Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(509)

Unified Diff: src/heap.cc

Issue 437993003: Move a bunch of GC related files to heap/ subdirectory (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: make presubmit happy Created 6 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/heap.h ('k') | src/heap-inl.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/heap.cc
diff --git a/src/heap.cc b/src/heap.cc
deleted file mode 100644
index c31339934d7b4a26e128a90eb82bc50a7a21f2c4..0000000000000000000000000000000000000000
--- a/src/heap.cc
+++ /dev/null
@@ -1,6175 +0,0 @@
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "src/v8.h"
-
-#include "src/accessors.h"
-#include "src/api.h"
-#include "src/base/once.h"
-#include "src/base/utils/random-number-generator.h"
-#include "src/bootstrapper.h"
-#include "src/codegen.h"
-#include "src/compilation-cache.h"
-#include "src/conversions.h"
-#include "src/cpu-profiler.h"
-#include "src/debug.h"
-#include "src/deoptimizer.h"
-#include "src/global-handles.h"
-#include "src/heap-profiler.h"
-#include "src/incremental-marking.h"
-#include "src/isolate-inl.h"
-#include "src/mark-compact.h"
-#include "src/natives.h"
-#include "src/objects-visiting-inl.h"
-#include "src/objects-visiting.h"
-#include "src/runtime-profiler.h"
-#include "src/scopeinfo.h"
-#include "src/snapshot.h"
-#include "src/store-buffer.h"
-#include "src/utils.h"
-#include "src/v8threads.h"
-#include "src/vm-state-inl.h"
-
-#if V8_TARGET_ARCH_ARM && !V8_INTERPRETED_REGEXP
-#include "src/regexp-macro-assembler.h" // NOLINT
-#include "src/arm/regexp-macro-assembler-arm.h" // NOLINT
-#endif
-#if V8_TARGET_ARCH_MIPS && !V8_INTERPRETED_REGEXP
-#include "src/regexp-macro-assembler.h" // NOLINT
-#include "src/mips/regexp-macro-assembler-mips.h" // NOLINT
-#endif
-#if V8_TARGET_ARCH_MIPS64 && !V8_INTERPRETED_REGEXP
-#include "src/regexp-macro-assembler.h"
-#include "src/mips64/regexp-macro-assembler-mips64.h"
-#endif
-
-namespace v8 {
-namespace internal {
-
-
-Heap::Heap()
- : amount_of_external_allocated_memory_(0),
- amount_of_external_allocated_memory_at_last_global_gc_(0),
- isolate_(NULL),
- code_range_size_(0),
- // semispace_size_ should be a power of 2 and old_generation_size_ should
- // be a multiple of Page::kPageSize.
- reserved_semispace_size_(8 * (kPointerSize / 4) * MB),
- max_semi_space_size_(8 * (kPointerSize / 4) * MB),
- initial_semispace_size_(Page::kPageSize),
- max_old_generation_size_(700ul * (kPointerSize / 4) * MB),
- max_executable_size_(256ul * (kPointerSize / 4) * MB),
- // Variables set based on semispace_size_ and old_generation_size_ in
- // ConfigureHeap.
- // Will be 4 * reserved_semispace_size_ to ensure that young
- // generation can be aligned to its size.
- maximum_committed_(0),
- survived_since_last_expansion_(0),
- sweep_generation_(0),
- always_allocate_scope_depth_(0),
- contexts_disposed_(0),
- global_ic_age_(0),
- flush_monomorphic_ics_(false),
- scan_on_scavenge_pages_(0),
- new_space_(this),
- old_pointer_space_(NULL),
- old_data_space_(NULL),
- code_space_(NULL),
- map_space_(NULL),
- cell_space_(NULL),
- property_cell_space_(NULL),
- lo_space_(NULL),
- gc_state_(NOT_IN_GC),
- gc_post_processing_depth_(0),
- allocations_count_(0),
- raw_allocations_hash_(0),
- dump_allocations_hash_countdown_(FLAG_dump_allocations_digest_at_alloc),
- ms_count_(0),
- gc_count_(0),
- remembered_unmapped_pages_index_(0),
- unflattened_strings_length_(0),
-#ifdef DEBUG
- allocation_timeout_(0),
-#endif // DEBUG
- old_generation_allocation_limit_(kMinimumOldGenerationAllocationLimit),
- old_gen_exhausted_(false),
- inline_allocation_disabled_(false),
- store_buffer_rebuilder_(store_buffer()),
- hidden_string_(NULL),
- gc_safe_size_of_old_object_(NULL),
- total_regexp_code_generated_(0),
- tracer_(this),
- high_survival_rate_period_length_(0),
- promoted_objects_size_(0),
- promotion_rate_(0),
- semi_space_copied_object_size_(0),
- semi_space_copied_rate_(0),
- nodes_died_in_new_space_(0),
- nodes_copied_in_new_space_(0),
- nodes_promoted_(0),
- maximum_size_scavenges_(0),
- max_gc_pause_(0.0),
- total_gc_time_ms_(0.0),
- max_alive_after_gc_(0),
- min_in_mutator_(kMaxInt),
- marking_time_(0.0),
- sweeping_time_(0.0),
- mark_compact_collector_(this),
- store_buffer_(this),
- marking_(this),
- incremental_marking_(this),
- number_idle_notifications_(0),
- last_idle_notification_gc_count_(0),
- last_idle_notification_gc_count_init_(false),
- mark_sweeps_since_idle_round_started_(0),
- gc_count_at_last_idle_gc_(0),
- scavenges_since_last_idle_round_(kIdleScavengeThreshold),
- full_codegen_bytes_generated_(0),
- crankshaft_codegen_bytes_generated_(0),
- gcs_since_last_deopt_(0),
-#ifdef VERIFY_HEAP
- no_weak_object_verification_scope_depth_(0),
-#endif
- allocation_sites_scratchpad_length_(0),
- promotion_queue_(this),
- configured_(false),
- external_string_table_(this),
- chunks_queued_for_free_(NULL),
- gc_callbacks_depth_(0) {
- // Allow build-time customization of the max semispace size. Building
- // V8 with snapshots and a non-default max semispace size is much
- // easier if you can define it as part of the build environment.
-#if defined(V8_MAX_SEMISPACE_SIZE)
- max_semi_space_size_ = reserved_semispace_size_ = V8_MAX_SEMISPACE_SIZE;
-#endif
-
- // Ensure old_generation_size_ is a multiple of kPageSize.
- DCHECK(MB >= Page::kPageSize);
-
- memset(roots_, 0, sizeof(roots_[0]) * kRootListLength);
- set_native_contexts_list(NULL);
- set_array_buffers_list(Smi::FromInt(0));
- set_allocation_sites_list(Smi::FromInt(0));
- set_encountered_weak_collections(Smi::FromInt(0));
- // Put a dummy entry in the remembered pages so we can find the list the
- // minidump even if there are no real unmapped pages.
- RememberUnmappedPage(NULL, false);
-
- ClearObjectStats(true);
-}
-
-
-intptr_t Heap::Capacity() {
- if (!HasBeenSetUp()) return 0;
-
- return new_space_.Capacity() +
- old_pointer_space_->Capacity() +
- old_data_space_->Capacity() +
- code_space_->Capacity() +
- map_space_->Capacity() +
- cell_space_->Capacity() +
- property_cell_space_->Capacity();
-}
-
-
-intptr_t Heap::CommittedMemory() {
- if (!HasBeenSetUp()) return 0;
-
- return new_space_.CommittedMemory() +
- old_pointer_space_->CommittedMemory() +
- old_data_space_->CommittedMemory() +
- code_space_->CommittedMemory() +
- map_space_->CommittedMemory() +
- cell_space_->CommittedMemory() +
- property_cell_space_->CommittedMemory() +
- lo_space_->Size();
-}
-
-
-size_t Heap::CommittedPhysicalMemory() {
- if (!HasBeenSetUp()) return 0;
-
- return new_space_.CommittedPhysicalMemory() +
- old_pointer_space_->CommittedPhysicalMemory() +
- old_data_space_->CommittedPhysicalMemory() +
- code_space_->CommittedPhysicalMemory() +
- map_space_->CommittedPhysicalMemory() +
- cell_space_->CommittedPhysicalMemory() +
- property_cell_space_->CommittedPhysicalMemory() +
- lo_space_->CommittedPhysicalMemory();
-}
-
-
-intptr_t Heap::CommittedMemoryExecutable() {
- if (!HasBeenSetUp()) return 0;
-
- return isolate()->memory_allocator()->SizeExecutable();
-}
-
-
-void Heap::UpdateMaximumCommitted() {
- if (!HasBeenSetUp()) return;
-
- intptr_t current_committed_memory = CommittedMemory();
- if (current_committed_memory > maximum_committed_) {
- maximum_committed_ = current_committed_memory;
- }
-}
-
-
-intptr_t Heap::Available() {
- if (!HasBeenSetUp()) return 0;
-
- return new_space_.Available() +
- old_pointer_space_->Available() +
- old_data_space_->Available() +
- code_space_->Available() +
- map_space_->Available() +
- cell_space_->Available() +
- property_cell_space_->Available();
-}
-
-
-bool Heap::HasBeenSetUp() {
- return old_pointer_space_ != NULL &&
- old_data_space_ != NULL &&
- code_space_ != NULL &&
- map_space_ != NULL &&
- cell_space_ != NULL &&
- property_cell_space_ != NULL &&
- lo_space_ != NULL;
-}
-
-
-int Heap::GcSafeSizeOfOldObject(HeapObject* object) {
- if (IntrusiveMarking::IsMarked(object)) {
- return IntrusiveMarking::SizeOfMarkedObject(object);
- }
- return object->SizeFromMap(object->map());
-}
-
-
-GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space,
- const char** reason) {
- // Is global GC requested?
- if (space != NEW_SPACE) {
- isolate_->counters()->gc_compactor_caused_by_request()->Increment();
- *reason = "GC in old space requested";
- return MARK_COMPACTOR;
- }
-
- if (FLAG_gc_global || (FLAG_stress_compaction && (gc_count_ & 1) != 0)) {
- *reason = "GC in old space forced by flags";
- return MARK_COMPACTOR;
- }
-
- // Is enough data promoted to justify a global GC?
- if (OldGenerationAllocationLimitReached()) {
- isolate_->counters()->gc_compactor_caused_by_promoted_data()->Increment();
- *reason = "promotion limit reached";
- return MARK_COMPACTOR;
- }
-
- // Have allocation in OLD and LO failed?
- if (old_gen_exhausted_) {
- isolate_->counters()->
- gc_compactor_caused_by_oldspace_exhaustion()->Increment();
- *reason = "old generations exhausted";
- return MARK_COMPACTOR;
- }
-
- // Is there enough space left in OLD to guarantee that a scavenge can
- // succeed?
- //
- // Note that MemoryAllocator->MaxAvailable() undercounts the memory available
- // for object promotion. It counts only the bytes that the memory
- // allocator has not yet allocated from the OS and assigned to any space,
- // and does not count available bytes already in the old space or code
- // space. Undercounting is safe---we may get an unrequested full GC when
- // a scavenge would have succeeded.
- if (isolate_->memory_allocator()->MaxAvailable() <= new_space_.Size()) {
- isolate_->counters()->
- gc_compactor_caused_by_oldspace_exhaustion()->Increment();
- *reason = "scavenge might not succeed";
- return MARK_COMPACTOR;
- }
-
- // Default
- *reason = NULL;
- return SCAVENGER;
-}
-
-
-// TODO(1238405): Combine the infrastructure for --heap-stats and
-// --log-gc to avoid the complicated preprocessor and flag testing.
-void Heap::ReportStatisticsBeforeGC() {
- // Heap::ReportHeapStatistics will also log NewSpace statistics when
- // compiled --log-gc is set. The following logic is used to avoid
- // double logging.
-#ifdef DEBUG
- if (FLAG_heap_stats || FLAG_log_gc) new_space_.CollectStatistics();
- if (FLAG_heap_stats) {
- ReportHeapStatistics("Before GC");
- } else if (FLAG_log_gc) {
- new_space_.ReportStatistics();
- }
- if (FLAG_heap_stats || FLAG_log_gc) new_space_.ClearHistograms();
-#else
- if (FLAG_log_gc) {
- new_space_.CollectStatistics();
- new_space_.ReportStatistics();
- new_space_.ClearHistograms();
- }
-#endif // DEBUG
-}
-
-
-void Heap::PrintShortHeapStatistics() {
- if (!FLAG_trace_gc_verbose) return;
- PrintPID("Memory allocator, used: %6" V8_PTR_PREFIX "d KB"
- ", available: %6" V8_PTR_PREFIX "d KB\n",
- isolate_->memory_allocator()->Size() / KB,
- isolate_->memory_allocator()->Available() / KB);
- PrintPID("New space, used: %6" V8_PTR_PREFIX "d KB"
- ", available: %6" V8_PTR_PREFIX "d KB"
- ", committed: %6" V8_PTR_PREFIX "d KB\n",
- new_space_.Size() / KB,
- new_space_.Available() / KB,
- new_space_.CommittedMemory() / KB);
- PrintPID("Old pointers, used: %6" V8_PTR_PREFIX "d KB"
- ", available: %6" V8_PTR_PREFIX "d KB"
- ", committed: %6" V8_PTR_PREFIX "d KB\n",
- old_pointer_space_->SizeOfObjects() / KB,
- old_pointer_space_->Available() / KB,
- old_pointer_space_->CommittedMemory() / KB);
- PrintPID("Old data space, used: %6" V8_PTR_PREFIX "d KB"
- ", available: %6" V8_PTR_PREFIX "d KB"
- ", committed: %6" V8_PTR_PREFIX "d KB\n",
- old_data_space_->SizeOfObjects() / KB,
- old_data_space_->Available() / KB,
- old_data_space_->CommittedMemory() / KB);
- PrintPID("Code space, used: %6" V8_PTR_PREFIX "d KB"
- ", available: %6" V8_PTR_PREFIX "d KB"
- ", committed: %6" V8_PTR_PREFIX "d KB\n",
- code_space_->SizeOfObjects() / KB,
- code_space_->Available() / KB,
- code_space_->CommittedMemory() / KB);
- PrintPID("Map space, used: %6" V8_PTR_PREFIX "d KB"
- ", available: %6" V8_PTR_PREFIX "d KB"
- ", committed: %6" V8_PTR_PREFIX "d KB\n",
- map_space_->SizeOfObjects() / KB,
- map_space_->Available() / KB,
- map_space_->CommittedMemory() / KB);
- PrintPID("Cell space, used: %6" V8_PTR_PREFIX "d KB"
- ", available: %6" V8_PTR_PREFIX "d KB"
- ", committed: %6" V8_PTR_PREFIX "d KB\n",
- cell_space_->SizeOfObjects() / KB,
- cell_space_->Available() / KB,
- cell_space_->CommittedMemory() / KB);
- PrintPID("PropertyCell space, used: %6" V8_PTR_PREFIX "d KB"
- ", available: %6" V8_PTR_PREFIX "d KB"
- ", committed: %6" V8_PTR_PREFIX "d KB\n",
- property_cell_space_->SizeOfObjects() / KB,
- property_cell_space_->Available() / KB,
- property_cell_space_->CommittedMemory() / KB);
- PrintPID("Large object space, used: %6" V8_PTR_PREFIX "d KB"
- ", available: %6" V8_PTR_PREFIX "d KB"
- ", committed: %6" V8_PTR_PREFIX "d KB\n",
- lo_space_->SizeOfObjects() / KB,
- lo_space_->Available() / KB,
- lo_space_->CommittedMemory() / KB);
- PrintPID("All spaces, used: %6" V8_PTR_PREFIX "d KB"
- ", available: %6" V8_PTR_PREFIX "d KB"
- ", committed: %6" V8_PTR_PREFIX "d KB\n",
- this->SizeOfObjects() / KB,
- this->Available() / KB,
- this->CommittedMemory() / KB);
- PrintPID("External memory reported: %6" V8_PTR_PREFIX "d KB\n",
- static_cast<intptr_t>(amount_of_external_allocated_memory_ / KB));
- PrintPID("Total time spent in GC : %.1f ms\n", total_gc_time_ms_);
-}
-
-
-// TODO(1238405): Combine the infrastructure for --heap-stats and
-// --log-gc to avoid the complicated preprocessor and flag testing.
-void Heap::ReportStatisticsAfterGC() {
- // Similar to the before GC, we use some complicated logic to ensure that
- // NewSpace statistics are logged exactly once when --log-gc is turned on.
-#if defined(DEBUG)
- if (FLAG_heap_stats) {
- new_space_.CollectStatistics();
- ReportHeapStatistics("After GC");
- } else if (FLAG_log_gc) {
- new_space_.ReportStatistics();
- }
-#else
- if (FLAG_log_gc) new_space_.ReportStatistics();
-#endif // DEBUG
-}
-
-
-void Heap::GarbageCollectionPrologue() {
- { AllowHeapAllocation for_the_first_part_of_prologue;
- ClearJSFunctionResultCaches();
- gc_count_++;
- unflattened_strings_length_ = 0;
-
- if (FLAG_flush_code && FLAG_flush_code_incrementally) {
- mark_compact_collector()->EnableCodeFlushing(true);
- }
-
-#ifdef VERIFY_HEAP
- if (FLAG_verify_heap) {
- Verify();
- }
-#endif
- }
-
- // Reset GC statistics.
- promoted_objects_size_ = 0;
- semi_space_copied_object_size_ = 0;
- nodes_died_in_new_space_ = 0;
- nodes_copied_in_new_space_ = 0;
- nodes_promoted_ = 0;
-
- UpdateMaximumCommitted();
-
-#ifdef DEBUG
- DCHECK(!AllowHeapAllocation::IsAllowed() && gc_state_ == NOT_IN_GC);
-
- if (FLAG_gc_verbose) Print();
-
- ReportStatisticsBeforeGC();
-#endif // DEBUG
-
- store_buffer()->GCPrologue();
-
- if (isolate()->concurrent_osr_enabled()) {
- isolate()->optimizing_compiler_thread()->AgeBufferedOsrJobs();
- }
-
- if (new_space_.IsAtMaximumCapacity()) {
- maximum_size_scavenges_++;
- } else {
- maximum_size_scavenges_ = 0;
- }
- CheckNewSpaceExpansionCriteria();
-}
-
-
-intptr_t Heap::SizeOfObjects() {
- intptr_t total = 0;
- AllSpaces spaces(this);
- for (Space* space = spaces.next(); space != NULL; space = spaces.next()) {
- total += space->SizeOfObjects();
- }
- return total;
-}
-
-
-void Heap::ClearAllICsByKind(Code::Kind kind) {
- HeapObjectIterator it(code_space());
-
- for (Object* object = it.Next(); object != NULL; object = it.Next()) {
- Code* code = Code::cast(object);
- Code::Kind current_kind = code->kind();
- if (current_kind == Code::FUNCTION ||
- current_kind == Code::OPTIMIZED_FUNCTION) {
- code->ClearInlineCaches(kind);
- }
- }
-}
-
-
-void Heap::RepairFreeListsAfterBoot() {
- PagedSpaces spaces(this);
- for (PagedSpace* space = spaces.next();
- space != NULL;
- space = spaces.next()) {
- space->RepairFreeListsAfterBoot();
- }
-}
-
-
-void Heap::ProcessPretenuringFeedback() {
- if (FLAG_allocation_site_pretenuring) {
- int tenure_decisions = 0;
- int dont_tenure_decisions = 0;
- int allocation_mementos_found = 0;
- int allocation_sites = 0;
- int active_allocation_sites = 0;
-
- // If the scratchpad overflowed, we have to iterate over the allocation
- // sites list.
- // TODO(hpayer): We iterate over the whole list of allocation sites when
- // we grew to the maximum semi-space size to deopt maybe tenured
- // allocation sites. We could hold the maybe tenured allocation sites
- // in a seperate data structure if this is a performance problem.
- bool deopt_maybe_tenured = DeoptMaybeTenuredAllocationSites();
- bool use_scratchpad =
- allocation_sites_scratchpad_length_ < kAllocationSiteScratchpadSize &&
- !deopt_maybe_tenured;
-
- int i = 0;
- Object* list_element = allocation_sites_list();
- bool trigger_deoptimization = false;
- bool maximum_size_scavenge = MaximumSizeScavenge();
- while (use_scratchpad ?
- i < allocation_sites_scratchpad_length_ :
- list_element->IsAllocationSite()) {
- AllocationSite* site = use_scratchpad ?
