationCallback callback, |
- ObjectSpace space, |
- AllocationAction action) |
- : callback(callback), space(space), action(action) { |
- } |
- MemoryAllocationCallback callback; |
- ObjectSpace space; |
- AllocationAction action; |
- }; |
- |
- // A List of callback that are triggered when memory is allocated or free'd |
- List<MemoryAllocationCallbackRegistration> |
- memory_allocation_callbacks_; |
- |
- // Initializes pages in a chunk. Returns the first page address. |
- // This function and GetChunkId() are provided for the mark-compact |
- // collector to rebuild page headers in the from space, which is |
- // used as a marking stack and its page headers are destroyed. |
- Page* InitializePagesInChunk(int chunk_id, int pages_in_chunk, |
- PagedSpace* owner); |
- |
- void UpdateAllocatedSpaceLimits(void* low, void* high) { |
- lowest_ever_allocated_ = Min(lowest_ever_allocated_, low); |
- highest_ever_allocated_ = Max(highest_ever_allocated_, high); |
- } |
- |
- DISALLOW_IMPLICIT_CONSTRUCTORS(MemoryAllocator); |
-}; |
- |
- |
-// ----------------------------------------------------------------------------- |
-// Interface for heap object iterator to be implemented by all object space |
-// object iterators. |
-// |
-// NOTE: The space specific object iterators also implements the own next() |
-// method which is used to avoid using virtual functions |
-// iterating a specific space. |
- |
-class ObjectIterator : public Malloced { |
- public: |
- virtual ~ObjectIterator() { } |
- |
- virtual HeapObject* next_object() = 0; |
-}; |
- |
- |
-// ----------------------------------------------------------------------------- |
-// Heap object iterator in new/old/map spaces. |
-// |
-// A HeapObjectIterator iterates objects from the bottom of the given space |
-// to its top or from the bottom of the given page to its top. |
-// |
-// If objects are allocated in the page during iteration the iterator may |
-// or may not iterate over those objects. The caller must create a new |
-// iterator in order to be sure to visit these new objects. |
-class HeapObjectIterator: public ObjectIterator { |
- public: |
- // Creates a new object iterator in a given space. |
- // If the size function is not given, the iterator calls the default |
- // Object::Size(). |
- explicit HeapObjectIterator(PagedSpace* space); |
- HeapObjectIterator(PagedSpace* space, HeapObjectCallback size_func); |
- HeapObjectIterator(Page* page, HeapObjectCallback size_func); |
- |
- // Advance to the next object, skipping free spaces and other fillers and |
- // skipping the special garbage section of which there is one per space. |
- // Returns NULL when the iteration has ended. |
- inline HeapObject* Next() { |
- do { |
- HeapObject* next_obj = FromCurrentPage(); |
- if (next_obj != NULL) return next_obj; |
- } while (AdvanceToNextPage()); |
- return NULL; |
- } |
- |
- virtual HeapObject* next_object() { |
- return Next(); |
- } |
- |
- private: |
- enum PageMode { kOnePageOnly, kAllPagesInSpace }; |
- |
- Address cur_addr_; // Current iteration point. |
- Address cur_end_; // End iteration point. |
- HeapObjectCallback size_func_; // Size function or NULL. |
- PagedSpace* space_; |
- PageMode page_mode_; |
- |
- // Fast (inlined) path of next(). |
- inline HeapObject* FromCurrentPage(); |
- |
- // Slow path of next(), goes into the next page. Returns false if the |
- // iteration has ended. |
- bool AdvanceToNextPage(); |
- |
- // Initializes fields. |
- inline void Initialize(PagedSpace* owner, |
- Address start, |
- Address end, |
- PageMode mode, |
- HeapObjectCallback size_func); |
-}; |
- |
- |
-// ----------------------------------------------------------------------------- |
-// A PageIterator iterates the pages in a paged space. |
- |
-class PageIterator BASE_EMBEDDED { |
- public: |
- explicit inline PageIterator(PagedSpace* space); |
- |
- inline bool has_next(); |
- inline Page* next(); |
- |
- private: |
- PagedSpace* space_; |
- Page* prev_page_; // Previous page returned. |
- // Next page that will be returned. Cached here so that we can use this |
- // iterator for operations that deallocate pages. |
- Page* next_page_; |
-}; |
- |
- |
-// ----------------------------------------------------------------------------- |
-// A space has a circular list of pages. The next page can be accessed via |
-// Page::next_page() call. |
- |
-// An abstraction of allocation and relocation pointers in a page-structured |
-// space. |
-class AllocationInfo { |
- public: |
- AllocationInfo() : top_(NULL), limit_(NULL) { |
- } |
- |
- INLINE(void set_top(Address top)) { |
- SLOW_DCHECK(top == NULL || |
- (reinterpret_cast<intptr_t>(top) & HeapObjectTagMask()) == 0); |
- top_ = top; |
- } |
- |
- INLINE(Address top()) const { |
- SLOW_DCHECK(top_ == NULL || |
- (reinterpret_cast<intptr_t>(top_) & HeapObjectTagMask()) == 0); |
- return top_; |
- } |
- |
- Address* top_address() { |
- return &top_; |
- } |
- |
- INLINE(void set_limit(Address limit)) { |
- SLOW_DCHECK(limit == NULL || |
- (reinterpret_cast<intptr_t>(limit) & HeapObjectTagMask()) == 0); |
- limit_ = limit; |
- } |
- |
- INLINE(Address limit()) const { |
- SLOW_DCHECK(limit_ == NULL || |
- (reinterpret_cast<intptr_t>(limit_) & HeapObjectTagMask()) == 0); |
- return limit_; |
- } |
- |
- Address* limit_address() { |
- return &limit_; |
- } |
- |
-#ifdef DEBUG |
- bool VerifyPagedAllocation() { |
- return (Page::FromAllocationTop(top_) == Page::FromAllocationTop(limit_)) |
- && (top_ <= limit_); |
- } |
-#endif |
- |
- private: |
- // Current allocation top. |
- Address top_; |
- // Current allocation limit. |
- Address limit_; |
-}; |
- |
- |
-// An abstraction of the accounting statistics of a page-structured space. |
-// The 'capacity' of a space is the number of object-area bytes (i.e., not |
-// including page bookkeeping structures) currently in the space. The 'size' |
-// of a space is the number of allocated bytes, the 'waste' in the space is |
-// the number of bytes that are not allocated and not available to |
-// allocation without reorganizing the space via a GC (e.g. small blocks due |
-// to internal fragmentation, top of page areas in map space), and the bytes |
-// 'available' is the number of unallocated bytes that are not waste. The |
-// capacity is the sum of size, waste, and available. |
-// |
-// The stats are only set by functions that ensure they stay balanced. These |
-// functions increase or decrease one of the non-capacity stats in |
-// conjunction with capacity, or else they always balance increases and |
-// decreases to the non-capacity stats. |
-class AllocationStats BASE_EMBEDDED { |
- public: |
- AllocationStats() { Clear(); } |
- |
- // Zero out all the allocation statistics (i.e., no capacity). |
- void Clear() { |
- capacity_ = 0; |
- max_capacity_ = 0; |
- size_ = 0; |
- waste_ = 0; |
- } |
- |
- void ClearSizeWaste() { |
- size_ = capacity_; |
- waste_ = 0; |
- } |
- |
- // Reset the allocation statistics (i.e., available = capacity with no |
- // wasted or allocated bytes). |
- void Reset() { |
- size_ = 0; |
- waste_ = 0; |
- } |
- |
- // Accessors for the allocation statistics. |
- intptr_t Capacity() { return capacity_; } |
- intptr_t MaxCapacity() { return max_capacity_; } |
- intptr_t Size() { return size_; } |
- intptr_t Waste() { return waste_; } |
- |
- // Grow the space by adding available bytes. They are initially marked as |
- // being in use (part of the size), but will normally be immediately freed, |
- // putting them on the free list and removing them from size_. |
- void ExpandSpace(int size_in_bytes) { |
- capacity_ += size_in_bytes; |
