| Index: src/heap-inl.h
|
| diff --git a/src/heap-inl.h b/src/heap-inl.h
|
| deleted file mode 100644
|
| index b82c16e8a49724cca4230b03636d65201a5a2f69..0000000000000000000000000000000000000000
|
| --- a/src/heap-inl.h
|
| +++ /dev/null
|
| @@ -1,809 +0,0 @@
|
| -// Copyright 2012 the V8 project authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#ifndef V8_HEAP_INL_H_
|
| -#define V8_HEAP_INL_H_
|
| -
|
| -#include <cmath>
|
| -
|
| -#include "src/base/platform/platform.h"
|
| -#include "src/cpu-profiler.h"
|
| -#include "src/heap.h"
|
| -#include "src/heap-profiler.h"
|
| -#include "src/isolate.h"
|
| -#include "src/list-inl.h"
|
| -#include "src/objects.h"
|
| -#include "src/store-buffer.h"
|
| -#include "src/store-buffer-inl.h"
|
| -
|
| -namespace v8 {
|
| -namespace internal {
|
| -
|
| -void PromotionQueue::insert(HeapObject* target, int size) {
|
| - if (emergency_stack_ != NULL) {
|
| - emergency_stack_->Add(Entry(target, size));
|
| - return;
|
| - }
|
| -
|
| - if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(rear_))) {
|
| - NewSpacePage* rear_page =
|
| - NewSpacePage::FromAddress(reinterpret_cast<Address>(rear_));
|
| - DCHECK(!rear_page->prev_page()->is_anchor());
|
| - rear_ = reinterpret_cast<intptr_t*>(rear_page->prev_page()->area_end());
|
| - ActivateGuardIfOnTheSamePage();
|
| - }
|
| -
|
| - if (guard_) {
|
| - DCHECK(GetHeadPage() ==
|
| - Page::FromAllocationTop(reinterpret_cast<Address>(limit_)));
|
| -
|
| - if ((rear_ - 2) < limit_) {
|
| - RelocateQueueHead();
|
| - emergency_stack_->Add(Entry(target, size));
|
| - return;
|
| - }
|
| - }
|
| -
|
| - *(--rear_) = reinterpret_cast<intptr_t>(target);
|
| - *(--rear_) = size;
|
| - // Assert no overflow into live objects.
|
| -#ifdef DEBUG
|
| - SemiSpace::AssertValidRange(target->GetIsolate()->heap()->new_space()->top(),
|
| - reinterpret_cast<Address>(rear_));
|
| -#endif
|
| -}
|
| -
|
| -
|
| -void PromotionQueue::ActivateGuardIfOnTheSamePage() {
|
| - guard_ = guard_ ||
|
| - heap_->new_space()->active_space()->current_page()->address() ==
|
| - GetHeadPage()->address();
|
| -}
|
| -
|
| -
|
| -template<>
|
| -bool inline Heap::IsOneByte(Vector<const char> str, int chars) {
|
| - // TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
|
| - // ASCII only check.
|
| - return chars == str.length();
|
| -}
|
| -
|
| -
|
| -template<>
|
| -bool inline Heap::IsOneByte(String* str, int chars) {
|
| - return str->IsOneByteRepresentation();
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateInternalizedStringFromUtf8(
|
| - Vector<const char> str, int chars, uint32_t hash_field) {
|
| - if (IsOneByte(str, chars)) {
|
| - return AllocateOneByteInternalizedString(
|
| - Vector<const uint8_t>::cast(str), hash_field);
|
| - }
|
| - return AllocateInternalizedStringImpl<false>(str, chars, hash_field);
|
| -}
|
| -
|
| -
|
| -template<typename T>
|
| -AllocationResult Heap::AllocateInternalizedStringImpl(
|
| - T t, int chars, uint32_t hash_field) {
|
| - if (IsOneByte(t, chars)) {
|
| - return AllocateInternalizedStringImpl<true>(t, chars, hash_field);
|
| - }
|
| - return AllocateInternalizedStringImpl<false>(t, chars, hash_field);
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateOneByteInternalizedString(
|
| - Vector<const uint8_t> str,
|
| - uint32_t hash_field) {
|
| - CHECK_GE(String::kMaxLength, str.length());
|
| - // Compute map and object size.