- AllocationSite::cast(allocation_sites_scratchpad()->get(i)) :
- AllocationSite::cast(list_element);
- allocation_mementos_found += site->memento_found_count();
- if (site->memento_found_count() > 0) {
- active_allocation_sites++;
- if (site->DigestPretenuringFeedback(maximum_size_scavenge)) {
- trigger_deoptimization = true;
- }
- if (site->GetPretenureMode() == TENURED) {
- tenure_decisions++;
- } else {
- dont_tenure_decisions++;
- }
- allocation_sites++;
- }
-
- if (deopt_maybe_tenured && site->IsMaybeTenure()) {
- site->set_deopt_dependent_code(true);
- trigger_deoptimization = true;
- }
-
- if (use_scratchpad) {
- i++;
- } else {
- list_element = site->weak_next();
- }
- }
-
- if (trigger_deoptimization) {
- isolate_->stack_guard()->RequestDeoptMarkedAllocationSites();
- }
-
- FlushAllocationSitesScratchpad();
-
- if (FLAG_trace_pretenuring_statistics &&
- (allocation_mementos_found > 0 ||
- tenure_decisions > 0 ||
- dont_tenure_decisions > 0)) {
- PrintF("GC: (mode, #visited allocation sites, #active allocation sites, "
- "#mementos, #tenure decisions, #donttenure decisions) "
- "(%s, %d, %d, %d, %d, %d)\n",
- use_scratchpad ? "use scratchpad" : "use list",
- allocation_sites,
- active_allocation_sites,
- allocation_mementos_found,
- tenure_decisions,
- dont_tenure_decisions);
- }
- }
-}
-
-
-void Heap::DeoptMarkedAllocationSites() {
- // TODO(hpayer): If iterating over the allocation sites list becomes a
- // performance issue, use a cache heap data structure instead (similar to the
- // allocation sites scratchpad).
- Object* list_element = allocation_sites_list();
- while (list_element->IsAllocationSite()) {
- AllocationSite* site = AllocationSite::cast(list_element);
- if (site->deopt_dependent_code()) {
- site->dependent_code()->MarkCodeForDeoptimization(
- isolate_,
- DependentCode::kAllocationSiteTenuringChangedGroup);
- site->set_deopt_dependent_code(false);
- }
- list_element = site->weak_next();
- }
- Deoptimizer::DeoptimizeMarkedCode(isolate_);
-}
-
-
-void Heap::GarbageCollectionEpilogue() {
- store_buffer()->GCEpilogue();
-
- // In release mode, we only zap the from space under heap verification.
- if (Heap::ShouldZapGarbage()) {
- ZapFromSpace();
- }
-
- // Process pretenuring feedback and update allocation sites.
- ProcessPretenuringFeedback();
-
-#ifdef VERIFY_HEAP
- if (FLAG_verify_heap) {
- Verify();
- }
-#endif
-
- AllowHeapAllocation for_the_rest_of_the_epilogue;
-
-#ifdef DEBUG
- if (FLAG_print_global_handles) isolate_->global_handles()->Print();
- if (FLAG_print_handles) PrintHandles();
- if (FLAG_gc_verbose) Print();
- if (FLAG_code_stats) ReportCodeStatistics("After GC");
-#endif
- if (FLAG_deopt_every_n_garbage_collections > 0) {
- // TODO(jkummerow/ulan/jarin): This is not safe! We can't assume that
- // the topmost optimized frame can be deoptimized safely, because it
- // might not have a lazy bailout point right after its current PC.
- if (++gcs_since_last_deopt_ == FLAG_deopt_every_n_garbage_collections) {
- Deoptimizer::DeoptimizeAll(isolate());
- gcs_since_last_deopt_ = 0;
- }
- }
-
- UpdateMaximumCommitted();
-
- isolate_->counters()->alive_after_last_gc()->Set(
- static_cast<int>(SizeOfObjects()));
-
- isolate_->counters()->string_table_capacity()->Set(
- string_table()->Capacity());
- isolate_->counters()->number_of_symbols()->Set(
- string_table()->NumberOfElements());
-
- if (full_codegen_bytes_generated_ + crankshaft_codegen_bytes_generated_ > 0) {
- isolate_->counters()->codegen_fraction_crankshaft()->AddSample(
- static_cast<int>((crankshaft_codegen_bytes_generated_ * 100.0) /
- (crankshaft_codegen_bytes_generated_
- + full_codegen_bytes_generated_)));
- }
-
- if (CommittedMemory() > 0) {
- isolate_->counters()->external_fragmentation_total()->AddSample(
- static_cast<int>(100 - (SizeOfObjects() * 100.0) / CommittedMemory()));
-
- isolate_->counters()->heap_fraction_new_space()->
- AddSample(static_cast<int>(
- (new_space()->CommittedMemory() * 100.0) / CommittedMemory()));
- isolate_->counters()->heap_fraction_old_pointer_space()->AddSample(
- static_cast<int>(
- (old_pointer_space()->CommittedMemory() * 100.0) /
- CommittedMemory()));
- isolate_->counters()->heap_fraction_old_data_space()->AddSample(
- static_cast<int>(
- (old_data_space()->CommittedMemory() * 100.0) /
- CommittedMemory()));
- isolate_->counters()->heap_fraction_code_space()->
- AddSample(static_cast<int>(
- (code_space()->CommittedMemory() * 100.0) / CommittedMemory()));
- isolate_->counters()->heap_fraction_map_space()->AddSample(
- static_cast<int>(
- (map_space()->CommittedMemory() * 100.0) / CommittedMemory()));
- isolate_->counters()->heap_fraction_cell_space()->AddSample(
- static_cast<int>(
- (cell_space()->CommittedMemory() * 100.0) / CommittedMemory()));
- isolate_->counters()->heap_fraction_property_cell_space()->
- AddSample(static_cast<int>(
- (property_cell_space()->CommittedMemory() * 100.0) /
- CommittedMemory()));
- isolate_->counters()->heap_fraction_lo_space()->
- AddSample(static_cast<int>(
- (lo_space()->CommittedMemory() * 100.0) / CommittedMemory()));
-
- isolate_->counters()->heap_sample_total_committed()->AddSample(
- static_cast<int>(CommittedMemory() / KB));
- isolate_->counters()->heap_sample_total_used()->AddSample(
- static_cast<int>(SizeOfObjects() / KB));
- isolate_->counters()->heap_sample_map_space_committed()->AddSample(
- static_cast<int>(map_space()->CommittedMemory() / KB));
- isolate_->counters()->heap_sample_cell_space_committed()->AddSample(
- static_cast<int>(cell_space()->CommittedMemory() / KB));
- isolate_->counters()->
- heap_sample_property_cell_space_committed()->
- AddSample(static_cast<int>(
- property_cell_space()->CommittedMemory() / KB));
- isolate_->counters()->heap_sample_code_space_committed()->AddSample(
- static_cast<int>(code_space()->CommittedMemory() / KB));
-
- isolate_->counters()->heap_sample_maximum_committed()->AddSample(
- static_cast<int>(MaximumCommittedMemory() / KB));
- }
-
-#define UPDATE_COUNTERS_FOR_SPACE(space) \
- isolate_->counters()->space##_bytes_available()->Set( \
- static_cast<int>(space()->Available())); \
- isolate_->counters()->space##_bytes_committed()->Set( \
- static_cast<int>(space()->CommittedMemory())); \
- isolate_->counters()->space##_bytes_used()->Set( \
- static_cast<int>(space()->SizeOfObjects()));
-#define UPDATE_FRAGMENTATION_FOR_SPACE(space) \
- if (space()->CommittedMemory() > 0) { \
- isolate_->counters()->external_fragmentation_##space()->AddSample( \
- static_cast<int>(100 - \
- (space()->SizeOfObjects() * 100.0) / space()->CommittedMemory())); \
- }
-#define UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(space) \
- UPDATE_COUNTERS_FOR_SPACE(space) \
- UPDATE_FRAGMENTATION_FOR_SPACE(space)
-
- UPDATE_COUNTERS_FOR_SPACE(new_space)
- UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(old_pointer_space)
- UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(old_data_space)
- UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(code_space)
- UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(map_space)
- UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(cell_space)
- UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(property_cell_space)
- UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(lo_space)
-#undef UPDATE_COUNTERS_FOR_SPACE
-#undef UPDATE_FRAGMENTATION_FOR_SPACE
-#undef UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE
-
-#ifdef DEBUG
- ReportStatisticsAfterGC();
-#endif // DEBUG
-
- // Remember the last top pointer so that we can later find out
- // whether we allocated in new space since the last GC.
- new_space_top_after_last_gc_ = new_space()->top();
-}
-
-
-void Heap::CollectAllGarbage(int flags,
- const char* gc_reason,
- const v8::GCCallbackFlags gc_callback_flags) {
- // Since we are ignoring the return value, the exact choice of space does
- // not matter, so long as we do not specify NEW_SPACE, which would not
- // cause a full GC.
- mark_compact_collector_.SetFlags(flags);
- CollectGarbage(OLD_POINTER_SPACE, gc_reason, gc_callback_flags);
- mark_compact_collector_.SetFlags(kNoGCFlags);
-}
-
-
-void Heap::CollectAllAvailableGarbage(const char* gc_reason) {
- // Since we are ignoring the return value, the exact choice of space does
- // not matter, so long as we do not specify NEW_SPACE, which would not
- // cause a full GC.
- // Major GC would invoke weak handle callbacks on weakly reachable
- // handles, but won't collect weakly reachable objects until next
- // major GC. Therefore if we collect aggressively and weak handle callback
- // has been invoked, we rerun major GC to release objects which become
- // garbage.
- // Note: as weak callbacks can execute arbitrary code, we cannot
- // hope that eventually there will be no weak callbacks invocations.
- // Therefore stop recollecting after several attempts.
- if (isolate()->concurrent_recompilation_enabled()) {
- // The optimizing compiler may be unnecessarily holding on to memory.
- DisallowHeapAllocation no_recursive_gc;
- isolate()->optimizing_compiler_thread()->Flush();
- }
- mark_compact_collector()->SetFlags(kMakeHeapIterableMask |
- kReduceMemoryFootprintMask);
- isolate_->compilation_cache()->Clear();
- const int kMaxNumberOfAttempts = 7;
- const int kMinNumberOfAttempts = 2;
- for (int attempt = 0; attempt < kMaxNumberOfAttempts; attempt++) {
- if (!CollectGarbage(MARK_COMPACTOR, gc_reason, NULL) &&
- attempt + 1 >= kMinNumberOfAttempts) {
- break;
- }
- }
- mark_compact_collector()->SetFlags(kNoGCFlags);
- new_space_.Shrink();
- UncommitFromSpace();
- incremental_marking()->UncommitMarkingDeque();
-}
-
-
-void Heap::EnsureFillerObjectAtTop() {
- // There may be an allocation memento behind every object in new space.
- // If we evacuate a not full new space or if we are on the last page of
- // the new space, then there may be uninitialized memory behind the top
- // pointer of the new space page. We store a filler object there to
- // identify the unused space.
- Address from_top = new_space_.top();
- Address from_limit = new_space_.limit();
- if (from_top < from_limit) {
- int remaining_in_page = static_cast<int>(from_limit - from_top);
- CreateFillerObjectAt(from_top, remaining_in_page);
- }
-}
-
-
-bool Heap::CollectGarbage(GarbageCollector collector,
- const char* gc_reason,
- const char* collector_reason,
- const v8::GCCallbackFlags gc_callback_flags) {
- // The VM is in the GC state until exiting this function.
- VMState<GC> state(isolate_);
-
-#ifdef DEBUG
- // Reset the allocation timeout to the GC interval, but make sure to
- // allow at least a few allocations after a collection. The reason
- // for this is that we have a lot of allocation sequences and we
- // assume that a garbage collection will allow the subsequent
- // allocation attempts to go through.
- allocation_timeout_ = Max(6, FLAG_gc_interval);
-#endif
-
- EnsureFillerObjectAtTop();
-
- if (collector == SCAVENGER && !incremental_marking()->IsStopped()) {
- if (FLAG_trace_incremental_marking) {
- PrintF("[IncrementalMarking] Scavenge during marking.\n");
- }
- }
-
- if (collector == MARK_COMPACTOR &&
- !mark_compact_collector()->abort_incremental_marking() &&
- !incremental_marking()->IsStopped() &&
- !incremental_marking()->should_hurry() &&
- FLAG_incremental_marking_steps) {
- // Make progress in incremental marking.
- const intptr_t kStepSizeWhenDelayedByScavenge = 1 * MB;
- incremental_marking()->Step(kStepSizeWhenDelayedByScavenge,
- IncrementalMarking::NO_GC_VIA_STACK_GUARD);
- if (!incremental_marking()->IsComplete() && !FLAG_gc_global) {
- if (FLAG_trace_incremental_marking) {
- PrintF("[IncrementalMarking] Delaying MarkSweep.\n");
- }
- collector = SCAVENGER;
- collector_reason = "incremental marking delaying mark-sweep";
- }
- }
-
- bool next_gc_likely_to_collect_more = false;
-
- {
- tracer()->Start(collector, gc_reason, collector_reason);
- DCHECK(AllowHeapAllocation::IsAllowed());
- DisallowHeapAllocation no_allocation_during_gc;
- GarbageCollectionPrologue();
-
- {
- HistogramTimerScope histogram_timer_scope(
- (collector == SCAVENGER) ? isolate_->counters()->gc_scavenger()
- : isolate_->counters()->gc_compactor());
- next_gc_likely_to_collect_more =
- PerformGarbageCollection(collector, gc_callback_flags);
- }
-
- GarbageCollectionEpilogue();
- tracer()->Stop();
- }
-
- // Start incremental marking for the next cycle. The heap snapshot
- // generator needs incremental marking to stay off after it aborted.
- if (!mark_compact_collector()->abort_incremental_marking() &&
- incremental_marking()->IsStopped() &&
- incremental_marking()->WorthActivating() &&
- NextGCIsLikelyToBeFull()) {
- incremental_marking()->Start();
- }
-
- return next_gc_likely_to_collect_more;
-}
-
-
-int Heap::NotifyContextDisposed() {
- if (isolate()->concurrent_recompilation_enabled()) {
- // Flush the queued recompilation tasks.
- isolate()->optimizing_compiler_thread()->Flush();
- }
- flush_monomorphic_ics_ = true;
- AgeInlineCaches();
- return ++contexts_disposed_;
-}
-
-
-void Heap::MoveElements(FixedArray* array,
- int dst_index,
- int src_index,
- int len) {
- if (len == 0) return;
-
- DCHECK(array->map() != fixed_cow_array_map());
- Object** dst_objects = array->data_start() + dst_index;
- MemMove(dst_objects, array->data_start() + src_index, len * kPointerSize);
- if (!InNewSpace(array)) {
- for (int i = 0; i < len; i++) {
- // TODO(hpayer): check store buffer for entries
- if (InNewSpace(dst_objects[i])) {
- RecordWrite(array->address(), array->OffsetOfElementAt(dst_index + i));
- }
- }
- }
- incremental_marking()->RecordWrites(array);
-}
-
-
-#ifdef VERIFY_HEAP
-// Helper class for verifying the string table.
-class StringTableVerifier : public ObjectVisitor {
- public:
- void VisitPointers(Object** start, Object** end) {
- // Visit all HeapObject pointers in [start, end).
- for (Object** p = start; p < end; p++) {
- if ((*p)->IsHeapObject()) {
- // Check that the string is actually internalized.
- CHECK((*p)->IsTheHole() || (*p)->IsUndefined() ||
- (*p)->IsInternalizedString());
- }
- }
- }
-};
-
-
-static void VerifyStringTable(Heap* heap) {
- StringTableVerifier verifier;
- heap->string_table()->IterateElements(&verifier);
-}
-#endif // VERIFY_HEAP
-
-
-static bool AbortIncrementalMarkingAndCollectGarbage(
- Heap* heap,
- AllocationSpace space,
- const char* gc_reason = NULL) {
- heap->mark_compact_collector()->SetFlags(Heap::kAbortIncrementalMarkingMask);
- bool result = heap->CollectGarbage(space, gc_reason);
- heap->mark_compact_collector()->SetFlags(Heap::kNoGCFlags);
- return result;
-}
-
-
-void Heap::ReserveSpace(int *sizes, Address *locations_out) {
- bool gc_performed = true;
- int counter = 0;
- static const int kThreshold = 20;
- while (gc_performed && counter++ < kThreshold) {
- gc_performed = false;
- DCHECK(NEW_SPACE == FIRST_PAGED_SPACE - 1);
- for (int space = NEW_SPACE; space <= LAST_PAGED_SPACE; space++) {
- if (sizes[space] != 0) {
- AllocationResult allocation;
- if (space == NEW_SPACE) {
- allocation = new_space()->AllocateRaw(sizes[space]);
- } else {
- allocation = paged_space(space)->AllocateRaw(sizes[space]);
- }
- FreeListNode* node;
- if (!allocation.To(&node)) {
- if (space == NEW_SPACE) {
- Heap::CollectGarbage(NEW_SPACE,
- "failed to reserve space in the new space");
- } else {
- AbortIncrementalMarkingAndCollectGarbage(
- this,
- static_cast<AllocationSpace>(space),
- "failed to reserve space in paged space");
- }
- gc_performed = true;
- break;
- } else {
- // Mark with a free list node, in case we have a GC before
- // deserializing.
- node->set_size(this, sizes[space]);
- locations_out[space] = node->address();
- }
- }
- }
- }
-
- if (gc_performed) {
- // Failed to reserve the space after several attempts.
- V8::FatalProcessOutOfMemory("Heap::ReserveSpace");
- }
-}
-
-
-void Heap::EnsureFromSpaceIsCommitted() {
- if (new_space_.CommitFromSpaceIfNeeded()) return;
-
- // Committing memory to from space failed.
- // Memory is exhausted and we will die.
- V8::FatalProcessOutOfMemory("Committing semi space failed.");
-}
-
-
-void Heap::ClearJSFunctionResultCaches() {
- if (isolate_->bootstrapper()->IsActive()) return;
-
- Object* context = native_contexts_list();
- while (!context->IsUndefined()) {
- // Get the caches for this context. GC can happen when the context
- // is not fully initialized, so the caches can be undefined.
- Object* caches_or_undefined =
- Context::cast(context)->get(Context::JSFUNCTION_RESULT_CACHES_INDEX);
- if (!caches_or_undefined->IsUndefined()) {
- FixedArray* caches = FixedArray::cast(caches_or_undefined);
- // Clear the caches:
- int length = caches->length();
- for (int i = 0; i < length; i++) {
- JSFunctionResultCache::cast(caches->get(i))->Clear();
- }
- }
- // Get the next context:
- context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
- }
-}
-
-
-void Heap::ClearNormalizedMapCaches() {
- if (isolate_->bootstrapper()->IsActive() &&
- !incremental_marking()->IsMarking()) {
- return;
- }
-
- Object* context = native_contexts_list();
- while (!context->IsUndefined()) {
- // GC can happen when the context is not fully initialized,
- // so the cache can be undefined.
- Object* cache =
- Context::cast(context)->get(Context::NORMALIZED_MAP_CACHE_INDEX);
- if (!cache->IsUndefined()) {
- NormalizedMapCache::cast(cache)->Clear();
- }
- context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
- }
-}
-
-
-void Heap::UpdateSurvivalStatistics(int start_new_space_size) {
- if (start_new_space_size == 0) return;
-
- promotion_rate_ =
- (static_cast<double>(promoted_objects_size_) /
- static_cast<double>(start_new_space_size) * 100);
-
- semi_space_copied_rate_ =
- (static_cast<double>(semi_space_copied_object_size_) /
- static_cast<double>(start_new_space_size) * 100);
-
- double survival_rate = promotion_rate_ + semi_space_copied_rate_;
-
- if (survival_rate > kYoungSurvivalRateHighThreshold) {
- high_survival_rate_period_length_++;
- } else {
- high_survival_rate_period_length_ = 0;
- }
-}
-
-bool Heap::PerformGarbageCollection(
- GarbageCollector collector,
- const v8::GCCallbackFlags gc_callback_flags) {
- int freed_global_handles = 0;
-
- if (collector != SCAVENGER) {
- PROFILE(isolate_, CodeMovingGCEvent());
- }
-
-#ifdef VERIFY_HEAP
- if (FLAG_verify_heap) {
- VerifyStringTable(this);
- }
-#endif
-
- GCType gc_type =
- collector == MARK_COMPACTOR ? kGCTypeMarkSweepCompact : kGCTypeScavenge;
-
- { GCCallbacksScope scope(this);
- if (scope.CheckReenter()) {
- AllowHeapAllocation allow_allocation;
- GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL);
- VMState<EXTERNAL> state(isolate_);
- HandleScope handle_scope(isolate_);
- CallGCPrologueCallbacks(gc_type, kNoGCCallbackFlags);
- }
- }
-
- EnsureFromSpaceIsCommitted();
-
- int start_new_space_size = Heap::new_space()->SizeAsInt();
-
- if (IsHighSurvivalRate()) {
- // We speed up the incremental marker if it is running so that it
- // does not fall behind the rate of promotion, which would cause a
- // constantly growing old space.
- incremental_marking()->NotifyOfHighPromotionRate();
- }
-
- if (collector == MARK_COMPACTOR) {
- // Perform mark-sweep with optional compaction.
- MarkCompact();
- sweep_generation_++;
- // Temporarily set the limit for case when PostGarbageCollectionProcessing
- // allocates and triggers GC. The real limit is set at after
- // PostGarbageCollectionProcessing.