- size_ += size_in_bytes; |
- if (capacity_ > max_capacity_) { |
- max_capacity_ = capacity_; |
- } |
- DCHECK(size_ >= 0); |
- } |
- |
- // Shrink the space by removing available bytes. Since shrinking is done |
- // during sweeping, bytes have been marked as being in use (part of the size) |
- // and are hereby freed. |
- void ShrinkSpace(int size_in_bytes) { |
- capacity_ -= size_in_bytes; |
- size_ -= size_in_bytes; |
- DCHECK(size_ >= 0); |
- } |
- |
- // Allocate from available bytes (available -> size). |
- void AllocateBytes(intptr_t size_in_bytes) { |
- size_ += size_in_bytes; |
- DCHECK(size_ >= 0); |
- } |
- |
- // Free allocated bytes, making them available (size -> available). |
- void DeallocateBytes(intptr_t size_in_bytes) { |
- size_ -= size_in_bytes; |
- DCHECK(size_ >= 0); |
- } |
- |
- // Waste free bytes (available -> waste). |
- void WasteBytes(int size_in_bytes) { |
- DCHECK(size_in_bytes >= 0); |
- waste_ += size_in_bytes; |
- } |
- |
- private: |
- intptr_t capacity_; |
- intptr_t max_capacity_; |
- intptr_t size_; |
- intptr_t waste_; |
-}; |
- |
- |
-// ----------------------------------------------------------------------------- |
-// Free lists for old object spaces |
-// |
-// Free-list nodes are free blocks in the heap. They look like heap objects |
-// (free-list node pointers have the heap object tag, and they have a map like |
-// a heap object). They have a size and a next pointer. The next pointer is |
-// the raw address of the next free list node (or NULL). |
-class FreeListNode: public HeapObject { |
- public: |
- // Obtain a free-list node from a raw address. This is not a cast because |
- // it does not check nor require that the first word at the address is a map |
- // pointer. |
- static FreeListNode* FromAddress(Address address) { |
- return reinterpret_cast<FreeListNode*>(HeapObject::FromAddress(address)); |
- } |
- |
- static inline bool IsFreeListNode(HeapObject* object); |
- |
- // Set the size in bytes, which can be read with HeapObject::Size(). This |
- // function also writes a map to the first word of the block so that it |
- // looks like a heap object to the garbage collector and heap iteration |
- // functions. |
- void set_size(Heap* heap, int size_in_bytes); |
- |
- // Accessors for the next field. |
- inline FreeListNode* next(); |
- inline FreeListNode** next_address(); |
- inline void set_next(FreeListNode* next); |
- |
- inline void Zap(); |
- |
- static inline FreeListNode* cast(Object* object) { |
- return reinterpret_cast<FreeListNode*>(object); |
- } |
- |
- private: |
- static const int kNextOffset = POINTER_SIZE_ALIGN(FreeSpace::kHeaderSize); |
- |
- DISALLOW_IMPLICIT_CONSTRUCTORS(FreeListNode); |
-}; |
- |
- |
-// The free list category holds a pointer to the top element and a pointer to |
-// the end element of the linked list of free memory blocks. |
-class FreeListCategory { |
- public: |
- FreeListCategory() : |
- top_(0), |
- end_(NULL), |
- available_(0) {} |
- |
- intptr_t Concatenate(FreeListCategory* category); |
- |
- void Reset(); |
- |
- void Free(FreeListNode* node, int size_in_bytes); |
- |
- FreeListNode* PickNodeFromList(int *node_size); |
- FreeListNode* PickNodeFromList(int size_in_bytes, int *node_size); |
- |
- intptr_t EvictFreeListItemsInList(Page* p); |
- bool ContainsPageFreeListItemsInList(Page* p); |
- |
- void RepairFreeList(Heap* heap); |
- |
- FreeListNode* top() const { |
- return reinterpret_cast<FreeListNode*>(base::NoBarrier_Load(&top_)); |
- } |
- |
- void set_top(FreeListNode* top) { |
- base::NoBarrier_Store(&top_, reinterpret_cast<base::AtomicWord>(top)); |
- } |
- |
- FreeListNode** GetEndAddress() { return &end_; } |
- FreeListNode* end() const { return end_; } |
- void set_end(FreeListNode* end) { end_ = end; } |
- |
- int* GetAvailableAddress() { return &available_; } |
- int available() const { return available_; } |
- void set_available(int available) { available_ = available; } |
- |
- base::Mutex* mutex() { return &mutex_; } |
- |
- bool IsEmpty() { |
- return top() == 0; |
- } |
- |
-#ifdef DEBUG |
- intptr_t SumFreeList(); |
- int FreeListLength(); |
-#endif |
- |
- private: |
- // top_ points to the top FreeListNode* in the free list category. |
- base::AtomicWord top_; |
- FreeListNode* end_; |
- base::Mutex mutex_; |
- |
- // Total available bytes in all blocks of this free list category. |
- int available_; |
-}; |
- |
- |
-// The free list for the old space. The free list is organized in such a way |
-// as to encourage objects allocated around the same time to be near each |
-// other. The normal way to allocate is intended to be by bumping a 'top' |
-// pointer until it hits a 'limit' pointer. When the limit is hit we need to |
-// find a new space to allocate from. This is done with the free list, which |
-// is divided up into rough categories to cut down on waste. Having finer |
-// categories would scatter allocation more. |
- |
-// The old space free list is organized in categories. |
-// 1-31 words: Such small free areas are discarded for efficiency reasons. |
-// They can be reclaimed by the compactor. However the distance between top |
-// and limit may be this small. |
-// 32-255 words: There is a list of spaces this large. It is used for top and |
-// limit when the object we need to allocate is 1-31 words in size. These |
-// spaces are called small. |
-// 256-2047 words: There is a list of spaces this large. It is used for top and |
-// limit when the object we need to allocate is 32-255 words in size. These |
-// spaces are called medium. |
-// 1048-16383 words: There is a list of spaces this large. It is used for top |
-// and limit when the object we need to allocate is 256-2047 words in size. |
-// These spaces are call large. |
-// At least 16384 words. This list is for objects of 2048 words or larger. |
-// Empty pages are added to this list. These spaces are called huge. |
-class FreeList { |
- public: |
- explicit FreeList(PagedSpace* owner); |
- |
- intptr_t Concatenate(FreeList* free_list); |
- |
- // Clear the free list. |
- void Reset(); |
- |
- // Return the number of bytes available on the free list. |
- intptr_t available() { |
- return small_list_.available() + medium_list_.available() + |
- large_list_.available() + huge_list_.available(); |
- } |
- |
- // Place a node on the free list. The block of size 'size_in_bytes' |
- // starting at 'start' is placed on the free list. The return value is the |
- // number of bytes that have been lost due to internal fragmentation by |
- // freeing the block. Bookkeeping information will be written to the block, |
- // i.e., its contents will be destroyed. The start address should be word |
- // aligned, and the size should be a non-zero multiple of the word size. |
- int Free(Address start, int size_in_bytes); |
- |
- // This method returns how much memory can be allocated after freeing |
- // maximum_freed memory. |
- static inline int GuaranteedAllocatable(int maximum_freed) { |
- if (maximum_freed < kSmallListMin) { |
- return 0; |
- } else if (maximum_freed <= kSmallListMax) { |
- return kSmallAllocationMax; |
- } else if (maximum_freed <= kMediumListMax) { |
- return kMediumAllocationMax; |
- } else if (maximum_freed <= kLargeListMax) { |
- return kLargeAllocationMax; |
- } |
- return maximum_freed; |
- } |
- |
- // Allocate a block of size 'size_in_bytes' from the free list. The block |
- // is unitialized. A failure is returned if no block is available. The |
- // number of bytes lost to fragmentation is returned in the output parameter |
- // 'wasted_bytes'. The size should be a non-zero multiple of the word size. |