|
| - Map* map = ascii_internalized_string_map();
|
| - int size = SeqOneByteString::SizeFor(str.length());
|
| - AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
|
| -
|
| - // Allocate string.
|
| - HeapObject* result;
|
| - { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
|
| - if (!allocation.To(&result)) return allocation;
|
| - }
|
| -
|
| - // String maps are all immortal immovable objects.
|
| - result->set_map_no_write_barrier(map);
|
| - // Set length and hash fields of the allocated string.
|
| - String* answer = String::cast(result);
|
| - answer->set_length(str.length());
|
| - answer->set_hash_field(hash_field);
|
| -
|
| - DCHECK_EQ(size, answer->Size());
|
| -
|
| - // Fill in the characters.
|
| - MemCopy(answer->address() + SeqOneByteString::kHeaderSize, str.start(),
|
| - str.length());
|
| -
|
| - return answer;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str,
|
| - uint32_t hash_field) {
|
| - CHECK_GE(String::kMaxLength, str.length());
|
| - // Compute map and object size.
|
| - Map* map = internalized_string_map();
|
| - int size = SeqTwoByteString::SizeFor(str.length());
|
| - AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
|
| -
|
| - // Allocate string.
|
| - HeapObject* result;
|
| - { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
|
| - if (!allocation.To(&result)) return allocation;
|
| - }
|
| -
|
| - result->set_map(map);
|
| - // Set length and hash fields of the allocated string.
|
| - String* answer = String::cast(result);
|
| - answer->set_length(str.length());
|
| - answer->set_hash_field(hash_field);
|
| -
|
| - DCHECK_EQ(size, answer->Size());
|
| -
|
| - // Fill in the characters.
|
| - MemCopy(answer->address() + SeqTwoByteString::kHeaderSize, str.start(),
|
| - str.length() * kUC16Size);
|
| -
|
| - return answer;
|
| -}
|
| -
|
| -AllocationResult Heap::CopyFixedArray(FixedArray* src) {
|
| - if (src->length() == 0) return src;
|
| - return CopyFixedArrayWithMap(src, src->map());
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
|
| - if (src->length() == 0) return src;
|
| - return CopyFixedDoubleArrayWithMap(src, src->map());
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::CopyConstantPoolArray(ConstantPoolArray* src) {
|
| - if (src->length() == 0) return src;
|
| - return CopyConstantPoolArrayWithMap(src, src->map());
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateRaw(int size_in_bytes,
|
| - AllocationSpace space,
|
| - AllocationSpace retry_space) {
|
| - DCHECK(AllowHandleAllocation::IsAllowed());
|
| - DCHECK(AllowHeapAllocation::IsAllowed());
|
| - DCHECK(gc_state_ == NOT_IN_GC);
|
| -#ifdef DEBUG
|
| - if (FLAG_gc_interval >= 0 &&
|
| - AllowAllocationFailure::IsAllowed(isolate_) &&
|
| - Heap::allocation_timeout_-- <= 0) {
|
| - return AllocationResult::Retry(space);
|
| - }
|
| - isolate_->counters()->objs_since_last_full()->Increment();
|
| - isolate_->counters()->objs_since_last_young()->Increment();
|
| -#endif
|
| -
|
| - HeapObject* object;
|
| - AllocationResult allocation;
|
| - if (NEW_SPACE == space) {
|
| - allocation = new_space_.AllocateRaw(size_in_bytes);
|
| - if (always_allocate() &&
|
| - allocation.IsRetry() &&
|
| - retry_space != NEW_SPACE) {
|
| - space = retry_space;
|
| - } else {
|
| - if (allocation.To(&object)) {
|
| - OnAllocationEvent(object, size_in_bytes);
|
| - }
|
| - return allocation;
|
| - }
|
| - }
|
| -
|
| - if (OLD_POINTER_SPACE == space) {
|
| - allocation = old_pointer_space_->AllocateRaw(size_in_bytes);
|
| - } else if (OLD_DATA_SPACE == space) {
|
| - allocation = old_data_space_->AllocateRaw(size_in_bytes);
|
| - } else if (CODE_SPACE == space) {
|
| - if (size_in_bytes <= code_space()->AreaSize()) {
|
| - allocation = code_space_->AllocateRaw(size_in_bytes);
|
| - } else {
|
| - // Large code objects are allocated in large object space.