- old_generation_allocation_limit_ =
- OldGenerationAllocationLimit(PromotedSpaceSizeOfObjects(), 0);
- old_gen_exhausted_ = false;
- } else {
- Scavenge();
- }
-
- UpdateSurvivalStatistics(start_new_space_size);
-
- isolate_->counters()->objs_since_last_young()->Set(0);
-
- // Callbacks that fire after this point might trigger nested GCs and
- // restart incremental marking, the assertion can't be moved down.
- DCHECK(collector == SCAVENGER || incremental_marking()->IsStopped());
-
- gc_post_processing_depth_++;
- { AllowHeapAllocation allow_allocation;
- GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL);
- freed_global_handles =
- isolate_->global_handles()->PostGarbageCollectionProcessing(collector);
- }
- gc_post_processing_depth_--;
-
- isolate_->eternal_handles()->PostGarbageCollectionProcessing(this);
-
- // Update relocatables.
- Relocatable::PostGarbageCollectionProcessing(isolate_);
-
- if (collector == MARK_COMPACTOR) {
- // Register the amount of external allocated memory.
- amount_of_external_allocated_memory_at_last_global_gc_ =
- amount_of_external_allocated_memory_;
- old_generation_allocation_limit_ =
- OldGenerationAllocationLimit(PromotedSpaceSizeOfObjects(),
- freed_global_handles);
- }
-
- { GCCallbacksScope scope(this);
- if (scope.CheckReenter()) {
- AllowHeapAllocation allow_allocation;
- GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL);
- VMState<EXTERNAL> state(isolate_);
- HandleScope handle_scope(isolate_);
- CallGCEpilogueCallbacks(gc_type, gc_callback_flags);
- }
- }
-
-#ifdef VERIFY_HEAP
- if (FLAG_verify_heap) {
- VerifyStringTable(this);
- }
-#endif
-
- return freed_global_handles > 0;
-}
-
-
-void Heap::CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags) {
- for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) {
- if (gc_type & gc_prologue_callbacks_[i].gc_type) {
- if (!gc_prologue_callbacks_[i].pass_isolate_) {
- v8::GCPrologueCallback callback =
- reinterpret_cast<v8::GCPrologueCallback>(
- gc_prologue_callbacks_[i].callback);
- callback(gc_type, flags);
- } else {
- v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(this->isolate());
- gc_prologue_callbacks_[i].callback(isolate, gc_type, flags);
- }
- }
- }
-}
-
-
-void Heap::CallGCEpilogueCallbacks(GCType gc_type,
- GCCallbackFlags gc_callback_flags) {
- for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) {
- if (gc_type & gc_epilogue_callbacks_[i].gc_type) {
- if (!gc_epilogue_callbacks_[i].pass_isolate_) {
- v8::GCPrologueCallback callback =
- reinterpret_cast<v8::GCPrologueCallback>(
- gc_epilogue_callbacks_[i].callback);
- callback(gc_type, gc_callback_flags);
- } else {
- v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(this->isolate());
- gc_epilogue_callbacks_[i].callback(
- isolate, gc_type, gc_callback_flags);
- }
- }
- }
-}
-
-
-void Heap::MarkCompact() {
- gc_state_ = MARK_COMPACT;
- LOG(isolate_, ResourceEvent("markcompact", "begin"));
-
- uint64_t size_of_objects_before_gc = SizeOfObjects();
-
- mark_compact_collector_.Prepare();
-
- ms_count_++;
-
- MarkCompactPrologue();
-
- mark_compact_collector_.CollectGarbage();
-
- LOG(isolate_, ResourceEvent("markcompact", "end"));
-
- gc_state_ = NOT_IN_GC;
-
- isolate_->counters()->objs_since_last_full()->Set(0);
-
- flush_monomorphic_ics_ = false;
-
- if (FLAG_allocation_site_pretenuring) {
- EvaluateOldSpaceLocalPretenuring(size_of_objects_before_gc);
- }
-}
-
-
-void Heap::MarkCompactPrologue() {
- // At any old GC clear the keyed lookup cache to enable collection of unused
- // maps.
- isolate_->keyed_lookup_cache()->Clear();
- isolate_->context_slot_cache()->Clear();
- isolate_->descriptor_lookup_cache()->Clear();
- RegExpResultsCache::Clear(string_split_cache());
- RegExpResultsCache::Clear(regexp_multiple_cache());
-
- isolate_->compilation_cache()->MarkCompactPrologue();
-
- CompletelyClearInstanceofCache();
-
- FlushNumberStringCache();
- if (FLAG_cleanup_code_caches_at_gc) {
- polymorphic_code_cache()->set_cache(undefined_value());
- }
-
- ClearNormalizedMapCaches();
-}
-
-
-// Helper class for copying HeapObjects
-class ScavengeVisitor: public ObjectVisitor {
- public:
- explicit ScavengeVisitor(Heap* heap) : heap_(heap) {}
-
- void VisitPointer(Object** p) { ScavengePointer(p); }
-
- void VisitPointers(Object** start, Object** end) {
- // Copy all HeapObject pointers in [start, end)
- for (Object** p = start; p < end; p++) ScavengePointer(p);
- }
-
- private:
- void ScavengePointer(Object** p) {
- Object* object = *p;
- if (!heap_->InNewSpace(object)) return;
- Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
- reinterpret_cast<HeapObject*>(object));
- }
-
- Heap* heap_;
-};
-
-
-#ifdef VERIFY_HEAP
-// Visitor class to verify pointers in code or data space do not point into
-// new space.
-class VerifyNonPointerSpacePointersVisitor: public ObjectVisitor {
- public:
- explicit VerifyNonPointerSpacePointersVisitor(Heap* heap) : heap_(heap) {}
- void VisitPointers(Object** start, Object**end) {
- for (Object** current = start; current < end; current++) {
- if ((*current)->IsHeapObject()) {
- CHECK(!heap_->InNewSpace(HeapObject::cast(*current)));
- }
- }
- }
-
- private:
- Heap* heap_;
-};
-
-
-static void VerifyNonPointerSpacePointers(Heap* heap) {
- // Verify that there are no pointers to new space in spaces where we
- // do not expect them.
- VerifyNonPointerSpacePointersVisitor v(heap);
- HeapObjectIterator code_it(heap->code_space());
- for (HeapObject* object = code_it.Next();
- object != NULL; object = code_it.Next())
- object->Iterate(&v);
-
- // The old data space was normally swept conservatively so that the iterator
- // doesn't work, so we normally skip the next bit.
- if (heap->old_data_space()->swept_precisely()) {
- HeapObjectIterator data_it(heap->old_data_space());
- for (HeapObject* object = data_it.Next();
- object != NULL; object = data_it.Next())
- object->Iterate(&v);
- }
-}
-#endif // VERIFY_HEAP
-
-
-void Heap::CheckNewSpaceExpansionCriteria() {
- if (new_space_.Capacity() < new_space_.MaximumCapacity() &&
- survived_since_last_expansion_ > new_space_.Capacity()) {
- // Grow the size of new space if there is room to grow, enough data
- // has survived scavenge since the last expansion and we are not in
- // high promotion mode.
- new_space_.Grow();
- survived_since_last_expansion_ = 0;
- }
-}
-
-
-static bool IsUnscavengedHeapObject(Heap* heap, Object** p) {
- return heap->InNewSpace(*p) &&
- !HeapObject::cast(*p)->map_word().IsForwardingAddress();
-}
-
-
-void Heap::ScavengeStoreBufferCallback(
- Heap* heap,
- MemoryChunk* page,
- StoreBufferEvent event) {
- heap->store_buffer_rebuilder_.Callback(page, event);
-}
-
-
-void StoreBufferRebuilder::Callback(MemoryChunk* page, StoreBufferEvent event) {
- if (event == kStoreBufferStartScanningPagesEvent) {
- start_of_current_page_ = NULL;
- current_page_ = NULL;
- } else if (event == kStoreBufferScanningPageEvent) {
- if (current_page_ != NULL) {
- // If this page already overflowed the store buffer during this iteration.
- if (current_page_->scan_on_scavenge()) {
- // Then we should wipe out the entries that have been added for it.
- store_buffer_->SetTop(start_of_current_page_);
- } else if (store_buffer_->Top() - start_of_current_page_ >=
- (store_buffer_->Limit() - store_buffer_->Top()) >> 2) {
- // Did we find too many pointers in the previous page? The heuristic is
- // that no page can take more then 1/5 the remaining slots in the store
- // buffer.
- current_page_->set_scan_on_scavenge(true);
- store_buffer_->SetTop(start_of_current_page_);
- } else {
- // In this case the page we scanned took a reasonable number of slots in
- // the store buffer. It has now been rehabilitated and is no longer
- // marked scan_on_scavenge.
- DCHECK(!current_page_->scan_on_scavenge());
- }
- }
- start_of_current_page_ = store_buffer_->Top();
- current_page_ = page;
- } else if (event == kStoreBufferFullEvent) {
- // The current page overflowed the store buffer again. Wipe out its entries
- // in the store buffer and mark it scan-on-scavenge again. This may happen
- // several times while scanning.
- if (current_page_ == NULL) {
- // Store Buffer overflowed while scanning promoted objects. These are not
- // in any particular page, though they are likely to be clustered by the
- // allocation routines.
- store_buffer_->EnsureSpace(StoreBuffer::kStoreBufferSize / 2);
- } else {
- // Store Buffer overflowed while scanning a particular old space page for
- // pointers to new space.
- DCHECK(current_page_ == page);
- DCHECK(page != NULL);
- current_page_->set_scan_on_scavenge(true);
- DCHECK(start_of_current_page_ != store_buffer_->Top());
- store_buffer_->SetTop(start_of_current_page_);
- }
- } else {
- UNREACHABLE();
- }
-}
-
-
-void PromotionQueue::Initialize() {
- // Assumes that a NewSpacePage exactly fits a number of promotion queue
- // entries (where each is a pair of intptr_t). This allows us to simplify
- // the test fpr when to switch pages.
- DCHECK((Page::kPageSize - MemoryChunk::kBodyOffset) % (2 * kPointerSize)
- == 0);
- limit_ = reinterpret_cast<intptr_t*>(heap_->new_space()->ToSpaceStart());
- front_ = rear_ =
- reinterpret_cast<intptr_t*>(heap_->new_space()->ToSpaceEnd());
- emergency_stack_ = NULL;
- guard_ = false;
-}
-
-
-void PromotionQueue::RelocateQueueHead() {
- DCHECK(emergency_stack_ == NULL);
-
- Page* p = Page::FromAllocationTop(reinterpret_cast<Address>(rear_));
- intptr_t* head_start = rear_;
- intptr_t* head_end =
- Min(front_, reinterpret_cast<intptr_t*>(p->area_end()));
-
- int entries_count =
- static_cast<int>(head_end - head_start) / kEntrySizeInWords;
-
- emergency_stack_ = new List<Entry>(2 * entries_count);
-
- while (head_start != head_end) {
- int size = static_cast<int>(*(head_start++));
- HeapObject* obj = reinterpret_cast<HeapObject*>(*(head_start++));
- emergency_stack_->Add(Entry(obj, size));
- }
- rear_ = head_end;
-}
-
-
-class ScavengeWeakObjectRetainer : public WeakObjectRetainer {
- public:
- explicit ScavengeWeakObjectRetainer(Heap* heap) : heap_(heap) { }
-
- virtual Object* RetainAs(Object* object) {
- if (!heap_->InFromSpace(object)) {
- return object;
- }
-
- MapWord map_word = HeapObject::cast(object)->map_word();
- if (map_word.IsForwardingAddress()) {
- return map_word.ToForwardingAddress();
- }
- return NULL;
- }
-
- private:
- Heap* heap_;
-};
-
-
-void Heap::Scavenge() {
- RelocationLock relocation_lock(this);
-
-#ifdef VERIFY_HEAP
- if (FLAG_verify_heap) VerifyNonPointerSpacePointers(this);
-#endif
-
- gc_state_ = SCAVENGE;
-
- // Implements Cheney's copying algorithm
- LOG(isolate_, ResourceEvent("scavenge", "begin"));
-
- // Clear descriptor cache.
- isolate_->descriptor_lookup_cache()->Clear();
-
- // Used for updating survived_since_last_expansion_ at function end.
- intptr_t survived_watermark = PromotedSpaceSizeOfObjects();
-
- SelectScavengingVisitorsTable();
-
- incremental_marking()->PrepareForScavenge();
-
- // Flip the semispaces. After flipping, to space is empty, from space has
- // live objects.
- new_space_.Flip();
- new_space_.ResetAllocationInfo();
-
- // We need to sweep newly copied objects which can be either in the
- // to space or promoted to the old generation. For to-space
- // objects, we treat the bottom of the to space as a queue. Newly
- // copied and unswept objects lie between a 'front' mark and the
- // allocation pointer.
- //
- // Promoted objects can go into various old-generation spaces, and
- // can be allocated internally in the spaces (from the free list).
- // We treat the top of the to space as a queue of addresses of
- // promoted objects. The addresses of newly promoted and unswept
- // objects lie between a 'front' mark and a 'rear' mark that is
- // updated as a side effect of promoting an object.
- //
- // There is guaranteed to be enough room at the top of the to space
- // for the addresses of promoted objects: every object promoted
- // frees up its size in bytes from the top of the new space, and
- // objects are at least one pointer in size.
- Address new_space_front = new_space_.ToSpaceStart();
- promotion_queue_.Initialize();
-
-#ifdef DEBUG
- store_buffer()->Clean();
-#endif
-
- ScavengeVisitor scavenge_visitor(this);
- // Copy roots.
- IterateRoots(&scavenge_visitor, VISIT_ALL_IN_SCAVENGE);
-
- // Copy objects reachable from the old generation.
- {
- StoreBufferRebuildScope scope(this,
- store_buffer(),
- &ScavengeStoreBufferCallback);
- store_buffer()->IteratePointersToNewSpace(&ScavengeObject);
- }
-
- // Copy objects reachable from simple cells by scavenging cell values
- // directly.
- HeapObjectIterator cell_iterator(cell_space_);
- for (HeapObject* heap_object = cell_iterator.Next();
- heap_object != NULL;
- heap_object = cell_iterator.Next()) {
- if (heap_object->IsCell()) {
- Cell* cell = Cell::cast(heap_object);
- Address value_address = cell->ValueAddress();
- scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(value_address));
- }
- }
-
- // Copy objects reachable from global property cells by scavenging global
- // property cell values directly.
- HeapObjectIterator js_global_property_cell_iterator(property_cell_space_);
- for (HeapObject* heap_object = js_global_property_cell_iterator.Next();
- heap_object != NULL;
- heap_object = js_global_property_cell_iterator.Next()) {
- if (heap_object->IsPropertyCell()) {
- PropertyCell* cell = PropertyCell::cast(heap_object);
- Address value_address = cell->ValueAddress();
- scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(value_address));
- Address type_address = cell->TypeAddress();
- scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(type_address));
- }
- }
-
- // Copy objects reachable from the encountered weak collections list.
- scavenge_visitor.VisitPointer(&encountered_weak_collections_);
-
- // Copy objects reachable from the code flushing candidates list.
- MarkCompactCollector* collector = mark_compact_collector();
- if (collector->is_code_flushing_enabled()) {
- collector->code_flusher()->IteratePointersToFromSpace(&scavenge_visitor);
- }
-
- new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
-
- while (isolate()->global_handles()->IterateObjectGroups(
- &scavenge_visitor, &IsUnscavengedHeapObject)) {
- new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
- }
- isolate()->global_handles()->RemoveObjectGroups();
- isolate()->global_handles()->RemoveImplicitRefGroups();
-
- isolate_->global_handles()->IdentifyNewSpaceWeakIndependentHandles(
- &IsUnscavengedHeapObject);
- isolate_->global_handles()->IterateNewSpaceWeakIndependentRoots(
- &scavenge_visitor);
- new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
-
- UpdateNewSpaceReferencesInExternalStringTable(
- &UpdateNewSpaceReferenceInExternalStringTableEntry);
-
- promotion_queue_.Destroy();
-
- incremental_marking()->UpdateMarkingDequeAfterScavenge();
-
- ScavengeWeakObjectRetainer weak_object_retainer(this);
- ProcessWeakReferences(&weak_object_retainer);
-
- DCHECK(new_space_front == new_space_.top());
-
- // Set age mark.
- new_space_.set_age_mark(new_space_.top());
-
- new_space_.LowerInlineAllocationLimit(
- new_space_.inline_allocation_limit_step());
-
- // Update how much has survived scavenge.
- IncrementYoungSurvivorsCounter(static_cast<int>(
- (PromotedSpaceSizeOfObjects() - survived_watermark) + new_space_.Size()));
-
- LOG(isolate_, ResourceEvent("scavenge", "end"));
-
- gc_state_ = NOT_IN_GC;
-
- scavenges_since_last_idle_round_++;
-}
-
-
-String* Heap::UpdateNewSpaceReferenceInExternalStringTableEntry(Heap* heap,
- Object** p) {
- MapWord first_word = HeapObject::cast(*p)->map_word();
-
- if (!first_word.IsForwardingAddress()) {
- // Unreachable external string can be finalized.
- heap->FinalizeExternalString(String::cast(*p));
- return NULL;
- }
-
- // String is still reachable.
- return String::cast(first_word.ToForwardingAddress());
-}
-
-
-void Heap::UpdateNewSpaceReferencesInExternalStringTable(
- ExternalStringTableUpdaterCallback updater_func) {
-#ifdef VERIFY_HEAP
- if (FLAG_verify_heap) {
- external_string_table_.Verify();
- }
-#endif
-
- if (external_string_table_.new_space_strings_.is_empty()) return;
-
- Object** start = &external_string_table_.new_space_strings_[0];
- Object** end = start + external_string_table_.new_space_strings_.length();
- Object** last = start;
-
- for (Object** p = start; p < end; ++p) {
- DCHECK(InFromSpace(*p));
- String* target = updater_func(this, p);
-
- if (target == NULL) continue;
-
- DCHECK(target->IsExternalString());
-
- if (InNewSpace(target)) {
- // String is still in new space. Update the table entry.
- *last = target;
- ++last;
- } else {
- // String got promoted. Move it to the old string list.
- external_string_table_.AddOldString(target);
- }
- }
-
- DCHECK(last <= end);
- external_string_table_.ShrinkNewStrings(static_cast<int>(last - start));
-}
-
-
-void Heap::UpdateReferencesInExternalStringTable(
- ExternalStringTableUpdaterCallback updater_func) {
-
- // Update old space string references.
- if (external_string_table_.old_space_strings_.length() > 0) {
- Object** start = &external_string_table_.old_space_strings_[0];
- Object** end = start + external_string_table_.old_space_strings_.length();
- for (Object** p = start; p < end; ++p) *p = updater_func(this, p);
- }
-
- UpdateNewSpaceReferencesInExternalStringTable(updater_func);
-}
-
-
-void Heap::ProcessWeakReferences(WeakObjectRetainer* retainer) {
- ProcessArrayBuffers(retainer);
- ProcessNativeContexts(retainer);
- // TODO(mvstanton): AllocationSites only need to be processed during
- // MARK_COMPACT, as they live in old space. Verify and address.
- ProcessAllocationSites(retainer);
-}
-
-
-void Heap::ProcessNativeContexts(WeakObjectRetainer* retainer) {
- Object* head = VisitWeakList<Context>(this, native_contexts_list(), retainer);
- // Update the head of the list of contexts.
- set_native_contexts_list(head);
-}
-
-
-void Heap::ProcessArrayBuffers(WeakObjectRetainer* retainer) {
- Object* array_buffer_obj =
- VisitWeakList<JSArrayBuffer>(this, array_buffers_list(), retainer);
- set_array_buffers_list(array_buffer_obj);
-}
-
-
-void Heap::TearDownArrayBuffers() {
- Object* undefined = undefined_value();
- for (Object* o = array_buffers_list(); o != undefined;) {
- JSArrayBuffer* buffer = JSArrayBuffer::cast(o);
- Runtime::FreeArrayBuffer(isolate(), buffer);
- o = buffer->weak_next();
- }
- set_array_buffers_list(undefined);
-}
-
-
-void Heap::ProcessAllocationSites(WeakObjectRetainer* retainer) {
- Object* allocation_site_obj =
- VisitWeakList<AllocationSite>(this, allocation_sites_list(), retainer);
- set_allocation_sites_list(allocation_site_obj);
-}
-
-
-void Heap::ResetAllAllocationSitesDependentCode(PretenureFlag flag) {
- DisallowHeapAllocation no_allocation_scope;
- Object* cur = allocation_sites_list();
- bool marked = false;
- while (cur->IsAllocationSite()) {
- AllocationSite* casted = AllocationSite::cast(cur);
- if (casted->GetPretenureMode() == flag) {
- casted->ResetPretenureDecision();
- casted->set_deopt_dependent_code(true);
- marked = true;
- }
- cur = casted->weak_next();
- }
- if (marked) isolate_->stack_guard()->RequestDeoptMarkedAllocationSites();
-}
-
-
-void Heap::EvaluateOldSpaceLocalPretenuring(
- uint64_t size_of_objects_before_gc) {
- uint64_t size_of_objects_after_gc = SizeOfObjects();
- double old_generation_survival_rate =
- (static_cast<double>(size_of_objects_after_gc) * 100) /
- static_cast<double>(size_of_objects_before_gc);
-
- if (old_generation_survival_rate < kOldSurvivalRateLowThreshold) {
- // Too many objects died in the old generation, pretenuring of wrong
- // allocation sites may be the cause for that. We have to deopt all
- // dependent code registered in the allocation sites to re-evaluate
- // our pretenuring decisions.