- MUST_USE_RESULT HeapObject* Allocate(int size_in_bytes); |
- |
- bool IsEmpty() { |
- return small_list_.IsEmpty() && medium_list_.IsEmpty() && |
- large_list_.IsEmpty() && huge_list_.IsEmpty(); |
- } |
- |
-#ifdef DEBUG |
- void Zap(); |
- intptr_t SumFreeLists(); |
- bool IsVeryLong(); |
-#endif |
- |
- // Used after booting the VM. |
- void RepairLists(Heap* heap); |
- |
- intptr_t EvictFreeListItems(Page* p); |
- bool ContainsPageFreeListItems(Page* p); |
- |
- FreeListCategory* small_list() { return &small_list_; } |
- FreeListCategory* medium_list() { return &medium_list_; } |
- FreeListCategory* large_list() { return &large_list_; } |
- FreeListCategory* huge_list() { return &huge_list_; } |
- |
- private: |
- // The size range of blocks, in bytes. |
- static const int kMinBlockSize = 3 * kPointerSize; |
- static const int kMaxBlockSize = Page::kMaxRegularHeapObjectSize; |
- |
- FreeListNode* FindNodeFor(int size_in_bytes, int* node_size); |
- |
- PagedSpace* owner_; |
- Heap* heap_; |
- |
- static const int kSmallListMin = 0x20 * kPointerSize; |
- static const int kSmallListMax = 0xff * kPointerSize; |
- static const int kMediumListMax = 0x7ff * kPointerSize; |
- static const int kLargeListMax = 0x3fff * kPointerSize; |
- static const int kSmallAllocationMax = kSmallListMin - kPointerSize; |
- static const int kMediumAllocationMax = kSmallListMax; |
- static const int kLargeAllocationMax = kMediumListMax; |
- FreeListCategory small_list_; |
- FreeListCategory medium_list_; |
- FreeListCategory large_list_; |
- FreeListCategory huge_list_; |
- |
- DISALLOW_IMPLICIT_CONSTRUCTORS(FreeList); |
-}; |
- |
- |
-class AllocationResult { |
- public: |
- // Implicit constructor from Object*. |
- AllocationResult(Object* object) : object_(object), // NOLINT |
- retry_space_(INVALID_SPACE) { } |
- |
- AllocationResult() : object_(NULL), |
- retry_space_(INVALID_SPACE) { } |
- |
- static inline AllocationResult Retry(AllocationSpace space = NEW_SPACE) { |
- return AllocationResult(space); |
- } |
- |
- inline bool IsRetry() { return retry_space_ != INVALID_SPACE; } |
- |
- template <typename T> |
- bool To(T** obj) { |
- if (IsRetry()) return false; |
- *obj = T::cast(object_); |
- return true; |
- } |
- |
- Object* ToObjectChecked() { |
- CHECK(!IsRetry()); |
- return object_; |
- } |
- |
- AllocationSpace RetrySpace() { |
- DCHECK(IsRetry()); |
- return retry_space_; |
- } |
- |
- private: |
- explicit AllocationResult(AllocationSpace space) : object_(NULL), |
- retry_space_(space) { } |
- |
- Object* object_; |
- AllocationSpace retry_space_; |
-}; |
- |
- |
-class PagedSpace : public Space { |
- public: |
- // Creates a space with a maximum capacity, and an id. |
- PagedSpace(Heap* heap, |
- intptr_t max_capacity, |
- AllocationSpace id, |
- Executability executable); |
- |
- virtual ~PagedSpace() {} |
- |
- // Set up the space using the given address range of virtual memory (from |
- // the memory allocator's initial chunk) if possible. If the block of |
- // addresses is not big enough to contain a single page-aligned page, a |
- // fresh chunk will be allocated. |
- bool SetUp(); |
- |
- // Returns true if the space has been successfully set up and not |
- // subsequently torn down. |
- bool HasBeenSetUp(); |
- |
- // Cleans up the space, frees all pages in this space except those belonging |
- // to the initial chunk, uncommits addresses in the initial chunk. |
- void TearDown(); |
- |
- // Checks whether an object/address is in this space. |
- inline bool Contains(Address a); |
- bool Contains(HeapObject* o) { return Contains(o->address()); } |
- |
- // Given an address occupied by a live object, return that object if it is |
- // in this space, or a Smi if it is not. The implementation iterates over |
- // objects in the page containing the address, the cost is linear in the |
- // number of objects in the page. It may be slow. |
- Object* FindObject(Address addr); |
- |
- // During boot the free_space_map is created, and afterwards we may need |
- // to write it into the free list nodes that were already created. |
- void RepairFreeListsAfterBoot(); |
- |
- // Prepares for a mark-compact GC. |
- void PrepareForMarkCompact(); |
- |
- // Current capacity without growing (Size() + Available()). |
- intptr_t Capacity() { return accounting_stats_.Capacity(); } |
- |
- // Total amount of memory committed for this space. For paged |
- // spaces this equals the capacity. |
- intptr_t CommittedMemory() { return Capacity(); } |
- |
- // The maximum amount of memory ever committed for this space. |
- intptr_t MaximumCommittedMemory() { return accounting_stats_.MaxCapacity(); } |
- |
- // Approximate amount of physical memory committed for this space. |
- size_t CommittedPhysicalMemory(); |
- |
- struct SizeStats { |
- intptr_t Total() { |
- return small_size_ + medium_size_ + large_size_ + huge_size_; |
- } |
- |
- intptr_t small_size_; |
- intptr_t medium_size_; |
- intptr_t large_size_; |
- intptr_t huge_size_; |
- }; |
- |
- void ObtainFreeListStatistics(Page* p, SizeStats* sizes); |
- void ResetFreeListStatistics(); |
- |
- // Sets the capacity, the available space and the wasted space to zero. |
- // The stats are rebuilt during sweeping by adding each page to the |
- // capacity and the size when it is encountered. As free spaces are |
- // discovered during the sweeping they are subtracted from the size and added |
- // to the available and wasted totals. |
- void ClearStats() { |
- accounting_stats_.ClearSizeWaste(); |
- ResetFreeListStatistics(); |
- } |
- |
- // Increases the number of available bytes of that space. |
- void AddToAccountingStats(intptr_t bytes) { |
- accounting_stats_.DeallocateBytes(bytes); |
- } |
- |
- // Available bytes without growing. These are the bytes on the free list. |
- // The bytes in the linear allocation area are not included in this total |
- // because updating the stats would slow down allocation. New pages are |
- // immediately added to the free list so they show up here. |
- intptr_t Available() { return free_list_.available(); } |
- |
- // Allocated bytes in this space. Garbage bytes that were not found due to |
- // concurrent sweeping are counted as being allocated! The bytes in the |
- // current linear allocation area (between top and limit) are also counted |
- // here. |
- virtual intptr_t Size() { return accounting_stats_.Size(); } |
- |
- // As size, but the bytes in lazily swept pages are estimated and the bytes |
- // in the current linear allocation area are not included. |
- virtual intptr_t SizeOfObjects(); |
- |
- // Wasted bytes in this space. These are just the bytes that were thrown away |
- // due to being too small to use for allocation. They do not include the |
- // free bytes that were not found at all due to lazy sweeping. |
- virtual intptr_t Waste() { return accounting_stats_.Waste(); } |
- |
- // Returns the allocation pointer in this space. |
- Address top() { return allocation_info_.top(); } |
- Address limit() { return allocation_info_.limit(); } |
- |
- // The allocation top address. |
- Address* allocation_top_address() { |
- return allocation_info_.top_address(); |
- } |
- |
- // The allocation limit address. |
- Address* allocation_limit_address() { |
- return allocation_info_.limit_address(); |
- } |
- |
- // Allocate the requested number of bytes in the space if possible, return a |
- // failure object if not. |
- MUST_USE_RESULT inline AllocationResult AllocateRaw(int size_in_bytes); |
- |
- // Give a block of memory to the space's free list. It might be added to |
- // the free list or accounted as waste. |