|
| - allocation = lo_space_->AllocateRaw(size_in_bytes, EXECUTABLE);
|
| - }
|
| - } else if (LO_SPACE == space) {
|
| - allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
|
| - } else if (CELL_SPACE == space) {
|
| - allocation = cell_space_->AllocateRaw(size_in_bytes);
|
| - } else if (PROPERTY_CELL_SPACE == space) {
|
| - allocation = property_cell_space_->AllocateRaw(size_in_bytes);
|
| - } else {
|
| - DCHECK(MAP_SPACE == space);
|
| - allocation = map_space_->AllocateRaw(size_in_bytes);
|
| - }
|
| - if (allocation.To(&object)) {
|
| - OnAllocationEvent(object, size_in_bytes);
|
| - } else {
|
| - old_gen_exhausted_ = true;
|
| - }
|
| - return allocation;
|
| -}
|
| -
|
| -
|
| -void Heap::OnAllocationEvent(HeapObject* object, int size_in_bytes) {
|
| - HeapProfiler* profiler = isolate_->heap_profiler();
|
| - if (profiler->is_tracking_allocations()) {
|
| - profiler->AllocationEvent(object->address(), size_in_bytes);
|
| - }
|
| -
|
| - if (FLAG_verify_predictable) {
|
| - ++allocations_count_;
|
| -
|
| - UpdateAllocationsHash(object);
|
| - UpdateAllocationsHash(size_in_bytes);
|
| -
|
| - if ((FLAG_dump_allocations_digest_at_alloc > 0) &&
|
| - (--dump_allocations_hash_countdown_ == 0)) {
|
| - dump_allocations_hash_countdown_ = FLAG_dump_allocations_digest_at_alloc;
|
| - PrintAlloctionsHash();
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::OnMoveEvent(HeapObject* target,
|
| - HeapObject* source,
|
| - int size_in_bytes) {
|
| - HeapProfiler* heap_profiler = isolate_->heap_profiler();
|
| - if (heap_profiler->is_tracking_object_moves()) {
|
| - heap_profiler->ObjectMoveEvent(source->address(), target->address(),
|
| - size_in_bytes);
|
| - }
|
| -
|
| - if (isolate_->logger()->is_logging_code_events() ||
|
| - isolate_->cpu_profiler()->is_profiling()) {
|
| - if (target->IsSharedFunctionInfo()) {
|
| - PROFILE(isolate_, SharedFunctionInfoMoveEvent(
|
| - source->address(), target->address()));
|
| - }
|
| - }
|
| -
|
| - if (FLAG_verify_predictable) {
|
| - ++allocations_count_;
|
| -
|
| - UpdateAllocationsHash(source);
|
| - UpdateAllocationsHash(target);
|
| - UpdateAllocationsHash(size_in_bytes);
|
| -
|
| - if ((FLAG_dump_allocations_digest_at_alloc > 0) &&
|
| - (--dump_allocations_hash_countdown_ == 0)) {
|
| - dump_allocations_hash_countdown_ = FLAG_dump_allocations_digest_at_alloc;
|
| - PrintAlloctionsHash();
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::UpdateAllocationsHash(HeapObject* object) {
|
| - Address object_address = object->address();
|
| - MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address);
|
| - AllocationSpace allocation_space = memory_chunk->owner()->identity();
|
| -
|
| - STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32);
|
| - uint32_t value =
|
| - static_cast<uint32_t>(object_address - memory_chunk->address()) |
|
| - (static_cast<uint32_t>(allocation_space) << kPageSizeBits);
|
| -
|
| - UpdateAllocationsHash(value);
|
| -}
|
| -
|
| -
|
| -void Heap::UpdateAllocationsHash(uint32_t value) {
|
| - uint16_t c1 = static_cast<uint16_t>(value);
|
| - uint16_t c2 = static_cast<uint16_t>(value >> 16);
|
| - raw_allocations_hash_ =
|
| - StringHasher::AddCharacterCore(raw_allocations_hash_, c1);
|
| - raw_allocations_hash_ =
|
| - StringHasher::AddCharacterCore(raw_allocations_hash_, c2);
|
| -}
|
| -
|
| -
|
| -void Heap::PrintAlloctionsHash() {
|
| - uint32_t hash = StringHasher::GetHashCore(raw_allocations_hash_);
|
| - PrintF("\n### Allocations = %u, hash = 0x%08x\n", allocations_count_, hash);
|
| -}
|
| -
|
| -
|
| -void Heap::FinalizeExternalString(String* string) {
|
| - DCHECK(string->IsExternalString());
|
| - v8::String::ExternalStringResourceBase** resource_addr =
|
| - reinterpret_cast<v8::String::ExternalStringResourceBase**>(
|
| - reinterpret_cast<byte*>(string) +
|
| - ExternalString::kResourceOffset -
|
| - kHeapObjectTag);
|
| -
|
| - // Dispose of the C++ object if it has not already been disposed.