- ResetAllAllocationSitesDependentCode(TENURED);
- if (FLAG_trace_pretenuring) {
- PrintF("Deopt all allocation sites dependent code due to low survival "
- "rate in the old generation %f\n", old_generation_survival_rate);
- }
- }
-}
-
-
-void Heap::VisitExternalResources(v8::ExternalResourceVisitor* visitor) {
- DisallowHeapAllocation no_allocation;
- // All external strings are listed in the external string table.
-
- class ExternalStringTableVisitorAdapter : public ObjectVisitor {
- public:
- explicit ExternalStringTableVisitorAdapter(
- v8::ExternalResourceVisitor* visitor) : visitor_(visitor) {}
- virtual void VisitPointers(Object** start, Object** end) {
- for (Object** p = start; p < end; p++) {
- DCHECK((*p)->IsExternalString());
- visitor_->VisitExternalString(Utils::ToLocal(
- Handle<String>(String::cast(*p))));
- }
- }
- private:
- v8::ExternalResourceVisitor* visitor_;
- } external_string_table_visitor(visitor);
-
- external_string_table_.Iterate(&external_string_table_visitor);
-}
-
-
-class NewSpaceScavenger : public StaticNewSpaceVisitor<NewSpaceScavenger> {
- public:
- static inline void VisitPointer(Heap* heap, Object** p) {
- Object* object = *p;
- if (!heap->InNewSpace(object)) return;
- Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
- reinterpret_cast<HeapObject*>(object));
- }
-};
-
-
-Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor,
- Address new_space_front) {
- do {
- SemiSpace::AssertValidRange(new_space_front, new_space_.top());
- // The addresses new_space_front and new_space_.top() define a
- // queue of unprocessed copied objects. Process them until the
- // queue is empty.
- while (new_space_front != new_space_.top()) {
- if (!NewSpacePage::IsAtEnd(new_space_front)) {
- HeapObject* object = HeapObject::FromAddress(new_space_front);
- new_space_front +=
- NewSpaceScavenger::IterateBody(object->map(), object);
- } else {
- new_space_front =
- NewSpacePage::FromLimit(new_space_front)->next_page()->area_start();
- }
- }
-
- // Promote and process all the to-be-promoted objects.
- {
- StoreBufferRebuildScope scope(this,
- store_buffer(),
- &ScavengeStoreBufferCallback);
- while (!promotion_queue()->is_empty()) {
- HeapObject* target;
- int size;
- promotion_queue()->remove(&target, &size);
-
- // Promoted object might be already partially visited
- // during old space pointer iteration. Thus we search specificly
- // for pointers to from semispace instead of looking for pointers
- // to new space.
- DCHECK(!target->IsMap());
- IterateAndMarkPointersToFromSpace(target->address(),
- target->address() + size,
- &ScavengeObject);
- }
- }
-
- // Take another spin if there are now unswept objects in new space
- // (there are currently no more unswept promoted objects).
- } while (new_space_front != new_space_.top());
-
- return new_space_front;
-}
-
-
-STATIC_ASSERT((FixedDoubleArray::kHeaderSize &
- kDoubleAlignmentMask) == 0); // NOLINT
-STATIC_ASSERT((ConstantPoolArray::kFirstEntryOffset &
- kDoubleAlignmentMask) == 0); // NOLINT
-STATIC_ASSERT((ConstantPoolArray::kExtendedFirstOffset &
- kDoubleAlignmentMask) == 0); // NOLINT
-
-
-INLINE(static HeapObject* EnsureDoubleAligned(Heap* heap,
- HeapObject* object,
- int size));
-
-static HeapObject* EnsureDoubleAligned(Heap* heap,
- HeapObject* object,
- int size) {
- if ((OffsetFrom(object->address()) & kDoubleAlignmentMask) != 0) {
- heap->CreateFillerObjectAt(object->address(), kPointerSize);
- return HeapObject::FromAddress(object->address() + kPointerSize);
- } else {
- heap->CreateFillerObjectAt(object->address() + size - kPointerSize,
- kPointerSize);
- return object;
- }
-}
-
-
-enum LoggingAndProfiling {
- LOGGING_AND_PROFILING_ENABLED,
- LOGGING_AND_PROFILING_DISABLED
-};
-
-
-enum MarksHandling { TRANSFER_MARKS, IGNORE_MARKS };
-
-
-template<MarksHandling marks_handling,
- LoggingAndProfiling logging_and_profiling_mode>
-class ScavengingVisitor : public StaticVisitorBase {
- public:
- static void Initialize() {
- table_.Register(kVisitSeqOneByteString, &EvacuateSeqOneByteString);
- table_.Register(kVisitSeqTwoByteString, &EvacuateSeqTwoByteString);
- table_.Register(kVisitShortcutCandidate, &EvacuateShortcutCandidate);
- table_.Register(kVisitByteArray, &EvacuateByteArray);
- table_.Register(kVisitFixedArray, &EvacuateFixedArray);
- table_.Register(kVisitFixedDoubleArray, &EvacuateFixedDoubleArray);
- table_.Register(kVisitFixedTypedArray, &EvacuateFixedTypedArray);
- table_.Register(kVisitFixedFloat64Array, &EvacuateFixedFloat64Array);
-
- table_.Register(kVisitNativeContext,
- &ObjectEvacuationStrategy<POINTER_OBJECT>::
- template VisitSpecialized<Context::kSize>);
-
- table_.Register(kVisitConsString,
- &ObjectEvacuationStrategy<POINTER_OBJECT>::
- template VisitSpecialized<ConsString::kSize>);
-
- table_.Register(kVisitSlicedString,
- &ObjectEvacuationStrategy<POINTER_OBJECT>::
- template VisitSpecialized<SlicedString::kSize>);
-
- table_.Register(kVisitSymbol,
- &ObjectEvacuationStrategy<POINTER_OBJECT>::
- template VisitSpecialized<Symbol::kSize>);
-
- table_.Register(kVisitSharedFunctionInfo,
- &ObjectEvacuationStrategy<POINTER_OBJECT>::
- template VisitSpecialized<SharedFunctionInfo::kSize>);
-
- table_.Register(kVisitJSWeakCollection,
- &ObjectEvacuationStrategy<POINTER_OBJECT>::
- Visit);
-
- table_.Register(kVisitJSArrayBuffer,
- &ObjectEvacuationStrategy<POINTER_OBJECT>::
- Visit);
-
- table_.Register(kVisitJSTypedArray,
- &ObjectEvacuationStrategy<POINTER_OBJECT>::
- Visit);
-
- table_.Register(kVisitJSDataView,
- &ObjectEvacuationStrategy<POINTER_OBJECT>::
- Visit);
-
- table_.Register(kVisitJSRegExp,
- &ObjectEvacuationStrategy<POINTER_OBJECT>::
- Visit);
-
- if (marks_handling == IGNORE_MARKS) {
- table_.Register(kVisitJSFunction,
- &ObjectEvacuationStrategy<POINTER_OBJECT>::
- template VisitSpecialized<JSFunction::kSize>);
- } else {
- table_.Register(kVisitJSFunction, &EvacuateJSFunction);
- }
-
- table_.RegisterSpecializations<ObjectEvacuationStrategy<DATA_OBJECT>,
- kVisitDataObject,
- kVisitDataObjectGeneric>();
-
- table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>,
- kVisitJSObject,
- kVisitJSObjectGeneric>();
-
- table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>,
- kVisitStruct,
- kVisitStructGeneric>();
- }
-
- static VisitorDispatchTable<ScavengingCallback>* GetTable() {
- return &table_;
- }
-
- private:
- enum ObjectContents { DATA_OBJECT, POINTER_OBJECT };
-
- static void RecordCopiedObject(Heap* heap, HeapObject* obj) {
- bool should_record = false;
-#ifdef DEBUG
- should_record = FLAG_heap_stats;
-#endif
- should_record = should_record || FLAG_log_gc;
- if (should_record) {
- if (heap->new_space()->Contains(obj)) {
- heap->new_space()->RecordAllocation(obj);
- } else {
- heap->new_space()->RecordPromotion(obj);
- }
- }
- }
-
- // Helper function used by CopyObject to copy a source object to an
- // allocated target object and update the forwarding pointer in the source
- // object. Returns the target object.
- INLINE(static void MigrateObject(Heap* heap,
- HeapObject* source,
- HeapObject* target,
- int size)) {
- // If we migrate into to-space, then the to-space top pointer should be
- // right after the target object. Incorporate double alignment
- // over-allocation.
- DCHECK(!heap->InToSpace(target) ||
- target->address() + size == heap->new_space()->top() ||
- target->address() + size + kPointerSize == heap->new_space()->top());
-
- // Make sure that we do not overwrite the promotion queue which is at
- // the end of to-space.
- DCHECK(!heap->InToSpace(target) ||
- heap->promotion_queue()->IsBelowPromotionQueue(
- heap->new_space()->top()));
-
- // Copy the content of source to target.
- heap->CopyBlock(target->address(), source->address(), size);
-
- // Set the forwarding address.
- source->set_map_word(MapWord::FromForwardingAddress(target));
-
- if (logging_and_profiling_mode == LOGGING_AND_PROFILING_ENABLED) {
- // Update NewSpace stats if necessary.
- RecordCopiedObject(heap, target);
- heap->OnMoveEvent(target, source, size);
- }
-
- if (marks_handling == TRANSFER_MARKS) {
- if (Marking::TransferColor(source, target)) {
- MemoryChunk::IncrementLiveBytesFromGC(target->address(), size);
- }
- }
- }
-
- template<int alignment>
- static inline bool SemiSpaceCopyObject(Map* map,
- HeapObject** slot,
- HeapObject* object,
- int object_size) {
- Heap* heap = map->GetHeap();
-
- int allocation_size = object_size;
- if (alignment != kObjectAlignment) {
- DCHECK(alignment == kDoubleAlignment);
- allocation_size += kPointerSize;
- }
-
- DCHECK(heap->AllowedToBeMigrated(object, NEW_SPACE));
- AllocationResult allocation =
- heap->new_space()->AllocateRaw(allocation_size);
-
- HeapObject* target = NULL; // Initialization to please compiler.
- if (allocation.To(&target)) {
- if (alignment != kObjectAlignment) {
- target = EnsureDoubleAligned(heap, target, allocation_size);
- }
-
- // Order is important here: Set the promotion limit before migrating
- // the object. Otherwise we may end up overwriting promotion queue
- // entries when we migrate the object.
- heap->promotion_queue()->SetNewLimit(heap->new_space()->top());
-
- // Order is important: slot might be inside of the target if target
- // was allocated over a dead object and slot comes from the store
- // buffer.
- *slot = target;
- MigrateObject(heap, object, target, object_size);
-
- heap->IncrementSemiSpaceCopiedObjectSize(object_size);
- return true;
- }
- return false;
- }
-
-
- template<ObjectContents object_contents, int alignment>
- static inline bool PromoteObject(Map* map,
- HeapObject** slot,
- HeapObject* object,
- int object_size) {
- Heap* heap = map->GetHeap();
-
- int allocation_size = object_size;
- if (alignment != kObjectAlignment) {
- DCHECK(alignment == kDoubleAlignment);
- allocation_size += kPointerSize;
- }
-
- AllocationResult allocation;
- if (object_contents == DATA_OBJECT) {
- DCHECK(heap->AllowedToBeMigrated(object, OLD_DATA_SPACE));
- allocation = heap->old_data_space()->AllocateRaw(allocation_size);
- } else {
- DCHECK(heap->AllowedToBeMigrated(object, OLD_POINTER_SPACE));
- allocation = heap->old_pointer_space()->AllocateRaw(allocation_size);
- }
-
- HeapObject* target = NULL; // Initialization to please compiler.
- if (allocation.To(&target)) {
- if (alignment != kObjectAlignment) {
- target = EnsureDoubleAligned(heap, target, allocation_size);
- }
-
- // Order is important: slot might be inside of the target if target
- // was allocated over a dead object and slot comes from the store
- // buffer.
- *slot = target;
- MigrateObject(heap, object, target, object_size);
-
- if (object_contents == POINTER_OBJECT) {
- if (map->instance_type() == JS_FUNCTION_TYPE) {
- heap->promotion_queue()->insert(
- target, JSFunction::kNonWeakFieldsEndOffset);
- } else {
- heap->promotion_queue()->insert(target, object_size);
- }
- }
- heap->IncrementPromotedObjectsSize(object_size);
- return true;
- }
- return false;
- }
-
-
- template<ObjectContents object_contents, int alignment>
- static inline void EvacuateObject(Map* map,
- HeapObject** slot,
- HeapObject* object,
- int object_size) {
- SLOW_DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
- SLOW_DCHECK(object->Size() == object_size);
- Heap* heap = map->GetHeap();
-
- if (!heap->ShouldBePromoted(object->address(), object_size)) {
- // A semi-space copy may fail due to fragmentation. In that case, we
- // try to promote the object.
- if (SemiSpaceCopyObject<alignment>(map, slot, object, object_size)) {
- return;
- }
- }
-
- if (PromoteObject<object_contents, alignment>(
- map, slot, object, object_size)) {
- return;
- }
-
- // If promotion failed, we try to copy the object to the other semi-space
- if (SemiSpaceCopyObject<alignment>(map, slot, object, object_size)) return;
-
- UNREACHABLE();
- }
-
-
- static inline void EvacuateJSFunction(Map* map,
- HeapObject** slot,
- HeapObject* object) {
- ObjectEvacuationStrategy<POINTER_OBJECT>::
- template VisitSpecialized<JSFunction::kSize>(map, slot, object);
-
- HeapObject* target = *slot;
- MarkBit mark_bit = Marking::MarkBitFrom(target);
- if (Marking::IsBlack(mark_bit)) {
- // This object is black and it might not be rescanned by marker.
- // We should explicitly record code entry slot for compaction because
- // promotion queue processing (IterateAndMarkPointersToFromSpace) will
- // miss it as it is not HeapObject-tagged.
- Address code_entry_slot =
- target->address() + JSFunction::kCodeEntryOffset;
- Code* code = Code::cast(Code::GetObjectFromEntryAddress(code_entry_slot));
- map->GetHeap()->mark_compact_collector()->
- RecordCodeEntrySlot(code_entry_slot, code);
- }
- }
-
-
- static inline void EvacuateFixedArray(Map* map,
- HeapObject** slot,
- HeapObject* object) {
- int object_size = FixedArray::BodyDescriptor::SizeOf(map, object);
- EvacuateObject<POINTER_OBJECT, kObjectAlignment>(
- map, slot, object, object_size);
- }
-
-
- static inline void EvacuateFixedDoubleArray(Map* map,
- HeapObject** slot,
- HeapObject* object) {
- int length = reinterpret_cast<FixedDoubleArray*>(object)->length();
- int object_size = FixedDoubleArray::SizeFor(length);
- EvacuateObject<DATA_OBJECT, kDoubleAlignment>(
- map, slot, object, object_size);
- }
-
-
- static inline void EvacuateFixedTypedArray(Map* map,
- HeapObject** slot,
- HeapObject* object) {
- int object_size = reinterpret_cast<FixedTypedArrayBase*>(object)->size();
- EvacuateObject<DATA_OBJECT, kObjectAlignment>(
- map, slot, object, object_size);
- }
-
-
- static inline void EvacuateFixedFloat64Array(Map* map,
- HeapObject** slot,
- HeapObject* object) {
- int object_size = reinterpret_cast<FixedFloat64Array*>(object)->size();
- EvacuateObject<DATA_OBJECT, kDoubleAlignment>(
- map, slot, object, object_size);
- }
-
-
- static inline void EvacuateByteArray(Map* map,
- HeapObject** slot,
- HeapObject* object) {
- int object_size = reinterpret_cast<ByteArray*>(object)->ByteArraySize();
- EvacuateObject<DATA_OBJECT, kObjectAlignment>(
- map, slot, object, object_size);
- }
-
-
- static inline void EvacuateSeqOneByteString(Map* map,
- HeapObject** slot,
- HeapObject* object) {
- int object_size = SeqOneByteString::cast(object)->
- SeqOneByteStringSize(map->instance_type());
- EvacuateObject<DATA_OBJECT, kObjectAlignment>(
- map, slot, object, object_size);
- }
-
-
- static inline void EvacuateSeqTwoByteString(Map* map,
- HeapObject** slot,
- HeapObject* object) {
- int object_size = SeqTwoByteString::cast(object)->
- SeqTwoByteStringSize(map->instance_type());
- EvacuateObject<DATA_OBJECT, kObjectAlignment>(
- map, slot, object, object_size);
- }
-
-
- static inline void EvacuateShortcutCandidate(Map* map,
- HeapObject** slot,
- HeapObject* object) {
- DCHECK(IsShortcutCandidate(map->instance_type()));
-
- Heap* heap = map->GetHeap();
-
- if (marks_handling == IGNORE_MARKS &&
- ConsString::cast(object)->unchecked_second() ==
- heap->empty_string()) {
- HeapObject* first =
- HeapObject::cast(ConsString::cast(object)->unchecked_first());
-
- *slot = first;
-
- if (!heap->InNewSpace(first)) {
- object->set_map_word(MapWord::FromForwardingAddress(first));
- return;
- }
-
- MapWord first_word = first->map_word();
- if (first_word.IsForwardingAddress()) {
- HeapObject* target = first_word.ToForwardingAddress();
-
- *slot = target;
- object->set_map_word(MapWord::FromForwardingAddress(target));
- return;
- }
-
- heap->DoScavengeObject(first->map(), slot, first);
- object->set_map_word(MapWord::FromForwardingAddress(*slot));
- return;
- }
-
- int object_size = ConsString::kSize;
- EvacuateObject<POINTER_OBJECT, kObjectAlignment>(
- map, slot, object, object_size);
- }
-
- template<ObjectContents object_contents>
- class ObjectEvacuationStrategy {
- public:
- template<int object_size>
- static inline void VisitSpecialized(Map* map,
- HeapObject** slot,
- HeapObject* object) {
- EvacuateObject<object_contents, kObjectAlignment>(
- map, slot, object, object_size);
- }
-
- static inline void Visit(Map* map,
- HeapObject** slot,
- HeapObject* object) {
- int object_size = map->instance_size();
- EvacuateObject<object_contents, kObjectAlignment>(
- map, slot, object, object_size);
- }
- };
-
- static VisitorDispatchTable<ScavengingCallback> table_;
-};
-
-
-template<MarksHandling marks_handling,
- LoggingAndProfiling logging_and_profiling_mode>
-VisitorDispatchTable<ScavengingCallback>
- ScavengingVisitor<marks_handling, logging_and_profiling_mode>::table_;
-
-
-static void InitializeScavengingVisitorsTables() {
- ScavengingVisitor<TRANSFER_MARKS,
- LOGGING_AND_PROFILING_DISABLED>::Initialize();
- ScavengingVisitor<IGNORE_MARKS, LOGGING_AND_PROFILING_DISABLED>::Initialize();
- ScavengingVisitor<TRANSFER_MARKS,
- LOGGING_AND_PROFILING_ENABLED>::Initialize();
- ScavengingVisitor<IGNORE_MARKS, LOGGING_AND_PROFILING_ENABLED>::Initialize();
-}
-
-
-void Heap::SelectScavengingVisitorsTable() {
- bool logging_and_profiling =
- FLAG_verify_predictable ||
- isolate()->logger()->is_logging() ||
- isolate()->cpu_profiler()->is_profiling() ||
- (isolate()->heap_profiler() != NULL &&
- isolate()->heap_profiler()->is_tracking_object_moves());
-
- if (!incremental_marking()->IsMarking()) {
- if (!logging_and_profiling) {
- scavenging_visitors_table_.CopyFrom(
- ScavengingVisitor<IGNORE_MARKS,
- LOGGING_AND_PROFILING_DISABLED>::GetTable());
- } else {
- scavenging_visitors_table_.CopyFrom(
- ScavengingVisitor<IGNORE_MARKS,
- LOGGING_AND_PROFILING_ENABLED>::GetTable());
- }
- } else {
- if (!logging_and_profiling) {
- scavenging_visitors_table_.CopyFrom(
- ScavengingVisitor<TRANSFER_MARKS,
- LOGGING_AND_PROFILING_DISABLED>::GetTable());
- } else {
- scavenging_visitors_table_.CopyFrom(
- ScavengingVisitor<TRANSFER_MARKS,
- LOGGING_AND_PROFILING_ENABLED>::GetTable());
- }
-
- if (incremental_marking()->IsCompacting()) {
- // When compacting forbid short-circuiting of cons-strings.
- // Scavenging code relies on the fact that new space object
- // can't be evacuated into evacuation candidate but
- // short-circuiting violates this assumption.