- // If add_to_freelist is false then just accounting stats are updated and |
- // no attempt to add area to free list is made. |
- int Free(Address start, int size_in_bytes) { |
- int wasted = free_list_.Free(start, size_in_bytes); |
- accounting_stats_.DeallocateBytes(size_in_bytes); |
- accounting_stats_.WasteBytes(wasted); |
- return size_in_bytes - wasted; |
- } |
- |
- void ResetFreeList() { |
- free_list_.Reset(); |
- } |
- |
- // Set space allocation info. |
- void SetTopAndLimit(Address top, Address limit) { |
- DCHECK(top == limit || |
- Page::FromAddress(top) == Page::FromAddress(limit - 1)); |
- MemoryChunk::UpdateHighWaterMark(allocation_info_.top()); |
- allocation_info_.set_top(top); |
- allocation_info_.set_limit(limit); |
- } |
- |
- // Empty space allocation info, returning unused area to free list. |
- void EmptyAllocationInfo() { |
- // Mark the old linear allocation area with a free space map so it can be |
- // skipped when scanning the heap. |
- int old_linear_size = static_cast<int>(limit() - top()); |
- Free(top(), old_linear_size); |
- SetTopAndLimit(NULL, NULL); |
- } |
- |
- void Allocate(int bytes) { |
- accounting_stats_.AllocateBytes(bytes); |
- } |
- |
- void IncreaseCapacity(int size); |
- |
- // Releases an unused page and shrinks the space. |
- void ReleasePage(Page* page); |
- |
- // The dummy page that anchors the linked list of pages. |
- Page* anchor() { return &anchor_; } |
- |
-#ifdef VERIFY_HEAP |
- // Verify integrity of this space. |
- virtual void Verify(ObjectVisitor* visitor); |
- |
- // Overridden by subclasses to verify space-specific object |
- // properties (e.g., only maps or free-list nodes are in map space). |
- virtual void VerifyObject(HeapObject* obj) {} |
-#endif |
- |
-#ifdef DEBUG |
- // Print meta info and objects in this space. |
- virtual void Print(); |
- |
- // Reports statistics for the space |
- void ReportStatistics(); |
- |
- // Report code object related statistics |
- void CollectCodeStatistics(); |
- static void ReportCodeStatistics(Isolate* isolate); |
- static void ResetCodeStatistics(Isolate* isolate); |
-#endif |
- |
- bool swept_precisely() { return swept_precisely_; } |
- void set_swept_precisely(bool b) { swept_precisely_ = b; } |
- |
- // Evacuation candidates are swept by evacuator. Needs to return a valid |
- // result before _and_ after evacuation has finished. |
- static bool ShouldBeSweptBySweeperThreads(Page* p) { |
- return !p->IsEvacuationCandidate() && |
- !p->IsFlagSet(Page::RESCAN_ON_EVACUATION) && |
- !p->WasSweptPrecisely(); |
- } |
- |
- void IncrementUnsweptFreeBytes(intptr_t by) { |
- unswept_free_bytes_ += by; |
- } |
- |
- void IncreaseUnsweptFreeBytes(Page* p) { |
- DCHECK(ShouldBeSweptBySweeperThreads(p)); |
- unswept_free_bytes_ += (p->area_size() - p->LiveBytes()); |
- } |
- |
- void DecrementUnsweptFreeBytes(intptr_t by) { |
- unswept_free_bytes_ -= by; |
- } |
- |
- void DecreaseUnsweptFreeBytes(Page* p) { |
- DCHECK(ShouldBeSweptBySweeperThreads(p)); |
- unswept_free_bytes_ -= (p->area_size() - p->LiveBytes()); |
- } |
- |
- void ResetUnsweptFreeBytes() { |
- unswept_free_bytes_ = 0; |
- } |
- |
- // This function tries to steal size_in_bytes memory from the sweeper threads |
- // free-lists. If it does not succeed stealing enough memory, it will wait |
- // for the sweeper threads to finish sweeping. |
- // It returns true when sweeping is completed and false otherwise. |
- bool EnsureSweeperProgress(intptr_t size_in_bytes); |
- |
- void set_end_of_unswept_pages(Page* page) { |
- end_of_unswept_pages_ = page; |
- } |
- |
- Page* end_of_unswept_pages() { |
- return end_of_unswept_pages_; |
- } |
- |
- Page* FirstPage() { return anchor_.next_page(); } |
- Page* LastPage() { return anchor_.prev_page(); } |
- |
- void EvictEvacuationCandidatesFromFreeLists(); |
- |
- bool CanExpand(); |
- |
- // Returns the number of total pages in this space. |
- int CountTotalPages(); |
- |
- // Return size of allocatable area on a page in this space. |
- inline int AreaSize() { |
- return area_size_; |
- } |
- |
- void CreateEmergencyMemory(); |
- void FreeEmergencyMemory(); |
- void UseEmergencyMemory(); |
- |
- bool HasEmergencyMemory() { return emergency_memory_ != NULL; } |
- |
- protected: |
- FreeList* free_list() { return &free_list_; } |
- |
- int area_size_; |
- |
- // Maximum capacity of this space. |
- intptr_t max_capacity_; |
- |
- intptr_t SizeOfFirstPage(); |
- |
- // Accounting information for this space. |
- AllocationStats accounting_stats_; |
- |
- // The dummy page that anchors the double linked list of pages. |
- Page anchor_; |
- |
- // The space's free list. |
- FreeList free_list_; |
- |
- // Normal allocation information. |
- AllocationInfo allocation_info_; |
- |
- // This space was swept precisely, hence it is iterable. |
- bool swept_precisely_; |
- |
- // The number of free bytes which could be reclaimed by advancing the |
- // concurrent sweeper threads. This is only an estimation because concurrent |
- // sweeping is done conservatively. |
- intptr_t unswept_free_bytes_; |
- |
- // The sweeper threads iterate over the list of pointer and data space pages |
- // and sweep these pages concurrently. They will stop sweeping after the |
- // end_of_unswept_pages_ page. |
- Page* end_of_unswept_pages_; |
- |
- // Emergency memory is the memory of a full page for a given space, allocated |
- // conservatively before evacuating a page. If compaction fails due to out |
- // of memory error the emergency memory can be used to complete compaction. |
- // If not used, the emergency memory is released after compaction. |
- MemoryChunk* emergency_memory_; |
- |
- // Expands the space by allocating a fixed number of pages. Returns false if |
- // it cannot allocate requested number of pages from OS, or if the hard heap |
- // size limit has been hit. |
- bool Expand(); |
- |
- // Generic fast case allocation function that tries linear allocation at the |
- // address denoted by top in allocation_info_. |
- inline HeapObject* AllocateLinearly(int size_in_bytes); |
- |
- // If sweeping is still in progress try to sweep unswept pages. If that is |
- // not successful, wait for the sweeper threads and re-try free-list |
- // allocation. |
- MUST_USE_RESULT HeapObject* WaitForSweeperThreadsAndRetryAllocation( |
- int size_in_bytes); |
- |
- // Slow path of AllocateRaw. This function is space-dependent. |
- MUST_USE_RESULT HeapObject* SlowAllocateRaw(int size_in_bytes); |
- |
- friend class PageIterator; |
- friend class MarkCompactCollector; |
-}; |
- |
- |
-class NumberAndSizeInfo BASE_EMBEDDED { |
- public: |
- NumberAndSizeInfo() : number_(0), bytes_(0) {} |
- |
- int number() const { return number_; } |
- void increment_number(int num) { number_ += num; } |
- |
- int bytes() const { return bytes_; } |
- void increment_bytes(int size) { bytes_ += size; } |
- |
- void clear() { |
- number_ = 0; |
- bytes_ = 0; |
- } |
- |
- private: |
- int number_; |
- int bytes_; |
-}; |
- |
- |
-// HistogramInfo class for recording a single "bar" of a histogram. This |
-// class is used for collecting statistics to print to the log file. |
-class HistogramInfo: public NumberAndSizeInfo { |
- public: |
- HistogramInfo() : NumberAndSizeInfo() {} |
- |
- const char* name() { return name_; } |
- void set_name(const char* name) { name_ = name; } |
- |
- private: |
- const char* name_; |
-}; |
- |
- |
-enum SemiSpaceId { |
- kFromSpace = 0, |
- kToSpace = 1 |
-}; |
- |
- |
-class SemiSpace; |
- |
- |
-class NewSpacePage : public MemoryChunk { |
- public: |
- // GC related flags copied from from-space to to-space when |
- // flipping semispaces. |