|
| - if (*resource_addr != NULL) {
|
| - (*resource_addr)->Dispose();
|
| - *resource_addr = NULL;
|
| - }
|
| -}
|
| -
|
| -
|
| -bool Heap::InNewSpace(Object* object) {
|
| - bool result = new_space_.Contains(object);
|
| - DCHECK(!result || // Either not in new space
|
| - gc_state_ != NOT_IN_GC || // ... or in the middle of GC
|
| - InToSpace(object)); // ... or in to-space (where we allocate).
|
| - return result;
|
| -}
|
| -
|
| -
|
| -bool Heap::InNewSpace(Address address) {
|
| - return new_space_.Contains(address);
|
| -}
|
| -
|
| -
|
| -bool Heap::InFromSpace(Object* object) {
|
| - return new_space_.FromSpaceContains(object);
|
| -}
|
| -
|
| -
|
| -bool Heap::InToSpace(Object* object) {
|
| - return new_space_.ToSpaceContains(object);
|
| -}
|
| -
|
| -
|
| -bool Heap::InOldPointerSpace(Address address) {
|
| - return old_pointer_space_->Contains(address);
|
| -}
|
| -
|
| -
|
| -bool Heap::InOldPointerSpace(Object* object) {
|
| - return InOldPointerSpace(reinterpret_cast<Address>(object));
|
| -}
|
| -
|
| -
|
| -bool Heap::InOldDataSpace(Address address) {
|
| - return old_data_space_->Contains(address);
|
| -}
|
| -
|
| -
|
| -bool Heap::InOldDataSpace(Object* object) {
|
| - return InOldDataSpace(reinterpret_cast<Address>(object));
|
| -}
|
| -
|
| -
|
| -bool Heap::OldGenerationAllocationLimitReached() {
|
| - if (!incremental_marking()->IsStopped()) return false;
|
| - return OldGenerationSpaceAvailable() < 0;
|
| -}
|
| -
|
| -
|
| -bool Heap::ShouldBePromoted(Address old_address, int object_size) {
|
| - NewSpacePage* page = NewSpacePage::FromAddress(old_address);
|
| - Address age_mark = new_space_.age_mark();
|
| - return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
|
| - (!page->ContainsLimit(age_mark) || old_address < age_mark);
|
| -}
|
| -
|
| -
|
| -void Heap::RecordWrite(Address address, int offset) {
|
| - if (!InNewSpace(address)) store_buffer_.Mark(address + offset);
|
| -}
|
| -
|
| -
|
| -void Heap::RecordWrites(Address address, int start, int len) {
|
| - if (!InNewSpace(address)) {
|
| - for (int i = 0; i < len; i++) {
|
| - store_buffer_.Mark(address + start + i * kPointerSize);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -OldSpace* Heap::TargetSpace(HeapObject* object) {
|
| - InstanceType type = object->map()->instance_type();
|
| - AllocationSpace space = TargetSpaceId(type);
|
| - return (space == OLD_POINTER_SPACE)
|
| - ? old_pointer_space_
|
| - : old_data_space_;
|
| -}
|
| -
|
| -
|
| -AllocationSpace Heap::TargetSpaceId(InstanceType type) {
|
| - // Heap numbers and sequential strings are promoted to old data space, all
|
| - // other object types are promoted to old pointer space. We do not use
|
| - // object->IsHeapNumber() and object->IsSeqString() because we already
|
| - // know that object has the heap object tag.