- scavenging_visitors_table_.Register(
- StaticVisitorBase::kVisitShortcutCandidate,
- scavenging_visitors_table_.GetVisitorById(
- StaticVisitorBase::kVisitConsString));
- }
- }
-}
-
-
-void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) {
- SLOW_DCHECK(object->GetIsolate()->heap()->InFromSpace(object));
- MapWord first_word = object->map_word();
- SLOW_DCHECK(!first_word.IsForwardingAddress());
- Map* map = first_word.ToMap();
- map->GetHeap()->DoScavengeObject(map, p, object);
-}
-
-
-AllocationResult Heap::AllocatePartialMap(InstanceType instance_type,
- int instance_size) {
- Object* result;
- AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE, MAP_SPACE);
- if (!allocation.To(&result)) return allocation;
-
- // Map::cast cannot be used due to uninitialized map field.
- reinterpret_cast<Map*>(result)->set_map(raw_unchecked_meta_map());
- reinterpret_cast<Map*>(result)->set_instance_type(instance_type);
- reinterpret_cast<Map*>(result)->set_instance_size(instance_size);
- reinterpret_cast<Map*>(result)->set_visitor_id(
- StaticVisitorBase::GetVisitorId(instance_type, instance_size));
- reinterpret_cast<Map*>(result)->set_inobject_properties(0);
- reinterpret_cast<Map*>(result)->set_pre_allocated_property_fields(0);
- reinterpret_cast<Map*>(result)->set_unused_property_fields(0);
- reinterpret_cast<Map*>(result)->set_bit_field(0);
- reinterpret_cast<Map*>(result)->set_bit_field2(0);
- int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) |
- Map::OwnsDescriptors::encode(true);
- reinterpret_cast<Map*>(result)->set_bit_field3(bit_field3);
- return result;
-}
-
-
-AllocationResult Heap::AllocateMap(InstanceType instance_type,
- int instance_size,
- ElementsKind elements_kind) {
- HeapObject* result;
- AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE, MAP_SPACE);
- if (!allocation.To(&result)) return allocation;
-
- result->set_map_no_write_barrier(meta_map());
- Map* map = Map::cast(result);
- map->set_instance_type(instance_type);
- map->set_visitor_id(
- StaticVisitorBase::GetVisitorId(instance_type, instance_size));
- map->set_prototype(null_value(), SKIP_WRITE_BARRIER);
- map->set_constructor(null_value(), SKIP_WRITE_BARRIER);
- map->set_instance_size(instance_size);
- map->set_inobject_properties(0);
- map->set_pre_allocated_property_fields(0);
- map->set_code_cache(empty_fixed_array(), SKIP_WRITE_BARRIER);
- map->set_dependent_code(DependentCode::cast(empty_fixed_array()),
- SKIP_WRITE_BARRIER);
- map->init_back_pointer(undefined_value());
- map->set_unused_property_fields(0);
- map->set_instance_descriptors(empty_descriptor_array());
- map->set_bit_field(0);
- map->set_bit_field2(1 << Map::kIsExtensible);
- int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) |
- Map::OwnsDescriptors::encode(true);
- map->set_bit_field3(bit_field3);
- map->set_elements_kind(elements_kind);
-
- return map;
-}
-
-
-AllocationResult Heap::AllocateFillerObject(int size,
- bool double_align,
- AllocationSpace space) {
- HeapObject* obj;
- { AllocationResult allocation = AllocateRaw(size, space, space);
- if (!allocation.To(&obj)) return allocation;
- }
-#ifdef DEBUG
- MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
- DCHECK(chunk->owner()->identity() == space);
-#endif
- CreateFillerObjectAt(obj->address(), size);
- return obj;
-}
-
-
-const Heap::StringTypeTable Heap::string_type_table[] = {
-#define STRING_TYPE_ELEMENT(type, size, name, camel_name) \
- {type, size, k##camel_name##MapRootIndex},
- STRING_TYPE_LIST(STRING_TYPE_ELEMENT)
-#undef STRING_TYPE_ELEMENT
-};
-
-
-const Heap::ConstantStringTable Heap::constant_string_table[] = {
-#define CONSTANT_STRING_ELEMENT(name, contents) \
- {contents, k##name##RootIndex},
- INTERNALIZED_STRING_LIST(CONSTANT_STRING_ELEMENT)
-#undef CONSTANT_STRING_ELEMENT
-};
-
-
-const Heap::StructTable Heap::struct_table[] = {
-#define STRUCT_TABLE_ELEMENT(NAME, Name, name) \
- { NAME##_TYPE, Name::kSize, k##Name##MapRootIndex },
- STRUCT_LIST(STRUCT_TABLE_ELEMENT)
-#undef STRUCT_TABLE_ELEMENT
-};
-
-
-bool Heap::CreateInitialMaps() {
- HeapObject* obj;
- { AllocationResult allocation = AllocatePartialMap(MAP_TYPE, Map::kSize);
- if (!allocation.To(&obj)) return false;
- }
- // Map::cast cannot be used due to uninitialized map field.
- Map* new_meta_map = reinterpret_cast<Map*>(obj);
- set_meta_map(new_meta_map);
- new_meta_map->set_map(new_meta_map);
-
- { // Partial map allocation
-#define ALLOCATE_PARTIAL_MAP(instance_type, size, field_name) \
- { Map* map; \
- if (!AllocatePartialMap((instance_type), (size)).To(&map)) return false; \
- set_##field_name##_map(map); \
- }
-
- ALLOCATE_PARTIAL_MAP(FIXED_ARRAY_TYPE, kVariableSizeSentinel, fixed_array);
- ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, undefined);
- ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, null);
- ALLOCATE_PARTIAL_MAP(CONSTANT_POOL_ARRAY_TYPE, kVariableSizeSentinel,
- constant_pool_array);
-
-#undef ALLOCATE_PARTIAL_MAP
- }
-
- // Allocate the empty array.
- { AllocationResult allocation = AllocateEmptyFixedArray();
- if (!allocation.To(&obj)) return false;
- }
- set_empty_fixed_array(FixedArray::cast(obj));
-
- { AllocationResult allocation = Allocate(null_map(), OLD_POINTER_SPACE);
- if (!allocation.To(&obj)) return false;
- }
- set_null_value(Oddball::cast(obj));
- Oddball::cast(obj)->set_kind(Oddball::kNull);
-
- { AllocationResult allocation = Allocate(undefined_map(), OLD_POINTER_SPACE);
- if (!allocation.To(&obj)) return false;
- }
- set_undefined_value(Oddball::cast(obj));
- Oddball::cast(obj)->set_kind(Oddball::kUndefined);
- DCHECK(!InNewSpace(undefined_value()));
-
- // Set preliminary exception sentinel value before actually initializing it.
- set_exception(null_value());
-
- // Allocate the empty descriptor array.
- { AllocationResult allocation = AllocateEmptyFixedArray();
- if (!allocation.To(&obj)) return false;
- }
- set_empty_descriptor_array(DescriptorArray::cast(obj));
-
- // Allocate the constant pool array.
- { AllocationResult allocation = AllocateEmptyConstantPoolArray();
- if (!allocation.To(&obj)) return false;
- }
- set_empty_constant_pool_array(ConstantPoolArray::cast(obj));
-
- // Fix the instance_descriptors for the existing maps.
- meta_map()->set_code_cache(empty_fixed_array());
- meta_map()->set_dependent_code(DependentCode::cast(empty_fixed_array()));
- meta_map()->init_back_pointer(undefined_value());
- meta_map()->set_instance_descriptors(empty_descriptor_array());
-
- fixed_array_map()->set_code_cache(empty_fixed_array());
- fixed_array_map()->set_dependent_code(
- DependentCode::cast(empty_fixed_array()));
- fixed_array_map()->init_back_pointer(undefined_value());
- fixed_array_map()->set_instance_descriptors(empty_descriptor_array());
-
- undefined_map()->set_code_cache(empty_fixed_array());
- undefined_map()->set_dependent_code(DependentCode::cast(empty_fixed_array()));
- undefined_map()->init_back_pointer(undefined_value());
- undefined_map()->set_instance_descriptors(empty_descriptor_array());
-
- null_map()->set_code_cache(empty_fixed_array());
- null_map()->set_dependent_code(DependentCode::cast(empty_fixed_array()));
- null_map()->init_back_pointer(undefined_value());
- null_map()->set_instance_descriptors(empty_descriptor_array());
-
- constant_pool_array_map()->set_code_cache(empty_fixed_array());
- constant_pool_array_map()->set_dependent_code(
- DependentCode::cast(empty_fixed_array()));
- constant_pool_array_map()->init_back_pointer(undefined_value());
- constant_pool_array_map()->set_instance_descriptors(empty_descriptor_array());
-
- // Fix prototype object for existing maps.
- meta_map()->set_prototype(null_value());
- meta_map()->set_constructor(null_value());
-
- fixed_array_map()->set_prototype(null_value());
- fixed_array_map()->set_constructor(null_value());
-
- undefined_map()->set_prototype(null_value());
- undefined_map()->set_constructor(null_value());
-
- null_map()->set_prototype(null_value());
- null_map()->set_constructor(null_value());
-
- constant_pool_array_map()->set_prototype(null_value());
- constant_pool_array_map()->set_constructor(null_value());
-
- { // Map allocation
-#define ALLOCATE_MAP(instance_type, size, field_name) \
- { Map* map; \
- if (!AllocateMap((instance_type), size).To(&map)) return false; \
- set_##field_name##_map(map); \
- }
-
-#define ALLOCATE_VARSIZE_MAP(instance_type, field_name) \
- ALLOCATE_MAP(instance_type, kVariableSizeSentinel, field_name)
-
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, fixed_cow_array)
- DCHECK(fixed_array_map() != fixed_cow_array_map());
-
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, scope_info)
- ALLOCATE_MAP(HEAP_NUMBER_TYPE, HeapNumber::kSize, heap_number)
- ALLOCATE_MAP(
- MUTABLE_HEAP_NUMBER_TYPE, HeapNumber::kSize, mutable_heap_number)
- ALLOCATE_MAP(SYMBOL_TYPE, Symbol::kSize, symbol)
- ALLOCATE_MAP(FOREIGN_TYPE, Foreign::kSize, foreign)
-
- ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, the_hole);
- ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, boolean);
- ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, uninitialized);
- ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, arguments_marker);
- ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, no_interceptor_result_sentinel);
- ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, exception);
- ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, termination_exception);
-
- for (unsigned i = 0; i < ARRAY_SIZE(string_type_table); i++) {
- const StringTypeTable& entry = string_type_table[i];
- { AllocationResult allocation = AllocateMap(entry.type, entry.size);
- if (!allocation.To(&obj)) return false;
- }
- // Mark cons string maps as unstable, because their objects can change
- // maps during GC.
- Map* map = Map::cast(obj);
- if (StringShape(entry.type).IsCons()) map->mark_unstable();
- roots_[entry.index] = map;
- }
-
- ALLOCATE_VARSIZE_MAP(STRING_TYPE, undetectable_string)
- undetectable_string_map()->set_is_undetectable();
-
- ALLOCATE_VARSIZE_MAP(ASCII_STRING_TYPE, undetectable_ascii_string);
- undetectable_ascii_string_map()->set_is_undetectable();
-
- ALLOCATE_VARSIZE_MAP(FIXED_DOUBLE_ARRAY_TYPE, fixed_double_array)
- ALLOCATE_VARSIZE_MAP(BYTE_ARRAY_TYPE, byte_array)
- ALLOCATE_VARSIZE_MAP(FREE_SPACE_TYPE, free_space)
-
-#define ALLOCATE_EXTERNAL_ARRAY_MAP(Type, type, TYPE, ctype, size) \
- ALLOCATE_MAP(EXTERNAL_##TYPE##_ARRAY_TYPE, ExternalArray::kAlignedSize, \
- external_##type##_array)
-
- TYPED_ARRAYS(ALLOCATE_EXTERNAL_ARRAY_MAP)
-#undef ALLOCATE_EXTERNAL_ARRAY_MAP
-
-#define ALLOCATE_FIXED_TYPED_ARRAY_MAP(Type, type, TYPE, ctype, size) \
- ALLOCATE_VARSIZE_MAP(FIXED_##TYPE##_ARRAY_TYPE, \
- fixed_##type##_array)
-
- TYPED_ARRAYS(ALLOCATE_FIXED_TYPED_ARRAY_MAP)
-#undef ALLOCATE_FIXED_TYPED_ARRAY_MAP
-
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, sloppy_arguments_elements)
-
- ALLOCATE_VARSIZE_MAP(CODE_TYPE, code)
-
- ALLOCATE_MAP(CELL_TYPE, Cell::kSize, cell)
- ALLOCATE_MAP(PROPERTY_CELL_TYPE, PropertyCell::kSize, global_property_cell)
- ALLOCATE_MAP(FILLER_TYPE, kPointerSize, one_pointer_filler)
- ALLOCATE_MAP(FILLER_TYPE, 2 * kPointerSize, two_pointer_filler)
-
-
- for (unsigned i = 0; i < ARRAY_SIZE(struct_table); i++) {
- const StructTable& entry = struct_table[i];
- Map* map;
- if (!AllocateMap(entry.type, entry.size).To(&map))
- return false;
- roots_[entry.index] = map;
- }
-
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, hash_table)
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, ordered_hash_table)
-
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, function_context)
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, catch_context)
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, with_context)
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, block_context)
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, module_context)
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, global_context)
-
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, native_context)
- native_context_map()->set_dictionary_map(true);
- native_context_map()->set_visitor_id(
- StaticVisitorBase::kVisitNativeContext);
-
- ALLOCATE_MAP(SHARED_FUNCTION_INFO_TYPE, SharedFunctionInfo::kAlignedSize,
- shared_function_info)
-
- ALLOCATE_MAP(JS_MESSAGE_OBJECT_TYPE, JSMessageObject::kSize,
- message_object)
- ALLOCATE_MAP(JS_OBJECT_TYPE, JSObject::kHeaderSize + kPointerSize,
- external)
- external_map()->set_is_extensible(false);
-#undef ALLOCATE_VARSIZE_MAP
-#undef ALLOCATE_MAP
- }
-
- { // Empty arrays
- { ByteArray* byte_array;
- if (!AllocateByteArray(0, TENURED).To(&byte_array)) return false;
- set_empty_byte_array(byte_array);
- }
-
-#define ALLOCATE_EMPTY_EXTERNAL_ARRAY(Type, type, TYPE, ctype, size) \
- { ExternalArray* obj; \
- if (!AllocateEmptyExternalArray(kExternal##Type##Array).To(&obj)) \
- return false; \
- set_empty_external_##type##_array(obj); \
- }
-
- TYPED_ARRAYS(ALLOCATE_EMPTY_EXTERNAL_ARRAY)
-#undef ALLOCATE_EMPTY_EXTERNAL_ARRAY
-
-#define ALLOCATE_EMPTY_FIXED_TYPED_ARRAY(Type, type, TYPE, ctype, size) \
- { FixedTypedArrayBase* obj; \
- if (!AllocateEmptyFixedTypedArray(kExternal##Type##Array).To(&obj)) \
- return false; \
- set_empty_fixed_##type##_array(obj); \
- }
-
- TYPED_ARRAYS(ALLOCATE_EMPTY_FIXED_TYPED_ARRAY)
-#undef ALLOCATE_EMPTY_FIXED_TYPED_ARRAY
- }
- DCHECK(!InNewSpace(empty_fixed_array()));
- return true;
-}
-
-
-AllocationResult Heap::AllocateHeapNumber(double value,
- MutableMode mode,
- PretenureFlag pretenure) {
- // Statically ensure that it is safe to allocate heap numbers in paged
- // spaces.
- int size = HeapNumber::kSize;
- STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxRegularHeapObjectSize);
-
- AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
-
- HeapObject* result;
- { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
- if (!allocation.To(&result)) return allocation;
- }
-
- Map* map = mode == MUTABLE ? mutable_heap_number_map() : heap_number_map();
- HeapObject::cast(result)->set_map_no_write_barrier(map);
- HeapNumber::cast(result)->set_value(value);
- return result;
-}
-
-
-AllocationResult Heap::AllocateCell(Object* value) {
- int size = Cell::kSize;
- STATIC_ASSERT(Cell::kSize <= Page::kMaxRegularHeapObjectSize);
-
- HeapObject* result;
- { AllocationResult allocation = AllocateRaw(size, CELL_SPACE, CELL_SPACE);
- if (!allocation.To(&result)) return allocation;
- }
- result->set_map_no_write_barrier(cell_map());
- Cell::cast(result)->set_value(value);
- return result;
-}
-
-
-AllocationResult Heap::AllocatePropertyCell() {
- int size = PropertyCell::kSize;
- STATIC_ASSERT(PropertyCell::kSize <= Page::kMaxRegularHeapObjectSize);
-
- HeapObject* result;
- AllocationResult allocation =
- AllocateRaw(size, PROPERTY_CELL_SPACE, PROPERTY_CELL_SPACE);
- if (!allocation.To(&result)) return allocation;
-
- result->set_map_no_write_barrier(global_property_cell_map());
- PropertyCell* cell = PropertyCell::cast(result);
- cell->set_dependent_code(DependentCode::cast(empty_fixed_array()),
- SKIP_WRITE_BARRIER);
- cell->set_value(the_hole_value());
- cell->set_type(HeapType::None());
- return result;
-}
-
-
-void Heap::CreateApiObjects() {
- HandleScope scope(isolate());
- Factory* factory = isolate()->factory();
- Handle<Map> new_neander_map =
- factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
-
- // Don't use Smi-only elements optimizations for objects with the neander
- // map. There are too many cases where element values are set directly with a
- // bottleneck to trap the Smi-only -> fast elements transition, and there
- // appears to be no benefit for optimize this case.
- new_neander_map->set_elements_kind(TERMINAL_FAST_ELEMENTS_KIND);
- set_neander_map(*new_neander_map);
-
- Handle<JSObject> listeners = factory->NewNeanderObject();
- Handle<FixedArray> elements = factory->NewFixedArray(2);
- elements->set(0, Smi::FromInt(0));
- listeners->set_elements(*elements);
- set_message_listeners(*listeners);
-}
-
-
-void Heap::CreateJSEntryStub() {
- JSEntryStub stub(isolate());
- set_js_entry_code(*stub.GetCode());
-}
-
-
-void Heap::CreateJSConstructEntryStub() {
- JSConstructEntryStub stub(isolate());
- set_js_construct_entry_code(*stub.GetCode());
-}
-
-
-void Heap::CreateFixedStubs() {
- // Here we create roots for fixed stubs. They are needed at GC
- // for cooking and uncooking (check out frames.cc).
- // The eliminates the need for doing dictionary lookup in the
- // stub cache for these stubs.
- HandleScope scope(isolate());
-
- // Create stubs that should be there, so we don't unexpectedly have to
- // create them if we need them during the creation of another stub.
- // Stub creation mixes raw pointers and handles in an unsafe manner so
- // we cannot create stubs while we are creating stubs.
- CodeStub::GenerateStubsAheadOfTime(isolate());
-
- // MacroAssembler::Abort calls (usually enabled with --debug-code) depend on
- // CEntryStub, so we need to call GenerateStubsAheadOfTime before JSEntryStub
- // is created.
-
- // gcc-4.4 has problem generating correct code of following snippet:
- // { JSEntryStub stub;
- // js_entry_code_ = *stub.GetCode();
- // }
- // { JSConstructEntryStub stub;
- // js_construct_entry_code_ = *stub.GetCode();
- // }
- // To workaround the problem, make separate functions without inlining.
- Heap::CreateJSEntryStub();
- Heap::CreateJSConstructEntryStub();
-}
-
-
-void Heap::CreateInitialObjects() {
- HandleScope scope(isolate());
- Factory* factory = isolate()->factory();
-
- // The -0 value must be set before NewNumber works.
- set_minus_zero_value(*factory->NewHeapNumber(-0.0, IMMUTABLE, TENURED));
- DCHECK(std::signbit(minus_zero_value()->Number()) != 0);
-
- set_nan_value(
- *factory->NewHeapNumber(base::OS::nan_value(), IMMUTABLE, TENURED));
- set_infinity_value(*factory->NewHeapNumber(V8_INFINITY, IMMUTABLE, TENURED));
-
- // The hole has not been created yet, but we want to put something
- // predictable in the gaps in the string table, so lets make that Smi zero.
- set_the_hole_value(reinterpret_cast<Oddball*>(Smi::FromInt(0)));
-
- // Allocate initial string table.
- set_string_table(*StringTable::New(isolate(), kInitialStringTableSize));
-
- // Finish initializing oddballs after creating the string table.
- Oddball::Initialize(isolate(),
- factory->undefined_value(),
- "undefined",
- factory->nan_value(),
- Oddball::kUndefined);
-
- // Initialize the null_value.