- static const intptr_t kCopyOnFlipFlagsMask = |
- (1 << MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING) | |
- (1 << MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING) | |
- (1 << MemoryChunk::SCAN_ON_SCAVENGE); |
- |
- static const int kAreaSize = Page::kMaxRegularHeapObjectSize; |
- |
- inline NewSpacePage* next_page() const { |
- return static_cast<NewSpacePage*>(next_chunk()); |
- } |
- |
- inline void set_next_page(NewSpacePage* page) { |
- set_next_chunk(page); |
- } |
- |
- inline NewSpacePage* prev_page() const { |
- return static_cast<NewSpacePage*>(prev_chunk()); |
- } |
- |
- inline void set_prev_page(NewSpacePage* page) { |
- set_prev_chunk(page); |
- } |
- |
- SemiSpace* semi_space() { |
- return reinterpret_cast<SemiSpace*>(owner()); |
- } |
- |
- bool is_anchor() { return !this->InNewSpace(); } |
- |
- static bool IsAtStart(Address addr) { |
- return (reinterpret_cast<intptr_t>(addr) & Page::kPageAlignmentMask) |
- == kObjectStartOffset; |
- } |
- |
- static bool IsAtEnd(Address addr) { |
- return (reinterpret_cast<intptr_t>(addr) & Page::kPageAlignmentMask) == 0; |
- } |
- |
- Address address() { |
- return reinterpret_cast<Address>(this); |
- } |
- |
- // Finds the NewSpacePage containg the given address. |
- static inline NewSpacePage* FromAddress(Address address_in_page) { |
- Address page_start = |
- reinterpret_cast<Address>(reinterpret_cast<uintptr_t>(address_in_page) & |
- ~Page::kPageAlignmentMask); |
- NewSpacePage* page = reinterpret_cast<NewSpacePage*>(page_start); |
- return page; |
- } |
- |
- // Find the page for a limit address. A limit address is either an address |
- // inside a page, or the address right after the last byte of a page. |
- static inline NewSpacePage* FromLimit(Address address_limit) { |
- return NewSpacePage::FromAddress(address_limit - 1); |
- } |
- |
- // Checks if address1 and address2 are on the same new space page. |
- static inline bool OnSamePage(Address address1, Address address2) { |
- return NewSpacePage::FromAddress(address1) == |
- NewSpacePage::FromAddress(address2); |
- } |
- |
- private: |
- // Create a NewSpacePage object that is only used as anchor |
- // for the doubly-linked list of real pages. |
- explicit NewSpacePage(SemiSpace* owner) { |
- InitializeAsAnchor(owner); |
- } |
- |
- static NewSpacePage* Initialize(Heap* heap, |
- Address start, |
- SemiSpace* semi_space); |
- |
- // Intialize a fake NewSpacePage used as sentinel at the ends |
- // of a doubly-linked list of real NewSpacePages. |
- // Only uses the prev/next links, and sets flags to not be in new-space. |
- void InitializeAsAnchor(SemiSpace* owner); |
- |
- friend class SemiSpace; |
- friend class SemiSpaceIterator; |
-}; |
- |
- |
-// ----------------------------------------------------------------------------- |
-// SemiSpace in young generation |
-// |
-// A semispace is a contiguous chunk of memory holding page-like memory |
-// chunks. The mark-compact collector uses the memory of the first page in |
-// the from space as a marking stack when tracing live objects. |
- |
-class SemiSpace : public Space { |
- public: |
- // Constructor. |
- SemiSpace(Heap* heap, SemiSpaceId semispace) |
- : Space(heap, NEW_SPACE, NOT_EXECUTABLE), |
- start_(NULL), |
- age_mark_(NULL), |
- id_(semispace), |
- anchor_(this), |
- current_page_(NULL) { } |
- |
- // Sets up the semispace using the given chunk. |
- void SetUp(Address start, int initial_capacity, int maximum_capacity); |
- |
- // Tear down the space. Heap memory was not allocated by the space, so it |
- // is not deallocated here. |
- void TearDown(); |
- |
- // True if the space has been set up but not torn down. |
- bool HasBeenSetUp() { return start_ != NULL; } |
- |
- // Grow the semispace to the new capacity. The new capacity |
- // requested must be larger than the current capacity and less than |
- // the maximum capacity. |
- bool GrowTo(int new_capacity); |
- |
- // Shrinks the semispace to the new capacity. The new capacity |
- // requested must be more than the amount of used memory in the |
- // semispace and less than the current capacity. |
- bool ShrinkTo(int new_capacity); |
- |
- // Returns the start address of the first page of the space. |
- Address space_start() { |
- DCHECK(anchor_.next_page() != &anchor_); |
- return anchor_.next_page()->area_start(); |
- } |
- |
- // Returns the start address of the current page of the space. |
- Address page_low() { |
- return current_page_->area_start(); |
- } |
- |
- // Returns one past the end address of the space. |
- Address space_end() { |
- return anchor_.prev_page()->area_end(); |
- } |
- |
- // Returns one past the end address of the current page of the space. |
- Address page_high() { |
- return current_page_->area_end(); |
- } |
- |
- bool AdvancePage() { |
- NewSpacePage* next_page = current_page_->next_page(); |
- if (next_page == anchor()) return false; |
- current_page_ = next_page; |
- return true; |
- } |
- |
- // Resets the space to using the first page. |
- void Reset(); |
- |
- // Age mark accessors. |
- Address age_mark() { return age_mark_; } |
- void set_age_mark(Address mark); |
- |
- // True if the address is in the address range of this semispace (not |
- // necessarily below the allocation pointer). |
- bool Contains(Address a) { |
- return (reinterpret_cast<uintptr_t>(a) & address_mask_) |
- == reinterpret_cast<uintptr_t>(start_); |
- } |
- |
- // True if the object is a heap object in the address range of this |
- // semispace (not necessarily below the allocation pointer). |
- bool Contains(Object* o) { |
- return (reinterpret_cast<uintptr_t>(o) & object_mask_) == object_expected_; |
- } |
- |
- // If we don't have these here then SemiSpace will be abstract. However |
- // they should never be called. |
- virtual intptr_t Size() { |
- UNREACHABLE(); |
- return 0; |
- } |
- |
- bool is_committed() { return committed_; } |
- bool Commit(); |
- bool Uncommit(); |
- |
- NewSpacePage* first_page() { return anchor_.next_page(); } |
- NewSpacePage* current_page() { return current_page_; } |
- |
-#ifdef VERIFY_HEAP |
- virtual void Verify(); |
-#endif |
- |
-#ifdef DEBUG |
- virtual void Print(); |
- // Validate a range of of addresses in a SemiSpace. |
- // The "from" address must be on a page prior to the "to" address, |
- // in the linked page order, or it must be earlier on the same page. |
- static void AssertValidRange(Address from, Address to); |
-#else |
- // Do nothing. |
- inline static void AssertValidRange(Address from, Address to) {} |
-#endif |
- |
- // Returns the current capacity of the semi space. |
- int Capacity() { return capacity_; } |
- |
- // Returns the maximum capacity of the semi space. |
- int MaximumCapacity() { return maximum_capacity_; } |
- |
- // Returns the initial capacity of the semi space. |
- int InitialCapacity() { return initial_capacity_; } |
- |
- SemiSpaceId id() { return id_; } |
- |
- static void Swap(SemiSpace* from, SemiSpace* to); |
- |
- // Returns the maximum amount of memory ever committed by the semi space. |
- size_t MaximumCommittedMemory() { return maximum_committed_; } |
- |
- // Approximate amount of physical memory committed for this space. |
- size_t CommittedPhysicalMemory(); |
- |
- private: |
- // Flips the semispace between being from-space and to-space. |
- // Copies the flags into the masked positions on all pages in the space. |
- void FlipPages(intptr_t flags, intptr_t flag_mask); |
- |
- // Updates Capacity and MaximumCommitted based on new capacity. |
- void SetCapacity(int new_capacity); |
- |
- NewSpacePage* anchor() { return &anchor_; } |
- |