|
| -
|
| - // These objects are never allocated in new space.
|
| - DCHECK(type != MAP_TYPE);
|
| - DCHECK(type != CODE_TYPE);
|
| - DCHECK(type != ODDBALL_TYPE);
|
| - DCHECK(type != CELL_TYPE);
|
| - DCHECK(type != PROPERTY_CELL_TYPE);
|
| -
|
| - if (type <= LAST_NAME_TYPE) {
|
| - if (type == SYMBOL_TYPE) return OLD_POINTER_SPACE;
|
| - DCHECK(type < FIRST_NONSTRING_TYPE);
|
| - // There are four string representations: sequential strings, external
|
| - // strings, cons strings, and sliced strings.
|
| - // Only the latter two contain non-map-word pointers to heap objects.
|
| - return ((type & kIsIndirectStringMask) == kIsIndirectStringTag)
|
| - ? OLD_POINTER_SPACE
|
| - : OLD_DATA_SPACE;
|
| - } else {
|
| - return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE;
|
| - }
|
| -}
|
| -
|
| -
|
| -bool Heap::AllowedToBeMigrated(HeapObject* obj, AllocationSpace dst) {
|
| - // Object migration is governed by the following rules:
|
| - //
|
| - // 1) Objects in new-space can be migrated to one of the old spaces
|
| - // that matches their target space or they stay in new-space.
|
| - // 2) Objects in old-space stay in the same space when migrating.
|
| - // 3) Fillers (two or more words) can migrate due to left-trimming of
|
| - // fixed arrays in new-space, old-data-space and old-pointer-space.
|
| - // 4) Fillers (one word) can never migrate, they are skipped by
|
| - // incremental marking explicitly to prevent invalid pattern.
|
| - // 5) Short external strings can end up in old pointer space when a cons
|
| - // string in old pointer space is made external (String::MakeExternal).
|
| - //
|
| - // Since this function is used for debugging only, we do not place
|
| - // asserts here, but check everything explicitly.
|
| - if (obj->map() == one_pointer_filler_map()) return false;
|
| - InstanceType type = obj->map()->instance_type();
|
| - MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
|
| - AllocationSpace src = chunk->owner()->identity();
|
| - switch (src) {
|
| - case NEW_SPACE:
|
| - return dst == src || dst == TargetSpaceId(type);
|
| - case OLD_POINTER_SPACE:
|
| - return dst == src && (dst == TargetSpaceId(type) || obj->IsFiller() ||
|
| - (obj->IsExternalString() &&
|
| - ExternalString::cast(obj)->is_short()));
|
| - case OLD_DATA_SPACE:
|
| - return dst == src && dst == TargetSpaceId(type);
|
| - case CODE_SPACE:
|
| - return dst == src && type == CODE_TYPE;
|
| - case MAP_SPACE:
|
| - case CELL_SPACE:
|
| - case PROPERTY_CELL_SPACE:
|
| - case LO_SPACE:
|
| - return false;
|
| - case INVALID_SPACE:
|
| - break;
|
| - }
|
| - UNREACHABLE();
|
| - return false;
|
| -}
|
| -
|
| -
|
| -void Heap::CopyBlock(Address dst, Address src, int byte_size) {
|
| - CopyWords(reinterpret_cast<Object**>(dst),
|
| - reinterpret_cast<Object**>(src),
|
| - static_cast<size_t>(byte_size / kPointerSize));
|
| -}
|
| -
|
| -
|
| -void Heap::MoveBlock(Address dst, Address src, int byte_size) {
|
| - DCHECK(IsAligned(byte_size, kPointerSize));
|
| -
|
| - int size_in_words = byte_size / kPointerSize;
|
| -
|
| - if ((dst < src) || (dst >= (src + byte_size))) {
|
| - Object** src_slot = reinterpret_cast<Object**>(src);
|
| - Object** dst_slot = reinterpret_cast<Object**>(dst);
|
| - Object** end_slot = src_slot + size_in_words;
|
| -
|
| - while (src_slot != end_slot) {
|
| - *dst_slot++ = *src_slot++;
|
| - }
|
| - } else {
|
| - MemMove(dst, src, static_cast<size_t>(byte_size));
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::ScavengePointer(HeapObject** p) {
|
| - ScavengeObject(p, *p);
|
| -}
|
| -
|
| -
|
| -AllocationMemento* Heap::FindAllocationMemento(HeapObject* object) {
|
| - // Check if there is potentially a memento behind the object. If
|
| - // the last word of the momento is on another page we return
|
| - // immediately.