- Oddball::Initialize(isolate(),
- factory->null_value(),
- "null",
- handle(Smi::FromInt(0), isolate()),
- Oddball::kNull);
-
- set_true_value(*factory->NewOddball(factory->boolean_map(),
- "true",
- handle(Smi::FromInt(1), isolate()),
- Oddball::kTrue));
-
- set_false_value(*factory->NewOddball(factory->boolean_map(),
- "false",
- handle(Smi::FromInt(0), isolate()),
- Oddball::kFalse));
-
- set_the_hole_value(*factory->NewOddball(factory->the_hole_map(),
- "hole",
- handle(Smi::FromInt(-1), isolate()),
- Oddball::kTheHole));
-
- set_uninitialized_value(
- *factory->NewOddball(factory->uninitialized_map(),
- "uninitialized",
- handle(Smi::FromInt(-1), isolate()),
- Oddball::kUninitialized));
-
- set_arguments_marker(*factory->NewOddball(factory->arguments_marker_map(),
- "arguments_marker",
- handle(Smi::FromInt(-4), isolate()),
- Oddball::kArgumentMarker));
-
- set_no_interceptor_result_sentinel(
- *factory->NewOddball(factory->no_interceptor_result_sentinel_map(),
- "no_interceptor_result_sentinel",
- handle(Smi::FromInt(-2), isolate()),
- Oddball::kOther));
-
- set_termination_exception(
- *factory->NewOddball(factory->termination_exception_map(),
- "termination_exception",
- handle(Smi::FromInt(-3), isolate()),
- Oddball::kOther));
-
- set_exception(
- *factory->NewOddball(factory->exception_map(),
- "exception",
- handle(Smi::FromInt(-5), isolate()),
- Oddball::kException));
-
- for (unsigned i = 0; i < ARRAY_SIZE(constant_string_table); i++) {
- Handle<String> str =
- factory->InternalizeUtf8String(constant_string_table[i].contents);
- roots_[constant_string_table[i].index] = *str;
- }
-
- // Allocate the hidden string which is used to identify the hidden properties
- // in JSObjects. The hash code has a special value so that it will not match
- // the empty string when searching for the property. It cannot be part of the
- // loop above because it needs to be allocated manually with the special
- // hash code in place. The hash code for the hidden_string is zero to ensure
- // that it will always be at the first entry in property descriptors.
- hidden_string_ = *factory->NewOneByteInternalizedString(
- OneByteVector("", 0), String::kEmptyStringHash);
-
- // Create the code_stubs dictionary. The initial size is set to avoid
- // expanding the dictionary during bootstrapping.
- set_code_stubs(*UnseededNumberDictionary::New(isolate(), 128));
-
- // Create the non_monomorphic_cache used in stub-cache.cc. The initial size
- // is set to avoid expanding the dictionary during bootstrapping.
- set_non_monomorphic_cache(*UnseededNumberDictionary::New(isolate(), 64));
-
- set_polymorphic_code_cache(PolymorphicCodeCache::cast(
- *factory->NewStruct(POLYMORPHIC_CODE_CACHE_TYPE)));
-
- set_instanceof_cache_function(Smi::FromInt(0));
- set_instanceof_cache_map(Smi::FromInt(0));
- set_instanceof_cache_answer(Smi::FromInt(0));
-
- CreateFixedStubs();
-
- // Allocate the dictionary of intrinsic function names.
- Handle<NameDictionary> intrinsic_names =
- NameDictionary::New(isolate(), Runtime::kNumFunctions);
- Runtime::InitializeIntrinsicFunctionNames(isolate(), intrinsic_names);
- set_intrinsic_function_names(*intrinsic_names);
-
- set_number_string_cache(*factory->NewFixedArray(
- kInitialNumberStringCacheSize * 2, TENURED));
-
- // Allocate cache for single character one byte strings.
- set_single_character_string_cache(*factory->NewFixedArray(
- String::kMaxOneByteCharCode + 1, TENURED));
-
- // Allocate cache for string split and regexp-multiple.
- set_string_split_cache(*factory->NewFixedArray(
- RegExpResultsCache::kRegExpResultsCacheSize, TENURED));
- set_regexp_multiple_cache(*factory->NewFixedArray(
- RegExpResultsCache::kRegExpResultsCacheSize, TENURED));
-
- // Allocate cache for external strings pointing to native source code.
- set_natives_source_cache(*factory->NewFixedArray(
- Natives::GetBuiltinsCount()));
-
- set_undefined_cell(*factory->NewCell(factory->undefined_value()));
-
- // The symbol registry is initialized lazily.
- set_symbol_registry(undefined_value());
-
- // Allocate object to hold object observation state.
- set_observation_state(*factory->NewJSObjectFromMap(
- factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize)));
-
- // Microtask queue uses the empty fixed array as a sentinel for "empty".
- // Number of queued microtasks stored in Isolate::pending_microtask_count().
- set_microtask_queue(empty_fixed_array());
-
- set_detailed_stack_trace_symbol(*factory->NewPrivateSymbol());
- set_elements_transition_symbol(*factory->NewPrivateSymbol());
- set_frozen_symbol(*factory->NewPrivateSymbol());
- set_megamorphic_symbol(*factory->NewPrivateSymbol());
- set_nonexistent_symbol(*factory->NewPrivateSymbol());
- set_normal_ic_symbol(*factory->NewPrivateSymbol());
- set_observed_symbol(*factory->NewPrivateSymbol());
- set_stack_trace_symbol(*factory->NewPrivateSymbol());
- set_uninitialized_symbol(*factory->NewPrivateSymbol());
-
- Handle<SeededNumberDictionary> slow_element_dictionary =
- SeededNumberDictionary::New(isolate(), 0, TENURED);
- slow_element_dictionary->set_requires_slow_elements();
- set_empty_slow_element_dictionary(*slow_element_dictionary);
-
- set_materialized_objects(*factory->NewFixedArray(0, TENURED));
-
- // Handling of script id generation is in Factory::NewScript.
- set_last_script_id(Smi::FromInt(v8::UnboundScript::kNoScriptId));
-
- set_allocation_sites_scratchpad(*factory->NewFixedArray(
- kAllocationSiteScratchpadSize, TENURED));
- InitializeAllocationSitesScratchpad();
-
- // Initialize keyed lookup cache.
- isolate_->keyed_lookup_cache()->Clear();
-
- // Initialize context slot cache.
- isolate_->context_slot_cache()->Clear();
-
- // Initialize descriptor cache.
- isolate_->descriptor_lookup_cache()->Clear();
-
- // Initialize compilation cache.
- isolate_->compilation_cache()->Clear();
-}
-
-
-bool Heap::RootCanBeWrittenAfterInitialization(Heap::RootListIndex root_index) {
- RootListIndex writable_roots[] = {
- kStoreBufferTopRootIndex,
- kStackLimitRootIndex,
- kNumberStringCacheRootIndex,
- kInstanceofCacheFunctionRootIndex,
- kInstanceofCacheMapRootIndex,
- kInstanceofCacheAnswerRootIndex,
- kCodeStubsRootIndex,
- kNonMonomorphicCacheRootIndex,
- kPolymorphicCodeCacheRootIndex,
- kLastScriptIdRootIndex,
- kEmptyScriptRootIndex,
- kRealStackLimitRootIndex,
- kArgumentsAdaptorDeoptPCOffsetRootIndex,
- kConstructStubDeoptPCOffsetRootIndex,
- kGetterStubDeoptPCOffsetRootIndex,
- kSetterStubDeoptPCOffsetRootIndex,
- kStringTableRootIndex,
- };
-
- for (unsigned int i = 0; i < ARRAY_SIZE(writable_roots); i++) {
- if (root_index == writable_roots[i])
- return true;
- }
- return false;
-}
-
-
-bool Heap::RootCanBeTreatedAsConstant(RootListIndex root_index) {
- return !RootCanBeWrittenAfterInitialization(root_index) &&
- !InNewSpace(roots_array_start()[root_index]);
-}
-
-
-Object* RegExpResultsCache::Lookup(Heap* heap,
- String* key_string,
- Object* key_pattern,
- ResultsCacheType type) {
- FixedArray* cache;
- if (!key_string->IsInternalizedString()) return Smi::FromInt(0);
- if (type == STRING_SPLIT_SUBSTRINGS) {
- DCHECK(key_pattern->IsString());
- if (!key_pattern->IsInternalizedString()) return Smi::FromInt(0);
- cache = heap->string_split_cache();
- } else {
- DCHECK(type == REGEXP_MULTIPLE_INDICES);
- DCHECK(key_pattern->IsFixedArray());
- cache = heap->regexp_multiple_cache();
- }
-
- uint32_t hash = key_string->Hash();
- uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) &
- ~(kArrayEntriesPerCacheEntry - 1));
- if (cache->get(index + kStringOffset) == key_string &&
- cache->get(index + kPatternOffset) == key_pattern) {
- return cache->get(index + kArrayOffset);
- }
- index =
- ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1));
- if (cache->get(index + kStringOffset) == key_string &&
- cache->get(index + kPatternOffset) == key_pattern) {
- return cache->get(index + kArrayOffset);
- }
- return Smi::FromInt(0);
-}
-
-
-void RegExpResultsCache::Enter(Isolate* isolate,
- Handle<String> key_string,
- Handle<Object> key_pattern,
- Handle<FixedArray> value_array,
- ResultsCacheType type) {
- Factory* factory = isolate->factory();
- Handle<FixedArray> cache;
- if (!key_string->IsInternalizedString()) return;
- if (type == STRING_SPLIT_SUBSTRINGS) {
- DCHECK(key_pattern->IsString());
- if (!key_pattern->IsInternalizedString()) return;
- cache = factory->string_split_cache();
- } else {
- DCHECK(type == REGEXP_MULTIPLE_INDICES);
- DCHECK(key_pattern->IsFixedArray());
- cache = factory->regexp_multiple_cache();
- }
-
- uint32_t hash = key_string->Hash();
- uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) &
- ~(kArrayEntriesPerCacheEntry - 1));
- if (cache->get(index + kStringOffset) == Smi::FromInt(0)) {
- cache->set(index + kStringOffset, *key_string);
- cache->set(index + kPatternOffset, *key_pattern);
- cache->set(index + kArrayOffset, *value_array);
- } else {
- uint32_t index2 =
- ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1));
- if (cache->get(index2 + kStringOffset) == Smi::FromInt(0)) {
- cache->set(index2 + kStringOffset, *key_string);
- cache->set(index2 + kPatternOffset, *key_pattern);
- cache->set(index2 + kArrayOffset, *value_array);
- } else {
- cache->set(index2 + kStringOffset, Smi::FromInt(0));
- cache->set(index2 + kPatternOffset, Smi::FromInt(0));
- cache->set(index2 + kArrayOffset, Smi::FromInt(0));
- cache->set(index + kStringOffset, *key_string);
- cache->set(index + kPatternOffset, *key_pattern);
- cache->set(index + kArrayOffset, *value_array);
- }
- }
- // If the array is a reasonably short list of substrings, convert it into a
- // list of internalized strings.
- if (type == STRING_SPLIT_SUBSTRINGS && value_array->length() < 100) {
- for (int i = 0; i < value_array->length(); i++) {
- Handle<String> str(String::cast(value_array->get(i)), isolate);
- Handle<String> internalized_str = factory->InternalizeString(str);
- value_array->set(i, *internalized_str);
- }
- }
- // Convert backing store to a copy-on-write array.
- value_array->set_map_no_write_barrier(*factory->fixed_cow_array_map());
-}
-
-
-void RegExpResultsCache::Clear(FixedArray* cache) {
- for (int i = 0; i < kRegExpResultsCacheSize; i++) {
- cache->set(i, Smi::FromInt(0));
- }
-}
-
-
-int Heap::FullSizeNumberStringCacheLength() {
- // Compute the size of the number string cache based on the max newspace size.
- // The number string cache has a minimum size based on twice the initial cache
- // size to ensure that it is bigger after being made 'full size'.
- int number_string_cache_size = max_semi_space_size_ / 512;
- number_string_cache_size = Max(kInitialNumberStringCacheSize * 2,
- Min(0x4000, number_string_cache_size));
- // There is a string and a number per entry so the length is twice the number
- // of entries.
- return number_string_cache_size * 2;
-}
-
-
-void Heap::FlushNumberStringCache() {
- // Flush the number to string cache.
- int len = number_string_cache()->length();
- for (int i = 0; i < len; i++) {
- number_string_cache()->set_undefined(i);
- }
-}
-
-
-void Heap::FlushAllocationSitesScratchpad() {
- for (int i = 0; i < allocation_sites_scratchpad_length_; i++) {
- allocation_sites_scratchpad()->set_undefined(i);
- }
- allocation_sites_scratchpad_length_ = 0;
-}
-
-
-void Heap::InitializeAllocationSitesScratchpad() {
- DCHECK(allocation_sites_scratchpad()->length() ==
- kAllocationSiteScratchpadSize);
- for (int i = 0; i < kAllocationSiteScratchpadSize; i++) {
- allocation_sites_scratchpad()->set_undefined(i);
- }
-}
-
-
-void Heap::AddAllocationSiteToScratchpad(AllocationSite* site,
- ScratchpadSlotMode mode) {
- if (allocation_sites_scratchpad_length_ < kAllocationSiteScratchpadSize) {
- // We cannot use the normal write-barrier because slots need to be
- // recorded with non-incremental marking as well. We have to explicitly
- // record the slot to take evacuation candidates into account.
- allocation_sites_scratchpad()->set(
- allocation_sites_scratchpad_length_, site, SKIP_WRITE_BARRIER);
- Object** slot = allocation_sites_scratchpad()->RawFieldOfElementAt(
- allocation_sites_scratchpad_length_);
-
- if (mode == RECORD_SCRATCHPAD_SLOT) {
- // We need to allow slots buffer overflow here since the evacuation
- // candidates are not part of the global list of old space pages and
- // releasing an evacuation candidate due to a slots buffer overflow
- // results in lost pages.
- mark_compact_collector()->RecordSlot(
- slot, slot, *slot, SlotsBuffer::IGNORE_OVERFLOW);
- }
- allocation_sites_scratchpad_length_++;
- }
-}
-
-
-Map* Heap::MapForExternalArrayType(ExternalArrayType array_type) {
- return Map::cast(roots_[RootIndexForExternalArrayType(array_type)]);
-}
-
-
-Heap::RootListIndex Heap::RootIndexForExternalArrayType(
- ExternalArrayType array_type) {
- switch (array_type) {
-#define ARRAY_TYPE_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \
- case kExternal##Type##Array: \
- return kExternal##Type##ArrayMapRootIndex;
-
- TYPED_ARRAYS(ARRAY_TYPE_TO_ROOT_INDEX)
-#undef ARRAY_TYPE_TO_ROOT_INDEX
-
- default:
- UNREACHABLE();
- return kUndefinedValueRootIndex;
- }
-}
-
-
-Map* Heap::MapForFixedTypedArray(ExternalArrayType array_type) {
- return Map::cast(roots_[RootIndexForFixedTypedArray(array_type)]);
-}
-
-
-Heap::RootListIndex Heap::RootIndexForFixedTypedArray(
- ExternalArrayType array_type) {
- switch (array_type) {
-#define ARRAY_TYPE_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \
- case kExternal##Type##Array: \
- return kFixed##Type##ArrayMapRootIndex;
-
- TYPED_ARRAYS(ARRAY_TYPE_TO_ROOT_INDEX)
-#undef ARRAY_TYPE_TO_ROOT_INDEX
-
- default:
- UNREACHABLE();
- return kUndefinedValueRootIndex;
- }
-}
-
-
-Heap::RootListIndex Heap::RootIndexForEmptyExternalArray(
- ElementsKind elementsKind) {
- switch (elementsKind) {
-#define ELEMENT_KIND_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \
- case EXTERNAL_##TYPE##_ELEMENTS: \
- return kEmptyExternal##Type##ArrayRootIndex;
-
- TYPED_ARRAYS(ELEMENT_KIND_TO_ROOT_INDEX)
-#undef ELEMENT_KIND_TO_ROOT_INDEX
-
- default:
- UNREACHABLE();
- return kUndefinedValueRootIndex;
- }
-}
-
-
-Heap::RootListIndex Heap::RootIndexForEmptyFixedTypedArray(
- ElementsKind elementsKind) {
- switch (elementsKind) {
-#define ELEMENT_KIND_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \
- case TYPE##_ELEMENTS: \
- return kEmptyFixed##Type##ArrayRootIndex;
-
- TYPED_ARRAYS(ELEMENT_KIND_TO_ROOT_INDEX)
-#undef ELEMENT_KIND_TO_ROOT_INDEX
- default:
- UNREACHABLE();
- return kUndefinedValueRootIndex;
- }
-}
-
-
-ExternalArray* Heap::EmptyExternalArrayForMap(Map* map) {
- return ExternalArray::cast(
- roots_[RootIndexForEmptyExternalArray(map->elements_kind())]);
-}
-
-
-FixedTypedArrayBase* Heap::EmptyFixedTypedArrayForMap(Map* map) {
- return FixedTypedArrayBase::cast(
- roots_[RootIndexForEmptyFixedTypedArray(map->elements_kind())]);
-}
-
-
-AllocationResult Heap::AllocateForeign(Address address,
- PretenureFlag pretenure) {
- // Statically ensure that it is safe to allocate foreigns in paged spaces.
- STATIC_ASSERT(Foreign::kSize <= Page::kMaxRegularHeapObjectSize);
- AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
- Foreign* result;
- AllocationResult allocation = Allocate(foreign_map(), space);
- if (!allocation.To(&result)) return allocation;
- result->set_foreign_address(address);
- return result;
-}
-
-
-AllocationResult Heap::AllocateByteArray(int length, PretenureFlag pretenure) {
- if (length < 0 || length > ByteArray::kMaxLength) {
- v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true);
- }
- int size = ByteArray::SizeFor(length);
- AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
- HeapObject* result;
- { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
- if (!allocation.To(&result)) return allocation;
- }
-
- result->set_map_no_write_barrier(byte_array_map());
- ByteArray::cast(result)->set_length(length);
- return result;
-}
-
-
-void Heap::CreateFillerObjectAt(Address addr, int size) {
- if (size == 0) return;
- HeapObject* filler = HeapObject::FromAddress(addr);
- if (size == kPointerSize) {
- filler->set_map_no_write_barrier(one_pointer_filler_map());
- } else if (size == 2 * kPointerSize) {
- filler->set_map_no_write_barrier(two_pointer_filler_map());
- } else {
- filler->set_map_no_write_barrier(free_space_map());
- FreeSpace::cast(filler)->set_size(size);
- }
-}
-
-
-bool Heap::CanMoveObjectStart(HeapObject* object) {
- Address address = object->address();
- bool is_in_old_pointer_space = InOldPointerSpace(address);
- bool is_in_old_data_space = InOldDataSpace(address);
-
- if (lo_space()->Contains(object)) return false;
-
- Page* page = Page::FromAddress(address);
- // We can move the object start if:
- // (1) the object is not in old pointer or old data space,
- // (2) the page of the object was already swept,
- // (3) the page was already concurrently swept. This case is an optimization
- // for concurrent sweeping. The WasSwept predicate for concurrently swept
- // pages is set after sweeping all pages.
- return (!is_in_old_pointer_space && !is_in_old_data_space) ||
- page->WasSwept() || page->SweepingCompleted();
-}
-
-
-void Heap::AdjustLiveBytes(Address address, int by, InvocationMode mode) {
- if (incremental_marking()->IsMarking() &&
- Marking::IsBlack(Marking::MarkBitFrom(address))) {
- if (mode == FROM_GC) {
- MemoryChunk::IncrementLiveBytesFromGC(address, by);
- } else {
- MemoryChunk::IncrementLiveBytesFromMutator(address, by);
- }
- }
-}
-
-
-AllocationResult Heap::AllocateExternalArray(int length,
- ExternalArrayType array_type,
- void* external_pointer,
- PretenureFlag pretenure) {
- int size = ExternalArray::kAlignedSize;
- AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
- HeapObject* result;
- { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
- if (!allocation.To(&result)) return allocation;
- }
-
- result->set_map_no_write_barrier(
- MapForExternalArrayType(array_type));
- ExternalArray::cast(result)->set_length(length);
- ExternalArray::cast(result)->set_external_pointer(external_pointer);
- return result;
-}
-
-static void ForFixedTypedArray(ExternalArrayType array_type,
- int* element_size,
- ElementsKind* element_kind) {
- switch (array_type) {
-#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
- case kExternal##Type##Array: \
- *element_size = size; \
- *element_kind = TYPE##_ELEMENTS; \
- return;
-
- TYPED_ARRAYS(TYPED_ARRAY_CASE)
-#undef TYPED_ARRAY_CASE
-
- default:
- *element_size = 0; // Bogus
- *element_kind = UINT8_ELEMENTS; // Bogus
- UNREACHABLE();
- }
-}
-
-
-AllocationResult Heap::AllocateFixedTypedArray(int length,
- ExternalArrayType array_type,
- PretenureFlag pretenure) {
- int element_size;
- ElementsKind elements_kind;
- ForFixedTypedArray(array_type, &element_size, &elements_kind);
- int size = OBJECT_POINTER_ALIGN(
- length * element_size + FixedTypedArrayBase::kDataOffset);
-#ifndef V8_HOST_ARCH_64_BIT
- if (array_type == kExternalFloat64Array) {
- size += kPointerSize;
- }
-#endif
- AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
-
- HeapObject* object;
- AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
- if (!allocation.To(&object)) return allocation;
-
- if (array_type == kExternalFloat64Array) {
- object = EnsureDoubleAligned(this, object, size);
- }
-
- object->set_map(MapForFixedTypedArray(array_type));
- FixedTypedArrayBase* elements = FixedTypedArrayBase::cast(object);
- elements->set_length(length);
- memset(elements->DataPtr(), 0, elements->DataSize());
- return elements;
-}
-
-
-AllocationResult Heap::AllocateCode(int object_size, bool immovable) {
- DCHECK(IsAligned(static_cast<intptr_t>(object_size), kCodeAlignment));
- AllocationResult allocation =
- AllocateRaw(object_size, CODE_SPACE, CODE_SPACE);
-
- HeapObject* result;
- if (!allocation.To(&result)) return allocation;
-
- if (immovable) {
- Address address = result->address();
- // Code objects which should stay at a fixed address are allocated either
- // in the first page of code space (objects on the first page of each space
- // are never moved) or in large object space.