- // The current and maximum capacity of the space. |
- int capacity_; |
- int maximum_capacity_; |
- int initial_capacity_; |
- |
- intptr_t maximum_committed_; |
- |
- // The start address of the space. |
- Address start_; |
- // Used to govern object promotion during mark-compact collection. |
- Address age_mark_; |
- |
- // Masks and comparison values to test for containment in this semispace. |
- uintptr_t address_mask_; |
- uintptr_t object_mask_; |
- uintptr_t object_expected_; |
- |
- bool committed_; |
- SemiSpaceId id_; |
- |
- NewSpacePage anchor_; |
- NewSpacePage* current_page_; |
- |
- friend class SemiSpaceIterator; |
- friend class NewSpacePageIterator; |
- public: |
- TRACK_MEMORY("SemiSpace") |
-}; |
- |
- |
-// A SemiSpaceIterator is an ObjectIterator that iterates over the active |
-// semispace of the heap's new space. It iterates over the objects in the |
-// semispace from a given start address (defaulting to the bottom of the |
-// semispace) to the top of the semispace. New objects allocated after the |
-// iterator is created are not iterated. |
-class SemiSpaceIterator : public ObjectIterator { |
- public: |
- // Create an iterator over the objects in the given space. If no start |
- // address is given, the iterator starts from the bottom of the space. If |
- // no size function is given, the iterator calls Object::Size(). |
- |
- // Iterate over all of allocated to-space. |
- explicit SemiSpaceIterator(NewSpace* space); |
- // Iterate over all of allocated to-space, with a custome size function. |
- SemiSpaceIterator(NewSpace* space, HeapObjectCallback size_func); |
- // Iterate over part of allocated to-space, from start to the end |
- // of allocation. |
- SemiSpaceIterator(NewSpace* space, Address start); |
- // Iterate from one address to another in the same semi-space. |
- SemiSpaceIterator(Address from, Address to); |
- |
- HeapObject* Next() { |
- if (current_ == limit_) return NULL; |
- if (NewSpacePage::IsAtEnd(current_)) { |
- NewSpacePage* page = NewSpacePage::FromLimit(current_); |
- page = page->next_page(); |
- DCHECK(!page->is_anchor()); |
- current_ = page->area_start(); |
- if (current_ == limit_) return NULL; |
- } |
- |
- HeapObject* object = HeapObject::FromAddress(current_); |
- int size = (size_func_ == NULL) ? object->Size() : size_func_(object); |
- |
- current_ += size; |
- return object; |
- } |
- |
- // Implementation of the ObjectIterator functions. |
- virtual HeapObject* next_object() { return Next(); } |
- |
- private: |
- void Initialize(Address start, |
- Address end, |
- HeapObjectCallback size_func); |
- |
- // The current iteration point. |
- Address current_; |
- // The end of iteration. |
- Address limit_; |
- // The callback function. |
- HeapObjectCallback size_func_; |
-}; |
- |
- |
-// ----------------------------------------------------------------------------- |
-// A PageIterator iterates the pages in a semi-space. |
-class NewSpacePageIterator BASE_EMBEDDED { |
- public: |
- // Make an iterator that runs over all pages in to-space. |
- explicit inline NewSpacePageIterator(NewSpace* space); |
- |
- // Make an iterator that runs over all pages in the given semispace, |
- // even those not used in allocation. |
- explicit inline NewSpacePageIterator(SemiSpace* space); |
- |
- // Make iterator that iterates from the page containing start |
- // to the page that contains limit in the same semispace. |
- inline NewSpacePageIterator(Address start, Address limit); |
- |
- inline bool has_next(); |
- inline NewSpacePage* next(); |
- |
- private: |
- NewSpacePage* prev_page_; // Previous page returned. |
- // Next page that will be returned. Cached here so that we can use this |
- // iterator for operations that deallocate pages. |
- NewSpacePage* next_page_; |
- // Last page returned. |
- NewSpacePage* last_page_; |
-}; |
- |
- |
-// ----------------------------------------------------------------------------- |
-// The young generation space. |
-// |
-// The new space consists of a contiguous pair of semispaces. It simply |
-// forwards most functions to the appropriate semispace. |
- |
-class NewSpace : public Space { |
- public: |
- // Constructor. |
- explicit NewSpace(Heap* heap) |
- : Space(heap, NEW_SPACE, NOT_EXECUTABLE), |
- to_space_(heap, kToSpace), |
- from_space_(heap, kFromSpace), |
- reservation_(), |
- inline_allocation_limit_step_(0) {} |
- |
- // Sets up the new space using the given chunk. |
- bool SetUp(int reserved_semispace_size_, int max_semi_space_size); |
- |
- // Tears down the space. Heap memory was not allocated by the space, so it |
- // is not deallocated here. |
- void TearDown(); |
- |
- // True if the space has been set up but not torn down. |
- bool HasBeenSetUp() { |
- return to_space_.HasBeenSetUp() && from_space_.HasBeenSetUp(); |
- } |
- |
- // Flip the pair of spaces. |
- void Flip(); |
- |
- // Grow the capacity of the semispaces. Assumes that they are not at |
- // their maximum capacity. |
- void Grow(); |
- |
- // Shrink the capacity of the semispaces. |
- void Shrink(); |
- |
- // True if the address or object lies in the address range of either |
- // semispace (not necessarily below the allocation pointer). |
- bool Contains(Address a) { |
- return (reinterpret_cast<uintptr_t>(a) & address_mask_) |
- == reinterpret_cast<uintptr_t>(start_); |
- } |
- |
- bool Contains(Object* o) { |
- Address a = reinterpret_cast<Address>(o); |
- return (reinterpret_cast<uintptr_t>(a) & object_mask_) == object_expected_; |
- } |
- |
- // Return the allocated bytes in the active semispace. |
- virtual intptr_t Size() { |
- return pages_used_ * NewSpacePage::kAreaSize + |
- static_cast<int>(top() - to_space_.page_low()); |
- } |
- |
- // The same, but returning an int. We have to have the one that returns |
- // intptr_t because it is inherited, but if we know we are dealing with the |
- // new space, which can't get as big as the other spaces then this is useful: |
- int SizeAsInt() { return static_cast<int>(Size()); } |
- |
- // Return the current capacity of a semispace. |
- intptr_t EffectiveCapacity() { |
- SLOW_DCHECK(to_space_.Capacity() == from_space_.Capacity()); |
- return (to_space_.Capacity() / Page::kPageSize) * NewSpacePage::kAreaSize; |
- } |
- |
- // Return the current capacity of a semispace. |
- intptr_t Capacity() { |
- DCHECK(to_space_.Capacity() == from_space_.Capacity()); |
- return to_space_.Capacity(); |
- } |
- |
- // Return the total amount of memory committed for new space. |
- intptr_t CommittedMemory() { |
- if (from_space_.is_committed()) return 2 * Capacity(); |
- return Capacity(); |
- } |
- |
- // Return the total amount of memory committed for new space. |
- intptr_t MaximumCommittedMemory() { |
- return to_space_.MaximumCommittedMemory() + |
- from_space_.MaximumCommittedMemory(); |
- } |
- |
- // Approximate amount of physical memory committed for this space. |
- size_t CommittedPhysicalMemory(); |
- |
- // Return the available bytes without growing. |
- intptr_t Available() { |
- return Capacity() - Size(); |
- } |
- |
- // Return the maximum capacity of a semispace. |
- int MaximumCapacity() { |
- DCHECK(to_space_.MaximumCapacity() == from_space_.MaximumCapacity()); |
- return to_space_.MaximumCapacity(); |
- } |
- |
- bool IsAtMaximumCapacity() { |
- return Capacity() == MaximumCapacity(); |
- } |
- |
- // Returns the initial capacity of a semispace. |
- int InitialCapacity() { |
- DCHECK(to_space_.InitialCapacity() == from_space_.InitialCapacity()); |
- return to_space_.InitialCapacity(); |
- } |
- |
- // Return the address of the allocation pointer in the active semispace. |