|
| - Address object_address = object->address();
|
| - Address memento_address = object_address + object->Size();
|
| - Address last_memento_word_address = memento_address + kPointerSize;
|
| - if (!NewSpacePage::OnSamePage(object_address,
|
| - last_memento_word_address)) {
|
| - return NULL;
|
| - }
|
| -
|
| - HeapObject* candidate = HeapObject::FromAddress(memento_address);
|
| - if (candidate->map() != allocation_memento_map()) return NULL;
|
| -
|
| - // Either the object is the last object in the new space, or there is another
|
| - // object of at least word size (the header map word) following it, so
|
| - // suffices to compare ptr and top here. Note that technically we do not have
|
| - // to compare with the current top pointer of the from space page during GC,
|
| - // since we always install filler objects above the top pointer of a from
|
| - // space page when performing a garbage collection. However, always performing
|
| - // the test makes it possible to have a single, unified version of
|
| - // FindAllocationMemento that is used both by the GC and the mutator.
|
| - Address top = NewSpaceTop();
|
| - DCHECK(memento_address == top ||
|
| - memento_address + HeapObject::kHeaderSize <= top ||
|
| - !NewSpacePage::OnSamePage(memento_address, top));
|
| - if (memento_address == top) return NULL;
|
| -
|
| - AllocationMemento* memento = AllocationMemento::cast(candidate);
|
| - if (!memento->IsValid()) return NULL;
|
| - return memento;
|
| -}
|
| -
|
| -
|
| -void Heap::UpdateAllocationSiteFeedback(HeapObject* object,
|
| - ScratchpadSlotMode mode) {
|
| - Heap* heap = object->GetHeap();
|
| - DCHECK(heap->InFromSpace(object));
|
| -
|
| - if (!FLAG_allocation_site_pretenuring ||
|
| - !AllocationSite::CanTrack(object->map()->instance_type())) return;
|
| -
|
| - AllocationMemento* memento = heap->FindAllocationMemento(object);
|
| - if (memento == NULL) return;
|
| -
|
| - if (memento->GetAllocationSite()->IncrementMementoFoundCount()) {
|
| - heap->AddAllocationSiteToScratchpad(memento->GetAllocationSite(), mode);
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
|
| - DCHECK(object->GetIsolate()->heap()->InFromSpace(object));
|
| -
|
| - // We use the first word (where the map pointer usually is) of a heap
|
| - // object to record the forwarding pointer. A forwarding pointer can
|
| - // point to an old space, the code space, or the to space of the new
|
| - // generation.
|
| - MapWord first_word = object->map_word();
|
| -
|
| - // If the first word is a forwarding address, the object has already been
|
| - // copied.
|
| - if (first_word.IsForwardingAddress()) {
|
| - HeapObject* dest = first_word.ToForwardingAddress();
|
| - DCHECK(object->GetIsolate()->heap()->InFromSpace(*p));
|
| - *p = dest;
|
| - return;
|
| - }
|
| -
|
| - UpdateAllocationSiteFeedback(object, IGNORE_SCRATCHPAD_SLOT);
|
| -
|
| - // AllocationMementos are unrooted and shouldn't survive a scavenge
|
| - DCHECK(object->map() != object->GetHeap()->allocation_memento_map());
|
| - // Call the slow part of scavenge object.