- if (!code_space_->FirstPage()->Contains(address) &&
- MemoryChunk::FromAddress(address)->owner()->identity() != LO_SPACE) {
- // Discard the first code allocation, which was on a page where it could
- // be moved.
- CreateFillerObjectAt(result->address(), object_size);
- allocation = lo_space_->AllocateRaw(object_size, EXECUTABLE);
- if (!allocation.To(&result)) return allocation;
- OnAllocationEvent(result, object_size);
- }
- }
-
- result->set_map_no_write_barrier(code_map());
- Code* code = Code::cast(result);
- DCHECK(isolate_->code_range() == NULL ||
- !isolate_->code_range()->valid() ||
- isolate_->code_range()->contains(code->address()));
- code->set_gc_metadata(Smi::FromInt(0));
- code->set_ic_age(global_ic_age_);
- return code;
-}
-
-
-AllocationResult Heap::CopyCode(Code* code) {
- AllocationResult allocation;
- HeapObject* new_constant_pool;
- if (FLAG_enable_ool_constant_pool &&
- code->constant_pool() != empty_constant_pool_array()) {
- // Copy the constant pool, since edits to the copied code may modify
- // the constant pool.
- allocation = CopyConstantPoolArray(code->constant_pool());
- if (!allocation.To(&new_constant_pool)) return allocation;
- } else {
- new_constant_pool = empty_constant_pool_array();
- }
-
- HeapObject* result;
- // Allocate an object the same size as the code object.
- int obj_size = code->Size();
- allocation = AllocateRaw(obj_size, CODE_SPACE, CODE_SPACE);
- if (!allocation.To(&result)) return allocation;
-
- // Copy code object.
- Address old_addr = code->address();
- Address new_addr = result->address();
- CopyBlock(new_addr, old_addr, obj_size);
- Code* new_code = Code::cast(result);
-
- // Update the constant pool.
- new_code->set_constant_pool(new_constant_pool);
-
- // Relocate the copy.
- DCHECK(isolate_->code_range() == NULL ||
- !isolate_->code_range()->valid() ||
- isolate_->code_range()->contains(code->address()));
- new_code->Relocate(new_addr - old_addr);
- return new_code;
-}
-
-
-AllocationResult Heap::CopyCode(Code* code, Vector<byte> reloc_info) {
- // Allocate ByteArray and ConstantPoolArray before the Code object, so that we
- // do not risk leaving uninitialized Code object (and breaking the heap).
- ByteArray* reloc_info_array;
- { AllocationResult allocation =
- AllocateByteArray(reloc_info.length(), TENURED);
- if (!allocation.To(&reloc_info_array)) return allocation;
- }
- HeapObject* new_constant_pool;
- if (FLAG_enable_ool_constant_pool &&
- code->constant_pool() != empty_constant_pool_array()) {
- // Copy the constant pool, since edits to the copied code may modify
- // the constant pool.
- AllocationResult allocation =
- CopyConstantPoolArray(code->constant_pool());
- if (!allocation.To(&new_constant_pool)) return allocation;
- } else {
- new_constant_pool = empty_constant_pool_array();
- }
-
- int new_body_size = RoundUp(code->instruction_size(), kObjectAlignment);
-
- int new_obj_size = Code::SizeFor(new_body_size);
-
- Address old_addr = code->address();
-
- size_t relocation_offset =
- static_cast<size_t>(code->instruction_end() - old_addr);
-
- HeapObject* result;
- AllocationResult allocation =
- AllocateRaw(new_obj_size, CODE_SPACE, CODE_SPACE);
- if (!allocation.To(&result)) return allocation;
-
- // Copy code object.
- Address new_addr = result->address();
-
- // Copy header and instructions.
- CopyBytes(new_addr, old_addr, relocation_offset);
-
- Code* new_code = Code::cast(result);
- new_code->set_relocation_info(reloc_info_array);
-
- // Update constant pool.
- new_code->set_constant_pool(new_constant_pool);
-
- // Copy patched rinfo.
- CopyBytes(new_code->relocation_start(),
- reloc_info.start(),
- static_cast<size_t>(reloc_info.length()));
-
- // Relocate the copy.
- DCHECK(isolate_->code_range() == NULL ||
- !isolate_->code_range()->valid() ||
- isolate_->code_range()->contains(code->address()));
- new_code->Relocate(new_addr - old_addr);
-
-#ifdef VERIFY_HEAP
- if (FLAG_verify_heap) code->ObjectVerify();
-#endif
- return new_code;
-}
-
-
-void Heap::InitializeAllocationMemento(AllocationMemento* memento,
- AllocationSite* allocation_site) {
- memento->set_map_no_write_barrier(allocation_memento_map());
- DCHECK(allocation_site->map() == allocation_site_map());
- memento->set_allocation_site(allocation_site, SKIP_WRITE_BARRIER);
- if (FLAG_allocation_site_pretenuring) {
- allocation_site->IncrementMementoCreateCount();
- }
-}
-
-
-AllocationResult Heap::Allocate(Map* map, AllocationSpace space,
- AllocationSite* allocation_site) {
- DCHECK(gc_state_ == NOT_IN_GC);
- DCHECK(map->instance_type() != MAP_TYPE);
- // If allocation failures are disallowed, we may allocate in a different
- // space when new space is full and the object is not a large object.
- AllocationSpace retry_space =
- (space != NEW_SPACE) ? space : TargetSpaceId(map->instance_type());
- int size = map->instance_size();
- if (allocation_site != NULL) {
- size += AllocationMemento::kSize;
- }
- HeapObject* result;
- AllocationResult allocation = AllocateRaw(size, space, retry_space);
- if (!allocation.To(&result)) return allocation;
- // No need for write barrier since object is white and map is in old space.
- result->set_map_no_write_barrier(map);
- if (allocation_site != NULL) {
- AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>(
- reinterpret_cast<Address>(result) + map->instance_size());
- InitializeAllocationMemento(alloc_memento, allocation_site);
- }
- return result;
-}
-
-
-void Heap::InitializeJSObjectFromMap(JSObject* obj,
- FixedArray* properties,
- Map* map) {
- obj->set_properties(properties);
- obj->initialize_elements();
- // TODO(1240798): Initialize the object's body using valid initial values
- // according to the object's initial map. For example, if the map's
- // instance type is JS_ARRAY_TYPE, the length field should be initialized
- // to a number (e.g. Smi::FromInt(0)) and the elements initialized to a
- // fixed array (e.g. Heap::empty_fixed_array()). Currently, the object
- // verification code has to cope with (temporarily) invalid objects. See
- // for example, JSArray::JSArrayVerify).
- Object* filler;
- // We cannot always fill with one_pointer_filler_map because objects
- // created from API functions expect their internal fields to be initialized
- // with undefined_value.
- // Pre-allocated fields need to be initialized with undefined_value as well
- // so that object accesses before the constructor completes (e.g. in the
- // debugger) will not cause a crash.
- if (map->constructor()->IsJSFunction() &&
- JSFunction::cast(map->constructor())->
- IsInobjectSlackTrackingInProgress()) {
- // We might want to shrink the object later.
- DCHECK(obj->GetInternalFieldCount() == 0);
- filler = Heap::one_pointer_filler_map();
- } else {
- filler = Heap::undefined_value();
- }
- obj->InitializeBody(map, Heap::undefined_value(), filler);
-}
-
-
-AllocationResult Heap::AllocateJSObjectFromMap(
- Map* map,
- PretenureFlag pretenure,
- bool allocate_properties,
- AllocationSite* allocation_site) {
- // JSFunctions should be allocated using AllocateFunction to be
- // properly initialized.
- DCHECK(map->instance_type() != JS_FUNCTION_TYPE);
-
- // Both types of global objects should be allocated using
- // AllocateGlobalObject to be properly initialized.
- DCHECK(map->instance_type() != JS_GLOBAL_OBJECT_TYPE);
- DCHECK(map->instance_type() != JS_BUILTINS_OBJECT_TYPE);
-
- // Allocate the backing storage for the properties.
- FixedArray* properties;
- if (allocate_properties) {
- int prop_size = map->InitialPropertiesLength();
- DCHECK(prop_size >= 0);
- { AllocationResult allocation = AllocateFixedArray(prop_size, pretenure);
- if (!allocation.To(&properties)) return allocation;
- }
- } else {
- properties = empty_fixed_array();
- }
-
- // Allocate the JSObject.
- int size = map->instance_size();
- AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, pretenure);
- JSObject* js_obj;
- AllocationResult allocation = Allocate(map, space, allocation_site);
- if (!allocation.To(&js_obj)) return allocation;
-
- // Initialize the JSObject.
- InitializeJSObjectFromMap(js_obj, properties, map);
- DCHECK(js_obj->HasFastElements() ||
- js_obj->HasExternalArrayElements() ||
- js_obj->HasFixedTypedArrayElements());
- return js_obj;
-}
-
-
-AllocationResult Heap::AllocateJSObject(JSFunction* constructor,
- PretenureFlag pretenure,
- AllocationSite* allocation_site) {
- DCHECK(constructor->has_initial_map());
-
- // Allocate the object based on the constructors initial map.
- AllocationResult allocation = AllocateJSObjectFromMap(
- constructor->initial_map(), pretenure, true, allocation_site);
-#ifdef DEBUG
- // Make sure result is NOT a global object if valid.
- HeapObject* obj;
- DCHECK(!allocation.To(&obj) || !obj->IsGlobalObject());
-#endif
- return allocation;
-}
-
-
-AllocationResult Heap::CopyJSObject(JSObject* source, AllocationSite* site) {
- // Never used to copy functions. If functions need to be copied we
- // have to be careful to clear the literals array.
- SLOW_DCHECK(!source->IsJSFunction());
-
- // Make the clone.
- Map* map = source->map();
- int object_size = map->instance_size();
- HeapObject* clone;
-
- DCHECK(site == NULL || AllocationSite::CanTrack(map->instance_type()));
-
- WriteBarrierMode wb_mode = UPDATE_WRITE_BARRIER;
-
- // If we're forced to always allocate, we use the general allocation
- // functions which may leave us with an object in old space.
- if (always_allocate()) {
- { AllocationResult allocation =
- AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE);
- if (!allocation.To(&clone)) return allocation;
- }
- Address clone_address = clone->address();
- CopyBlock(clone_address,
- source->address(),
- object_size);
- // Update write barrier for all fields that lie beyond the header.
- RecordWrites(clone_address,
- JSObject::kHeaderSize,
- (object_size - JSObject::kHeaderSize) / kPointerSize);
- } else {
- wb_mode = SKIP_WRITE_BARRIER;
-
- { int adjusted_object_size = site != NULL
- ? object_size + AllocationMemento::kSize
- : object_size;
- AllocationResult allocation =
- AllocateRaw(adjusted_object_size, NEW_SPACE, NEW_SPACE);
- if (!allocation.To(&clone)) return allocation;
- }
- SLOW_DCHECK(InNewSpace(clone));
- // Since we know the clone is allocated in new space, we can copy
- // the contents without worrying about updating the write barrier.
- CopyBlock(clone->address(),
- source->address(),
- object_size);
-
- if (site != NULL) {
- AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>(
- reinterpret_cast<Address>(clone) + object_size);
- InitializeAllocationMemento(alloc_memento, site);
- }
- }
-
- SLOW_DCHECK(
- JSObject::cast(clone)->GetElementsKind() == source->GetElementsKind());
- FixedArrayBase* elements = FixedArrayBase::cast(source->elements());
- FixedArray* properties = FixedArray::cast(source->properties());
- // Update elements if necessary.
- if (elements->length() > 0) {
- FixedArrayBase* elem;
- { AllocationResult allocation;
- if (elements->map() == fixed_cow_array_map()) {
- allocation = FixedArray::cast(elements);
- } else if (source->HasFastDoubleElements()) {
- allocation = CopyFixedDoubleArray(FixedDoubleArray::cast(elements));
- } else {
- allocation = CopyFixedArray(FixedArray::cast(elements));
- }
- if (!allocation.To(&elem)) return allocation;
- }
- JSObject::cast(clone)->set_elements(elem, wb_mode);
- }
- // Update properties if necessary.
- if (properties->length() > 0) {
- FixedArray* prop;
- { AllocationResult allocation = CopyFixedArray(properties);
- if (!allocation.To(&prop)) return allocation;
- }
- JSObject::cast(clone)->set_properties(prop, wb_mode);
- }
- // Return the new clone.
- return clone;
-}
-
-
-static inline void WriteOneByteData(Vector<const char> vector,
- uint8_t* chars,
- int len) {
- // Only works for ascii.
- DCHECK(vector.length() == len);
- MemCopy(chars, vector.start(), len);
-}
-
-static inline void WriteTwoByteData(Vector<const char> vector,
- uint16_t* chars,
- int len) {
- const uint8_t* stream = reinterpret_cast<const uint8_t*>(vector.start());
- unsigned stream_length = vector.length();
- while (stream_length != 0) {
- unsigned consumed = 0;
- uint32_t c = unibrow::Utf8::ValueOf(stream, stream_length, &consumed);
- DCHECK(c != unibrow::Utf8::kBadChar);
- DCHECK(consumed <= stream_length);
- stream_length -= consumed;
- stream += consumed;
- if (c > unibrow::Utf16::kMaxNonSurrogateCharCode) {
- len -= 2;
- if (len < 0) break;
- *chars++ = unibrow::Utf16::LeadSurrogate(c);
- *chars++ = unibrow::Utf16::TrailSurrogate(c);
- } else {
- len -= 1;
- if (len < 0) break;
- *chars++ = c;
- }
- }
- DCHECK(stream_length == 0);
- DCHECK(len == 0);
-}
-
-
-static inline void WriteOneByteData(String* s, uint8_t* chars, int len) {
- DCHECK(s->length() == len);
- String::WriteToFlat(s, chars, 0, len);
-}
-
-
-static inline void WriteTwoByteData(String* s, uint16_t* chars, int len) {
- DCHECK(s->length() == len);
- String::WriteToFlat(s, chars, 0, len);
-}
-
-
-template<bool is_one_byte, typename T>
-AllocationResult Heap::AllocateInternalizedStringImpl(
- T t, int chars, uint32_t hash_field) {
- DCHECK(chars >= 0);
- // Compute map and object size.
- int size;
- Map* map;
-
- DCHECK_LE(0, chars);
- DCHECK_GE(String::kMaxLength, chars);
- if (is_one_byte) {
- map = ascii_internalized_string_map();
- size = SeqOneByteString::SizeFor(chars);
- } else {
- map = internalized_string_map();
- size = SeqTwoByteString::SizeFor(chars);
- }
- AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
-
- // Allocate string.
- HeapObject* result;
- { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
- if (!allocation.To(&result)) return allocation;
- }
-
- result->set_map_no_write_barrier(map);
- // Set length and hash fields of the allocated string.
- String* answer = String::cast(result);
- answer->set_length(chars);
- answer->set_hash_field(hash_field);
-
- DCHECK_EQ(size, answer->Size());
-
- if (is_one_byte) {
- WriteOneByteData(t, SeqOneByteString::cast(answer)->GetChars(), chars);
- } else {
- WriteTwoByteData(t, SeqTwoByteString::cast(answer)->GetChars(), chars);
- }
- return answer;
-}
-
-
-// Need explicit instantiations.
-template
-AllocationResult Heap::AllocateInternalizedStringImpl<true>(
- String*, int, uint32_t);
-template
-AllocationResult Heap::AllocateInternalizedStringImpl<false>(
- String*, int, uint32_t);
-template
-AllocationResult Heap::AllocateInternalizedStringImpl<false>(
- Vector<const char>, int, uint32_t);
-
-
-AllocationResult Heap::AllocateRawOneByteString(int length,
- PretenureFlag pretenure) {
- DCHECK_LE(0, length);
- DCHECK_GE(String::kMaxLength, length);
- int size = SeqOneByteString::SizeFor(length);
- DCHECK(size <= SeqOneByteString::kMaxSize);
- AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
-
- HeapObject* result;
- { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
- if (!allocation.To(&result)) return allocation;
- }
-
- // Partially initialize the object.
- result->set_map_no_write_barrier(ascii_string_map());
- String::cast(result)->set_length(length);
- String::cast(result)->set_hash_field(String::kEmptyHashField);
- DCHECK_EQ(size, HeapObject::cast(result)->Size());
-
- return result;
-}
-
-
-AllocationResult Heap::AllocateRawTwoByteString(int length,
- PretenureFlag pretenure) {
- DCHECK_LE(0, length);
- DCHECK_GE(String::kMaxLength, length);
- int size = SeqTwoByteString::SizeFor(length);
- DCHECK(size <= SeqTwoByteString::kMaxSize);
- AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
-
- HeapObject* result;
- { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
- if (!allocation.To(&result)) return allocation;
- }
-
- // Partially initialize the object.
- result->set_map_no_write_barrier(string_map());
- String::cast(result)->set_length(length);
- String::cast(result)->set_hash_field(String::kEmptyHashField);
- DCHECK_EQ(size, HeapObject::cast(result)->Size());
- return result;
-}
-
-
-AllocationResult Heap::AllocateEmptyFixedArray() {
- int size = FixedArray::SizeFor(0);
- HeapObject* result;
- { AllocationResult allocation =
- AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
- if (!allocation.To(&result)) return allocation;
- }
- // Initialize the object.
- result->set_map_no_write_barrier(fixed_array_map());
- FixedArray::cast(result)->set_length(0);
- return result;
-}
-
-
-AllocationResult Heap::AllocateEmptyExternalArray(
- ExternalArrayType array_type) {
- return AllocateExternalArray(0, array_type, NULL, TENURED);
-}
-
-
-AllocationResult Heap::CopyAndTenureFixedCOWArray(FixedArray* src) {
- if (!InNewSpace(src)) {
- return src;
- }
-
- int len = src->length();
- HeapObject* obj;
- { AllocationResult allocation = AllocateRawFixedArray(len, TENURED);
- if (!allocation.To(&obj)) return allocation;
- }
- obj->set_map_no_write_barrier(fixed_array_map());
- FixedArray* result = FixedArray::cast(obj);
- result->set_length(len);
-
- // Copy the content
- DisallowHeapAllocation no_gc;
- WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
- for (int i = 0; i < len; i++) result->set(i, src->get(i), mode);
-
- // TODO(mvstanton): The map is set twice because of protection against calling
- // set() on a COW FixedArray. Issue v8:3221 created to track this, and
- // we might then be able to remove this whole method.