- Address top() { |
- DCHECK(to_space_.current_page()->ContainsLimit(allocation_info_.top())); |
- return allocation_info_.top(); |
- } |
- |
- void set_top(Address top) { |
- DCHECK(to_space_.current_page()->ContainsLimit(top)); |
- allocation_info_.set_top(top); |
- } |
- |
- // Return the address of the allocation pointer limit in the active semispace. |
- Address limit() { |
- DCHECK(to_space_.current_page()->ContainsLimit(allocation_info_.limit())); |
- return allocation_info_.limit(); |
- } |
- |
- // Return the address of the first object in the active semispace. |
- Address bottom() { return to_space_.space_start(); } |
- |
- // Get the age mark of the inactive semispace. |
- Address age_mark() { return from_space_.age_mark(); } |
- // Set the age mark in the active semispace. |
- void set_age_mark(Address mark) { to_space_.set_age_mark(mark); } |
- |
- // The start address of the space and a bit mask. Anding an address in the |
- // new space with the mask will result in the start address. |
- Address start() { return start_; } |
- uintptr_t mask() { return address_mask_; } |
- |
- INLINE(uint32_t AddressToMarkbitIndex(Address addr)) { |
- DCHECK(Contains(addr)); |
- DCHECK(IsAligned(OffsetFrom(addr), kPointerSize) || |
- IsAligned(OffsetFrom(addr) - 1, kPointerSize)); |
- return static_cast<uint32_t>(addr - start_) >> kPointerSizeLog2; |
- } |
- |
- INLINE(Address MarkbitIndexToAddress(uint32_t index)) { |
- return reinterpret_cast<Address>(index << kPointerSizeLog2); |
- } |
- |
- // The allocation top and limit address. |
- Address* allocation_top_address() { |
- return allocation_info_.top_address(); |
- } |
- |
- // The allocation limit address. |
- Address* allocation_limit_address() { |
- return allocation_info_.limit_address(); |
- } |
- |
- MUST_USE_RESULT INLINE(AllocationResult AllocateRaw(int size_in_bytes)); |
- |
- // Reset the allocation pointer to the beginning of the active semispace. |
- void ResetAllocationInfo(); |
- |
- void UpdateInlineAllocationLimit(int size_in_bytes); |
- void LowerInlineAllocationLimit(intptr_t step) { |
- inline_allocation_limit_step_ = step; |
- UpdateInlineAllocationLimit(0); |
- top_on_previous_step_ = allocation_info_.top(); |
- } |
- |
- // Get the extent of the inactive semispace (for use as a marking stack, |
- // or to zap it). Notice: space-addresses are not necessarily on the |
- // same page, so FromSpaceStart() might be above FromSpaceEnd(). |
- Address FromSpacePageLow() { return from_space_.page_low(); } |
- Address FromSpacePageHigh() { return from_space_.page_high(); } |
- Address FromSpaceStart() { return from_space_.space_start(); } |
- Address FromSpaceEnd() { return from_space_.space_end(); } |
- |
- // Get the extent of the active semispace's pages' memory. |
- Address ToSpaceStart() { return to_space_.space_start(); } |
- Address ToSpaceEnd() { return to_space_.space_end(); } |
- |
- inline bool ToSpaceContains(Address address) { |
- return to_space_.Contains(address); |
- } |
- inline bool FromSpaceContains(Address address) { |
- return from_space_.Contains(address); |
- } |
- |
- // True if the object is a heap object in the address range of the |
- // respective semispace (not necessarily below the allocation pointer of the |
- // semispace). |
- inline bool ToSpaceContains(Object* o) { return to_space_.Contains(o); } |
- inline bool FromSpaceContains(Object* o) { return from_space_.Contains(o); } |
- |
- // Try to switch the active semispace to a new, empty, page. |
- // Returns false if this isn't possible or reasonable (i.e., there |
- // are no pages, or the current page is already empty), or true |
- // if successful. |
- bool AddFreshPage(); |
- |
-#ifdef VERIFY_HEAP |
- // Verify the active semispace. |
- virtual void Verify(); |
-#endif |
- |
-#ifdef DEBUG |
- // Print the active semispace. |
- virtual void Print() { to_space_.Print(); } |
-#endif |
- |
- // Iterates the active semispace to collect statistics. |
- void CollectStatistics(); |
- // Reports previously collected statistics of the active semispace. |
- void ReportStatistics(); |
- // Clears previously collected statistics. |
- void ClearHistograms(); |
- |
- // Record the allocation or promotion of a heap object. Note that we don't |
- // record every single allocation, but only those that happen in the |
- // to space during a scavenge GC. |
- void RecordAllocation(HeapObject* obj); |
- void RecordPromotion(HeapObject* obj); |
- |
- // Return whether the operation succeded. |
- bool CommitFromSpaceIfNeeded() { |
- if (from_space_.is_committed()) return true; |
- return from_space_.Commit(); |
- } |
- |
- bool UncommitFromSpace() { |
- if (!from_space_.is_committed()) return true; |
- return from_space_.Uncommit(); |
- } |
- |
- inline intptr_t inline_allocation_limit_step() { |
- return inline_allocation_limit_step_; |
- } |
- |
- SemiSpace* active_space() { return &to_space_; } |
- |
- private: |
- // Update allocation info to match the current to-space page. |
- void UpdateAllocationInfo(); |
- |
- Address chunk_base_; |
- uintptr_t chunk_size_; |
- |
- // The semispaces. |
- SemiSpace to_space_; |
- SemiSpace from_space_; |
- base::VirtualMemory reservation_; |
- int pages_used_; |
- |
- // Start address and bit mask for containment testing. |
- Address start_; |
- uintptr_t address_mask_; |
- uintptr_t object_mask_; |
- uintptr_t object_expected_; |
- |
- // Allocation pointer and limit for normal allocation and allocation during |
- // mark-compact collection. |
- AllocationInfo allocation_info_; |
- |
- // When incremental marking is active we will set allocation_info_.limit |
- // to be lower than actual limit and then will gradually increase it |
- // in steps to guarantee that we do incremental marking steps even |
- // when all allocation is performed from inlined generated code. |
- intptr_t inline_allocation_limit_step_; |
- |
- Address top_on_previous_step_; |
- |
- HistogramInfo* allocated_histogram_; |
- HistogramInfo* promoted_histogram_; |
- |
- MUST_USE_RESULT AllocationResult SlowAllocateRaw(int size_in_bytes); |
- |
- friend class SemiSpaceIterator; |
- |
- public: |
- TRACK_MEMORY("NewSpace") |
-}; |
- |
- |
-// ----------------------------------------------------------------------------- |
-// Old object space (excluding map objects) |
- |
-class OldSpace : public PagedSpace { |
- public: |
- // Creates an old space object with a given maximum capacity. |
- // The constructor does not allocate pages from OS. |
- OldSpace(Heap* heap, |
- intptr_t max_capacity, |
- AllocationSpace id, |
- Executability executable) |
- : PagedSpace(heap, max_capacity, id, executable) { |
- } |
- |
- public: |
- TRACK_MEMORY("OldSpace") |
-}; |
- |
- |
-// For contiguous spaces, top should be in the space (or at the end) and limit |
-// should be the end of the space. |
-#define DCHECK_SEMISPACE_ALLOCATION_INFO(info, space) \ |
- SLOW_DCHECK((space).page_low() <= (info).top() \ |
- && (info).top() <= (space).page_high() \ |
- && (info).limit() <= (space).page_high()) |
- |
- |
-// ----------------------------------------------------------------------------- |
-// Old space for all map objects |
- |
-class MapSpace : public PagedSpace { |
- public: |
- // Creates a map space object with a maximum capacity. |
- MapSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id) |
- : PagedSpace(heap, max_capacity, id, NOT_EXECUTABLE), |
- max_map_space_pages_(kMaxMapPageIndex - 1) { |
- } |
- |
- // Given an index, returns the page address. |
- // TODO(1600): this limit is artifical just to keep code compilable |
- static const int kMaxMapPageIndex = 1 << 16; |
- |