|
| - return ScavengeObjectSlow(p, object);
|
| -}
|
| -
|
| -
|
| -bool Heap::CollectGarbage(AllocationSpace space,
|
| - const char* gc_reason,
|
| - const v8::GCCallbackFlags callbackFlags) {
|
| - const char* collector_reason = NULL;
|
| - GarbageCollector collector = SelectGarbageCollector(space, &collector_reason);
|
| - return CollectGarbage(collector, gc_reason, collector_reason, callbackFlags);
|
| -}
|
| -
|
| -
|
| -Isolate* Heap::isolate() {
|
| - return reinterpret_cast<Isolate*>(reinterpret_cast<intptr_t>(this) -
|
| - reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(4)->heap()) + 4);
|
| -}
|
| -
|
| -
|
| -// Calls the FUNCTION_CALL function and retries it up to three times
|
| -// to guarantee that any allocations performed during the call will
|
| -// succeed if there's enough memory.
|
| -
|
| -// Warning: Do not use the identifiers __object__, __maybe_object__ or
|
| -// __scope__ in a call to this macro.
|
| -
|
| -#define RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
|
| - if (__allocation__.To(&__object__)) { \
|
| - DCHECK(__object__ != (ISOLATE)->heap()->exception()); \
|
| - RETURN_VALUE; \
|
| - }
|
| -
|
| -#define CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) \
|
| - do { \
|
| - AllocationResult __allocation__ = FUNCTION_CALL; \
|
| - Object* __object__ = NULL; \
|
| - RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
|
| - (ISOLATE)->heap()->CollectGarbage(__allocation__.RetrySpace(), \
|
| - "allocation failure"); \
|
| - __allocation__ = FUNCTION_CALL; \
|
| - RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
|
| - (ISOLATE)->counters()->gc_last_resort_from_handles()->Increment(); \
|
| - (ISOLATE)->heap()->CollectAllAvailableGarbage("last resort gc"); \
|
| - { \
|
| - AlwaysAllocateScope __scope__(ISOLATE); \
|
| - __allocation__ = FUNCTION_CALL; \
|
| - } \
|
| - RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
|
| - /* TODO(1181417): Fix this. */ \
|
| - v8::internal::Heap::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true); \
|
| - RETURN_EMPTY; \
|
| - } while (false)
|
| -
|
| -#define CALL_AND_RETRY_OR_DIE( \
|
| - ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) \
|
| - CALL_AND_RETRY( \
|
| - ISOLATE, \
|
| - FUNCTION_CALL, \
|
| - RETURN_VALUE, \
|
| - RETURN_EMPTY)
|
| -
|
| -#define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE) \
|
| - CALL_AND_RETRY_OR_DIE(ISOLATE, \
|
| - FUNCTION_CALL, \
|
| - return Handle<TYPE>(TYPE::cast(__object__), ISOLATE), \
|
| - return Handle<TYPE>()) \
|
| -
|
| -
|
| -#define CALL_HEAP_FUNCTION_VOID(ISOLATE, FUNCTION_CALL) \
|
| - CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, return, return)
|
| -
|
| -
|
| -void ExternalStringTable::AddString(String* string) {
|
| - DCHECK(string->IsExternalString());
|
| - if (heap_->InNewSpace(string)) {
|
| - new_space_strings_.Add(string);
|
| - } else {
|
| - old_space_strings_.Add(string);
|
| - }
|
| -}
|
| -
|
| -
|
| -void ExternalStringTable::Iterate(ObjectVisitor* v) {
|
| - if (!new_space_strings_.is_empty()) {
|
| - Object** start = &new_space_strings_[0];
|
| - v->VisitPointers(start, start + new_space_strings_.length());
|
| - }
|
| - if (!old_space_strings_.is_empty()) {
|
| - Object** start = &old_space_strings_[0];
|
| - v->VisitPointers(start, start + old_space_strings_.length());
|
| - }
|
| -}
|
| -
|
| -
|
| -// Verify() is inline to avoid ifdef-s around its calls in release
|
| -// mode.