- virtual int RoundSizeDownToObjectAlignment(int size) { |
- if (IsPowerOf2(Map::kSize)) { |
- return RoundDown(size, Map::kSize); |
- } else { |
- return (size / Map::kSize) * Map::kSize; |
- } |
- } |
- |
- protected: |
- virtual void VerifyObject(HeapObject* obj); |
- |
- private: |
- static const int kMapsPerPage = Page::kMaxRegularHeapObjectSize / Map::kSize; |
- |
- // Do map space compaction if there is a page gap. |
- int CompactionThreshold() { |
- return kMapsPerPage * (max_map_space_pages_ - 1); |
- } |
- |
- const int max_map_space_pages_; |
- |
- public: |
- TRACK_MEMORY("MapSpace") |
-}; |
- |
- |
-// ----------------------------------------------------------------------------- |
-// Old space for simple property cell objects |
- |
-class CellSpace : public PagedSpace { |
- public: |
- // Creates a property cell space object with a maximum capacity. |
- CellSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id) |
- : PagedSpace(heap, max_capacity, id, NOT_EXECUTABLE) { |
- } |
- |
- virtual int RoundSizeDownToObjectAlignment(int size) { |
- if (IsPowerOf2(Cell::kSize)) { |
- return RoundDown(size, Cell::kSize); |
- } else { |
- return (size / Cell::kSize) * Cell::kSize; |
- } |
- } |
- |
- protected: |
- virtual void VerifyObject(HeapObject* obj); |
- |
- public: |
- TRACK_MEMORY("CellSpace") |
-}; |
- |
- |
-// ----------------------------------------------------------------------------- |
-// Old space for all global object property cell objects |
- |
-class PropertyCellSpace : public PagedSpace { |
- public: |
- // Creates a property cell space object with a maximum capacity. |
- PropertyCellSpace(Heap* heap, intptr_t max_capacity, |
- AllocationSpace id) |
- : PagedSpace(heap, max_capacity, id, NOT_EXECUTABLE) { |
- } |
- |
- virtual int RoundSizeDownToObjectAlignment(int size) { |
- if (IsPowerOf2(PropertyCell::kSize)) { |
- return RoundDown(size, PropertyCell::kSize); |
- } else { |
- return (size / PropertyCell::kSize) * PropertyCell::kSize; |
- } |
- } |
- |
- protected: |
- virtual void VerifyObject(HeapObject* obj); |
- |
- public: |
- TRACK_MEMORY("PropertyCellSpace") |
-}; |
- |
- |
-// ----------------------------------------------------------------------------- |
-// Large objects ( > Page::kMaxHeapObjectSize ) are allocated and managed by |
-// the large object space. A large object is allocated from OS heap with |
-// extra padding bytes (Page::kPageSize + Page::kObjectStartOffset). |
-// A large object always starts at Page::kObjectStartOffset to a page. |
-// Large objects do not move during garbage collections. |
- |
-class LargeObjectSpace : public Space { |
- public: |
- LargeObjectSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id); |
- virtual ~LargeObjectSpace() {} |
- |
- // Initializes internal data structures. |
- bool SetUp(); |
- |
- // Releases internal resources, frees objects in this space. |
- void TearDown(); |
- |
- static intptr_t ObjectSizeFor(intptr_t chunk_size) { |
- if (chunk_size <= (Page::kPageSize + Page::kObjectStartOffset)) return 0; |
- return chunk_size - Page::kPageSize - Page::kObjectStartOffset; |
- } |
- |
- // Shared implementation of AllocateRaw, AllocateRawCode and |
- // AllocateRawFixedArray. |
- MUST_USE_RESULT AllocationResult AllocateRaw(int object_size, |
- Executability executable); |
- |
- // Available bytes for objects in this space. |
- inline intptr_t Available(); |
- |
- virtual intptr_t Size() { |
- return size_; |
- } |
- |
- virtual intptr_t SizeOfObjects() { |
- return objects_size_; |
- } |
- |
- intptr_t MaximumCommittedMemory() { |
- return maximum_committed_; |
- } |
- |
- intptr_t CommittedMemory() { |
- return Size(); |
- } |
- |
- // Approximate amount of physical memory committed for this space. |
- size_t CommittedPhysicalMemory(); |
- |
- int PageCount() { |
- return page_count_; |
- } |
- |
- // Finds an object for a given address, returns a Smi if it is not found. |
- // The function iterates through all objects in this space, may be slow. |
- Object* FindObject(Address a); |
- |
- // Finds a large object page containing the given address, returns NULL |
- // if such a page doesn't exist. |
- LargePage* FindPage(Address a); |
- |
- // Frees unmarked objects. |
- void FreeUnmarkedObjects(); |
- |
- // Checks whether a heap object is in this space; O(1). |
- bool Contains(HeapObject* obj); |
- |
- // Checks whether the space is empty. |
- bool IsEmpty() { return first_page_ == NULL; } |
- |
- LargePage* first_page() { return first_page_; } |
- |
-#ifdef VERIFY_HEAP |
- virtual void Verify(); |
-#endif |
- |
-#ifdef DEBUG |
- virtual void Print(); |
- void ReportStatistics(); |
- void CollectCodeStatistics(); |
-#endif |
- // Checks whether an address is in the object area in this space. It |
- // iterates all objects in the space. May be slow. |
- bool SlowContains(Address addr) { return FindObject(addr)->IsHeapObject(); } |
- |
- private: |
- intptr_t max_capacity_; |
- intptr_t maximum_committed_; |
- // The head of the linked list of large object chunks. |
- LargePage* first_page_; |
- intptr_t size_; // allocated bytes |
- int page_count_; // number of chunks |
- intptr_t objects_size_; // size of objects |
- // Map MemoryChunk::kAlignment-aligned chunks to large pages covering them |
- HashMap chunk_map_; |
- |
- friend class LargeObjectIterator; |
- |
- public: |
- TRACK_MEMORY("LargeObjectSpace") |
-}; |
- |
- |
-class LargeObjectIterator: public ObjectIterator { |
- public: |
- explicit LargeObjectIterator(LargeObjectSpace* space); |
- LargeObjectIterator(LargeObjectSpace* space, HeapObjectCallback size_func); |
- |
- HeapObject* Next(); |
- |
- // implementation of ObjectIterator. |
- virtual HeapObject* next_object() { return Next(); } |
- |
- private: |
- LargePage* current_; |
- HeapObjectCallback size_func_; |
-}; |
- |
- |
-// Iterates over the chunks (pages and large object pages) that can contain |
-// pointers to new space. |
-class PointerChunkIterator BASE_EMBEDDED { |
- public: |
- inline explicit PointerChunkIterator(Heap* heap); |
- |
- // Return NULL when the iterator is done. |
- MemoryChunk* next() { |
- switch (state_) { |
- case kOldPointerState: { |
- if (old_pointer_iterator_.has_next()) { |
- return old_pointer_iterator_.next(); |
- } |
- state_ = kMapState; |
- // Fall through. |
- } |
- case kMapState: { |
- if (map_iterator_.has_next()) { |
- return map_iterator_.next(); |
- } |
- state_ = kLargeObjectState; |
- // Fall through. |
- } |
- case kLargeObjectState: { |
- HeapObject* heap_object; |
- do { |
- heap_object = lo_iterator_.Next(); |
- if (heap_object == NULL) { |
- state_ = kFinishedState; |
- return NULL; |
- } |
- // Fixed arrays are the only pointer-containing objects in large |
- // object space. |
- } while (!heap_object->IsFixedArray()); |
- MemoryChunk* answer = MemoryChunk::FromAddress(heap_object->address()); |
- return answer; |
- } |
- case kFinishedState: |
- return NULL; |
- default: |
- break; |
- } |
- UNREACHABLE(); |
- return NULL; |
- } |
- |
- |
- private: |
- enum State { |
- kOldPointerState, |
- kMapState, |
- kLargeObjectState, |
- kFinishedState |
- }; |
- State state_; |
- PageIterator old_pointer_iterator_; |
- PageIterator map_iterator_; |
- LargeObjectIterator lo_iterator_; |
-}; |
- |
- |
-#ifdef DEBUG |
-struct CommentStatistic { |
- const char* comment; |
- int size; |
- int count; |
- void Clear() { |
- comment = NULL; |
- size = 0; |
- count = 0; |
- } |
- // Must be small, since an iteration is used for lookup. |
- static const int kMaxComments = 64; |
-}; |
-#endif |
- |
- |
-} } // namespace v8::internal |
- |
-#endif // V8_SPACES_H_ |