|
| -void ExternalStringTable::Verify() {
|
| -#ifdef DEBUG
|
| - for (int i = 0; i < new_space_strings_.length(); ++i) {
|
| - Object* obj = Object::cast(new_space_strings_[i]);
|
| - DCHECK(heap_->InNewSpace(obj));
|
| - DCHECK(obj != heap_->the_hole_value());
|
| - }
|
| - for (int i = 0; i < old_space_strings_.length(); ++i) {
|
| - Object* obj = Object::cast(old_space_strings_[i]);
|
| - DCHECK(!heap_->InNewSpace(obj));
|
| - DCHECK(obj != heap_->the_hole_value());
|
| - }
|
| -#endif
|
| -}
|
| -
|
| -
|
| -void ExternalStringTable::AddOldString(String* string) {
|
| - DCHECK(string->IsExternalString());
|
| - DCHECK(!heap_->InNewSpace(string));
|
| - old_space_strings_.Add(string);
|
| -}
|
| -
|
| -
|
| -void ExternalStringTable::ShrinkNewStrings(int position) {
|
| - new_space_strings_.Rewind(position);
|
| -#ifdef VERIFY_HEAP
|
| - if (FLAG_verify_heap) {
|
| - Verify();
|
| - }
|
| -#endif
|
| -}
|
| -
|
| -
|
| -void Heap::ClearInstanceofCache() {
|
| - set_instanceof_cache_function(the_hole_value());
|
| -}
|
| -
|
| -
|
| -Object* Heap::ToBoolean(bool condition) {
|
| - return condition ? true_value() : false_value();
|
| -}
|
| -
|
| -
|
| -void Heap::CompletelyClearInstanceofCache() {
|
| - set_instanceof_cache_map(the_hole_value());
|
| - set_instanceof_cache_function(the_hole_value());
|
| -}
|
| -
|
| -
|
| -AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate)
|
| - : heap_(isolate->heap()), daf_(isolate) {
|
| - // We shouldn't hit any nested scopes, because that requires
|
| - // non-handle code to call handle code. The code still works but
|
| - // performance will degrade, so we want to catch this situation
|
| - // in debug mode.
|
| - DCHECK(heap_->always_allocate_scope_depth_ == 0);
|
| - heap_->always_allocate_scope_depth_++;
|
| -}
|
| -
|
| -
|
| -AlwaysAllocateScope::~AlwaysAllocateScope() {
|
| - heap_->always_allocate_scope_depth_--;
|
| - DCHECK(heap_->always_allocate_scope_depth_ == 0);
|
| -}
|
| -
|
| -
|
| -#ifdef VERIFY_HEAP
|
| -NoWeakObjectVerificationScope::NoWeakObjectVerificationScope() {
|
| - Isolate* isolate = Isolate::Current();
|
| - isolate->heap()->no_weak_object_verification_scope_depth_++;
|
| -}
|
| -
|
| -
|
| -NoWeakObjectVerificationScope::~NoWeakObjectVerificationScope() {
|
| - Isolate* isolate = Isolate::Current();
|
| - isolate->heap()->no_weak_object_verification_scope_depth_--;
|
| -}
|
| -#endif
|
| -
|
| -
|
| -GCCallbacksScope::GCCallbacksScope(Heap* heap) : heap_(heap) {
|
| - heap_->gc_callbacks_depth_++;
|
| -}
|
| -
|
| -
|
| -GCCallbacksScope::~GCCallbacksScope() {
|
| - heap_->gc_callbacks_depth_--;
|
| -}
|
| -
|
| -
|
| -bool GCCallbacksScope::CheckReenter() {
|
| - return heap_->gc_callbacks_depth_ == 1;
|
| -}
|
| -
|
| -
|
| -void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) {
|
| - for (Object** current = start; current < end; current++) {
|
| - if ((*current)->IsHeapObject()) {
|
| - HeapObject* object = HeapObject::cast(*current);
|
| - CHECK(object->GetIsolate()->heap()->Contains(object));
|
| - CHECK(object->map()->IsMap());
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void VerifySmisVisitor::VisitPointers(Object** start, Object** end) {
|
| - for (Object** current = start; current < end; current++) {
|
| - CHECK((*current)->IsSmi());
|
| - }
|
| -}
|
| -
|
| -
|
| -} } // namespace v8::internal
|
| -
|
| -#endif // V8_HEAP_INL_H_
|
|
|