- HeapObject::cast(obj)->set_map_no_write_barrier(fixed_cow_array_map());
- return result;
-}
-
-
-AllocationResult Heap::AllocateEmptyFixedTypedArray(
- ExternalArrayType array_type) {
- return AllocateFixedTypedArray(0, array_type, TENURED);
-}
-
-
-AllocationResult Heap::CopyFixedArrayWithMap(FixedArray* src, Map* map) {
- int len = src->length();
- HeapObject* obj;
- { AllocationResult allocation = AllocateRawFixedArray(len, NOT_TENURED);
- if (!allocation.To(&obj)) return allocation;
- }
- if (InNewSpace(obj)) {
- obj->set_map_no_write_barrier(map);
- CopyBlock(obj->address() + kPointerSize,
- src->address() + kPointerSize,
- FixedArray::SizeFor(len) - kPointerSize);
- return obj;
- }
- obj->set_map_no_write_barrier(map);
- FixedArray* result = FixedArray::cast(obj);
- result->set_length(len);
-
- // Copy the content
- DisallowHeapAllocation no_gc;
- WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
- for (int i = 0; i < len; i++) result->set(i, src->get(i), mode);
- return result;
-}
-
-
-AllocationResult Heap::CopyFixedDoubleArrayWithMap(FixedDoubleArray* src,
- Map* map) {
- int len = src->length();
- HeapObject* obj;
- { AllocationResult allocation = AllocateRawFixedDoubleArray(len, NOT_TENURED);
- if (!allocation.To(&obj)) return allocation;
- }
- obj->set_map_no_write_barrier(map);
- CopyBlock(
- obj->address() + FixedDoubleArray::kLengthOffset,
- src->address() + FixedDoubleArray::kLengthOffset,
- FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset);
- return obj;
-}
-
-
-AllocationResult Heap::CopyConstantPoolArrayWithMap(ConstantPoolArray* src,
- Map* map) {
- HeapObject* obj;
- if (src->is_extended_layout()) {
- ConstantPoolArray::NumberOfEntries small(src,
- ConstantPoolArray::SMALL_SECTION);
- ConstantPoolArray::NumberOfEntries extended(src,
- ConstantPoolArray::EXTENDED_SECTION);
- AllocationResult allocation =
- AllocateExtendedConstantPoolArray(small, extended);
- if (!allocation.To(&obj)) return allocation;
- } else {
- ConstantPoolArray::NumberOfEntries small(src,
- ConstantPoolArray::SMALL_SECTION);
- AllocationResult allocation = AllocateConstantPoolArray(small);
- if (!allocation.To(&obj)) return allocation;
- }
- obj->set_map_no_write_barrier(map);
- CopyBlock(
- obj->address() + ConstantPoolArray::kFirstEntryOffset,
- src->address() + ConstantPoolArray::kFirstEntryOffset,
- src->size() - ConstantPoolArray::kFirstEntryOffset);
- return obj;
-}
-
-
-AllocationResult Heap::AllocateRawFixedArray(int length,
- PretenureFlag pretenure) {
- if (length < 0 || length > FixedArray::kMaxLength) {
- v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true);
- }
- int size = FixedArray::SizeFor(length);
- AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, pretenure);
-
- return AllocateRaw(size, space, OLD_POINTER_SPACE);
-}
-
-
-AllocationResult Heap::AllocateFixedArrayWithFiller(int length,
- PretenureFlag pretenure,
- Object* filler) {
- DCHECK(length >= 0);
- DCHECK(empty_fixed_array()->IsFixedArray());
- if (length == 0) return empty_fixed_array();
-
- DCHECK(!InNewSpace(filler));
- HeapObject* result;
- { AllocationResult allocation = AllocateRawFixedArray(length, pretenure);
- if (!allocation.To(&result)) return allocation;
- }
-
- result->set_map_no_write_barrier(fixed_array_map());
- FixedArray* array = FixedArray::cast(result);
- array->set_length(length);
- MemsetPointer(array->data_start(), filler, length);
- return array;
-}
-
-
-AllocationResult Heap::AllocateFixedArray(int length, PretenureFlag pretenure) {
- return AllocateFixedArrayWithFiller(length, pretenure, undefined_value());
-}
-
-
-AllocationResult Heap::AllocateUninitializedFixedArray(int length) {
- if (length == 0) return empty_fixed_array();
-
- HeapObject* obj;
- { AllocationResult allocation = AllocateRawFixedArray(length, NOT_TENURED);
- if (!allocation.To(&obj)) return allocation;
- }
-
- obj->set_map_no_write_barrier(fixed_array_map());
- FixedArray::cast(obj)->set_length(length);
- return obj;
-}
-
-
-AllocationResult Heap::AllocateUninitializedFixedDoubleArray(
- int length,
- PretenureFlag pretenure) {
- if (length == 0) return empty_fixed_array();
-
- HeapObject* elements;
- AllocationResult allocation = AllocateRawFixedDoubleArray(length, pretenure);
- if (!allocation.To(&elements)) return allocation;
-
- elements->set_map_no_write_barrier(fixed_double_array_map());
- FixedDoubleArray::cast(elements)->set_length(length);
- return elements;
-}
-
-
-AllocationResult Heap::AllocateRawFixedDoubleArray(int length,
- PretenureFlag pretenure) {
- if (length < 0 || length > FixedDoubleArray::kMaxLength) {
- v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true);
- }
- int size = FixedDoubleArray::SizeFor(length);
-#ifndef V8_HOST_ARCH_64_BIT
- size += kPointerSize;
-#endif
- AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
-
- HeapObject* object;
- { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
- if (!allocation.To(&object)) return allocation;
- }
-
- return EnsureDoubleAligned(this, object, size);
-}
-
-
-AllocationResult Heap::AllocateConstantPoolArray(
- const ConstantPoolArray::NumberOfEntries& small) {
- CHECK(small.are_in_range(0, ConstantPoolArray::kMaxSmallEntriesPerType));
- int size = ConstantPoolArray::SizeFor(small);
-#ifndef V8_HOST_ARCH_64_BIT
- size += kPointerSize;
-#endif
- AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, TENURED);
-
- HeapObject* object;
- { AllocationResult allocation = AllocateRaw(size, space, OLD_POINTER_SPACE);
- if (!allocation.To(&object)) return allocation;
- }
- object = EnsureDoubleAligned(this, object, size);
- object->set_map_no_write_barrier(constant_pool_array_map());
-
- ConstantPoolArray* constant_pool = ConstantPoolArray::cast(object);
- constant_pool->Init(small);
- constant_pool->ClearPtrEntries(isolate());
- return constant_pool;
-}
-
-
-AllocationResult Heap::AllocateExtendedConstantPoolArray(
- const ConstantPoolArray::NumberOfEntries& small,
- const ConstantPoolArray::NumberOfEntries& extended) {
- CHECK(small.are_in_range(0, ConstantPoolArray::kMaxSmallEntriesPerType));
- CHECK(extended.are_in_range(0, kMaxInt));
- int size = ConstantPoolArray::SizeForExtended(small, extended);
-#ifndef V8_HOST_ARCH_64_BIT
- size += kPointerSize;
-#endif
- AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, TENURED);
-
- HeapObject* object;
- { AllocationResult allocation = AllocateRaw(size, space, OLD_POINTER_SPACE);
- if (!allocation.To(&object)) return allocation;
- }
- object = EnsureDoubleAligned(this, object, size);
- object->set_map_no_write_barrier(constant_pool_array_map());
-
- ConstantPoolArray* constant_pool = ConstantPoolArray::cast(object);
- constant_pool->InitExtended(small, extended);
- constant_pool->ClearPtrEntries(isolate());
- return constant_pool;
-}
-
-
-AllocationResult Heap::AllocateEmptyConstantPoolArray() {
- ConstantPoolArray::NumberOfEntries small(0, 0, 0, 0);
- int size = ConstantPoolArray::SizeFor(small);
- HeapObject* result;
- { AllocationResult allocation =
- AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
- if (!allocation.To(&result)) return allocation;
- }
- result->set_map_no_write_barrier(constant_pool_array_map());
- ConstantPoolArray::cast(result)->Init(small);
- return result;
-}
-
-
-AllocationResult Heap::AllocateSymbol() {
- // Statically ensure that it is safe to allocate symbols in paged spaces.
- STATIC_ASSERT(Symbol::kSize <= Page::kMaxRegularHeapObjectSize);
-
- HeapObject* result;
- AllocationResult allocation =
- AllocateRaw(Symbol::kSize, OLD_POINTER_SPACE, OLD_POINTER_SPACE);
- if (!allocation.To(&result)) return allocation;
-
- result->set_map_no_write_barrier(symbol_map());
-
- // Generate a random hash value.
- int hash;
- int attempts = 0;
- do {
- hash = isolate()->random_number_generator()->NextInt() & Name::kHashBitMask;
- attempts++;
- } while (hash == 0 && attempts < 30);
- if (hash == 0) hash = 1; // never return 0
-
- Symbol::cast(result)->set_hash_field(
- Name::kIsNotArrayIndexMask | (hash << Name::kHashShift));
- Symbol::cast(result)->set_name(undefined_value());
- Symbol::cast(result)->set_flags(Smi::FromInt(0));
-
- DCHECK(!Symbol::cast(result)->is_private());
- return result;
-}
-
-
-AllocationResult Heap::AllocateStruct(InstanceType type) {
- Map* map;
- switch (type) {
-#define MAKE_CASE(NAME, Name, name) \
- case NAME##_TYPE: map = name##_map(); break;
-STRUCT_LIST(MAKE_CASE)
-#undef MAKE_CASE
- default:
- UNREACHABLE();
- return exception();
- }
- int size = map->instance_size();
- AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, TENURED);
- Struct* result;
- { AllocationResult allocation = Allocate(map, space);
- if (!allocation.To(&result)) return allocation;
- }
- result->InitializeBody(size);
- return result;
-}
-
-
-bool Heap::IsHeapIterable() {
- // TODO(hpayer): This function is not correct. Allocation folding in old
- // space breaks the iterability.
- return (old_pointer_space()->swept_precisely() &&
- old_data_space()->swept_precisely() &&
- new_space_top_after_last_gc_ == new_space()->top());
-}
-
-
-void Heap::MakeHeapIterable() {
- DCHECK(AllowHeapAllocation::IsAllowed());
- if (!IsHeapIterable()) {
- CollectAllGarbage(kMakeHeapIterableMask, "Heap::MakeHeapIterable");
- }
- if (mark_compact_collector()->sweeping_in_progress()) {
- mark_compact_collector()->EnsureSweepingCompleted();
- }
- DCHECK(IsHeapIterable());
-}
-
-
-void Heap::AdvanceIdleIncrementalMarking(intptr_t step_size) {
- incremental_marking()->Step(step_size,
- IncrementalMarking::NO_GC_VIA_STACK_GUARD);
-
- if (incremental_marking()->IsComplete()) {
- bool uncommit = false;
- if (gc_count_at_last_idle_gc_ == gc_count_) {
- // No GC since the last full GC, the mutator is probably not active.
- isolate_->compilation_cache()->Clear();
- uncommit = true;
- }
- CollectAllGarbage(kReduceMemoryFootprintMask,
- "idle notification: finalize incremental");
- mark_sweeps_since_idle_round_started_++;
- gc_count_at_last_idle_gc_ = gc_count_;
- if (uncommit) {
- new_space_.Shrink();
- UncommitFromSpace();
- }
- }
-}
-
-
-bool Heap::IdleNotification(int hint) {
- // If incremental marking is off, we do not perform idle notification.
- if (!FLAG_incremental_marking) return true;
-
- // Hints greater than this value indicate that
- // the embedder is requesting a lot of GC work.
- const int kMaxHint = 1000;
- const int kMinHintForIncrementalMarking = 10;
- // Minimal hint that allows to do full GC.
- const int kMinHintForFullGC = 100;
- intptr_t size_factor = Min(Max(hint, 20), kMaxHint) / 4;
- // The size factor is in range [5..250]. The numbers here are chosen from
- // experiments. If you changes them, make sure to test with
- // chrome/performance_ui_tests --gtest_filter="GeneralMixMemoryTest.*
- intptr_t step_size =
- size_factor * IncrementalMarking::kAllocatedThreshold;
-
- isolate()->counters()->gc_idle_time_allotted_in_ms()->AddSample(hint);
- HistogramTimerScope idle_notification_scope(
- isolate_->counters()->gc_idle_notification());
-
- if (contexts_disposed_ > 0) {
- contexts_disposed_ = 0;
- int mark_sweep_time = Min(TimeMarkSweepWouldTakeInMs(), 1000);
- if (hint >= mark_sweep_time && !FLAG_expose_gc &&
- incremental_marking()->IsStopped()) {
- HistogramTimerScope scope(isolate_->counters()->gc_context());
- CollectAllGarbage(kReduceMemoryFootprintMask,
- "idle notification: contexts disposed");
- } else {
- AdvanceIdleIncrementalMarking(step_size);
- }
-
- // After context disposal there is likely a lot of garbage remaining, reset
- // the idle notification counters in order to trigger more incremental GCs
- // on subsequent idle notifications.
- StartIdleRound();
- return false;
- }
-
- // By doing small chunks of GC work in each IdleNotification,
- // perform a round of incremental GCs and after that wait until
- // the mutator creates enough garbage to justify a new round.
- // An incremental GC progresses as follows:
- // 1. many incremental marking steps,
- // 2. one old space mark-sweep-compact,
- // Use mark-sweep-compact events to count incremental GCs in a round.
-
- if (mark_sweeps_since_idle_round_started_ >= kMaxMarkSweepsInIdleRound) {
- if (EnoughGarbageSinceLastIdleRound()) {
- StartIdleRound();
- } else {
- return true;
- }
- }
-
- int remaining_mark_sweeps = kMaxMarkSweepsInIdleRound -
- mark_sweeps_since_idle_round_started_;
-
- if (incremental_marking()->IsStopped()) {
- // If there are no more than two GCs left in this idle round and we are
- // allowed to do a full GC, then make those GCs full in order to compact
- // the code space.
- // TODO(ulan): Once we enable code compaction for incremental marking,
- // we can get rid of this special case and always start incremental marking.
- if (remaining_mark_sweeps <= 2 && hint >= kMinHintForFullGC) {
- CollectAllGarbage(kReduceMemoryFootprintMask,
- "idle notification: finalize idle round");
- mark_sweeps_since_idle_round_started_++;
- } else if (hint > kMinHintForIncrementalMarking) {
- incremental_marking()->Start();
- }
- }
- if (!incremental_marking()->IsStopped() &&
- hint > kMinHintForIncrementalMarking) {
- AdvanceIdleIncrementalMarking(step_size);
- }
-
- if (mark_sweeps_since_idle_round_started_ >= kMaxMarkSweepsInIdleRound) {
- FinishIdleRound();
- return true;
- }
-
- // If the IdleNotifcation is called with a large hint we will wait for
- // the sweepter threads here.
- if (hint >= kMinHintForFullGC &&
- mark_compact_collector()->sweeping_in_progress()) {
- mark_compact_collector()->EnsureSweepingCompleted();
- }
-
- return false;
-}
-
-
-#ifdef DEBUG
-
-void Heap::Print() {
- if (!HasBeenSetUp()) return;
- isolate()->PrintStack(stdout);
- AllSpaces spaces(this);
- for (Space* space = spaces.next(); space != NULL; space = spaces.next()) {
- space->Print();
- }
-}
-
-
-void Heap::ReportCodeStatistics(const char* title) {
- PrintF(">>>>>> Code Stats (%s) >>>>>>\n", title);
- PagedSpace::ResetCodeStatistics(isolate());
- // We do not look for code in new space, map space, or old space. If code
- // somehow ends up in those spaces, we would miss it here.
- code_space_->CollectCodeStatistics();
- lo_space_->CollectCodeStatistics();
- PagedSpace::ReportCodeStatistics(isolate());
-}
-
-
-// This function expects that NewSpace's allocated objects histogram is
-// populated (via a call to CollectStatistics or else as a side effect of a
-// just-completed scavenge collection).
-void Heap::ReportHeapStatistics(const char* title) {
- USE(title);
- PrintF(">>>>>> =============== %s (%d) =============== >>>>>>\n",
- title, gc_count_);
- PrintF("old_generation_allocation_limit_ %" V8_PTR_PREFIX "d\n",
- old_generation_allocation_limit_);
-
- PrintF("\n");
- PrintF("Number of handles : %d\n", HandleScope::NumberOfHandles(isolate_));
- isolate_->global_handles()->PrintStats();
- PrintF("\n");
-
- PrintF("Heap statistics : ");
- isolate_->memory_allocator()->ReportStatistics();
- PrintF("To space : ");
- new_space_.ReportStatistics();
- PrintF("Old pointer space : ");
- old_pointer_space_->ReportStatistics();
- PrintF("Old data space : ");
- old_data_space_->ReportStatistics();
- PrintF("Code space : ");
- code_space_->ReportStatistics();
- PrintF("Map space : ");
- map_space_->ReportStatistics();
- PrintF("Cell space : ");
- cell_space_->ReportStatistics();
- PrintF("PropertyCell space : ");
- property_cell_space_->ReportStatistics();
- PrintF("Large object space : ");
- lo_space_->ReportStatistics();
- PrintF(">>>>>> ========================================= >>>>>>\n");
-}
-
-#endif // DEBUG
-
-bool Heap::Contains(HeapObject* value) {
- return Contains(value->address());
-}
-
-
-bool Heap::Contains(Address addr) {
- if (isolate_->memory_allocator()->IsOutsideAllocatedSpace(addr)) return false;
- return HasBeenSetUp() &&
- (new_space_.ToSpaceContains(addr) ||
- old_pointer_space_->Contains(addr) ||
- old_data_space_->Contains(addr) ||
- code_space_->Contains(addr) ||
- map_space_->Contains(addr) ||
- cell_space_->Contains(addr) ||
- property_cell_space_->Contains(addr) ||
- lo_space_->SlowContains(addr));
-}
-
-
-bool Heap::InSpace(HeapObject* value, AllocationSpace space) {
- return InSpace(value->address(), space);
-}
-
-
-bool Heap::InSpace(Address addr, AllocationSpace space) {
- if (isolate_->memory_allocator()->IsOutsideAllocatedSpace(addr)) return false;
- if (!HasBeenSetUp()) return false;
-
- switch (space) {
- case NEW_SPACE:
- return new_space_.ToSpaceContains(addr);
- case OLD_POINTER_SPACE:
- return old_pointer_space_->Contains(addr);
- case OLD_DATA_SPACE:
- return old_data_space_->Contains(addr);
- case CODE_SPACE:
- return code_space_->Contains(addr);
- case MAP_SPACE:
- return map_space_->Contains(addr);
- case CELL_SPACE:
- return cell_space_->Contains(addr);
- case PROPERTY_CELL_SPACE:
- return property_cell_space_->Contains(addr);
- case LO_SPACE:
- return lo_space_->SlowContains(addr);
- case INVALID_SPACE:
- break;
- }
- UNREACHABLE();
- return false;
-}
-
-
-#ifdef VERIFY_HEAP
-void Heap::Verify() {
- CHECK(HasBeenSetUp());
- HandleScope scope(isolate());
-
- store_buffer()->Verify();
-
- if (mark_compact_collector()->sweeping_in_progress()) {
- // We have to wait here for the sweeper threads to have an iterable heap.
- mark_compact_collector()->EnsureSweepingCompleted();
- }
-
- VerifyPointersVisitor visitor;
- IterateRoots(&visitor, VISIT_ONLY_STRONG);
-
- VerifySmisVisitor smis_visitor;
- IterateSmiRoots(&smis_visitor);
-
- new_space_.Verify();
-
- old_pointer_space_->Verify(&visitor);
- map_space_->Verify(&visitor);
-
- VerifyPointersVisitor no_dirty_regions_visitor;
- old_data_space_->Verify(&no_dirty_regions_visitor);
- code_space_->Verify(&no_dirty_regions_visitor);
- cell_space_->Verify(&no_dirty_regions_visitor);
- property_cell_space_->Verify(&no_dirty_regions_visitor);
-
- lo_space_->Verify();
-}
-#endif
-
-
-void Heap::ZapFromSpace() {
- NewSpacePageIterator it(new_space_.FromSpaceStart(),
- new_space_.FromSpaceEnd());
- while (it.has_next()) {
- NewSpacePage* page = it.next();
- for (Address cursor = page->area_start(), limit = page->area_end();
- cursor < limit;
- cursor += kPointerSize) {
- Memory::Address_at(cursor) = kFromSpaceZapValue;
- }
- }
-}
-
-
-void Heap::IterateAndMarkPointersToFromSpace(Address start,
- Address end,
- ObjectSlotCallback callback) {
- Address slot_address = start;
-
- // We are not collecting slots on new space objects during mutation
- // thus we have to scan for pointers to evacuation candidates when we
- // promote objects. But we should not record any slots in non-black
- // objects. Grey object's slots would be rescanned.
- // White object might not survive until the end of collection
- // it would be a violation of the invariant to record it's slots.
- bool record_slots = false;
- if (incremental_marking()->IsCompacting()) {
- MarkBit mark_bit = Marking::MarkBitFrom(HeapObject::FromAddress(start));
- record_slots = Marking::IsBlack(mark_bit);
- }
-
- while (slot_address < end) {
- Object** slot = reinterpret_cast<Object**>(slot_address);
- Object* object = *slot;
- // If the store buffer becomes overfull we mark pages as being exempt from
- // the store buffer. These pages are scanned to find pointers that point
- // to the new space. In that case we may hit newly promoted objects and
- // fix the pointers before the promotion queue gets to them. Thus the 'if'.
- if (object->IsHeapObject()) {
- if (Heap::InFromSpace(object)) {
- callback(reinterpret_cast<HeapObject**>(slot),
- HeapObject::cast(object));
- Object* new_object = *slot;
- if (InNewSpace(new_object)) {
- SLOW_DCHECK(Heap::InToSpace(new_object));
- SLOW_DCHECK(new_object->IsHeapObject());
- store_buffer_.EnterDirectlyIntoStoreBuffer(
- reinterpret_cast<Address>(slot));
- }
- SLOW_DCHECK(!MarkCompactCollector::IsOnEvacuationCandidate(new_object));
- } else if (record_slots &&
- MarkCompactCollector::IsOnEvacuationCandidate(object)) {
- mark_compact_collector()->RecordSlot(slot, slot, object);
- }
- }
- slot_address += kPointerSize;
- }
-}
-
-
-#ifdef DEBUG
-typedef bool (*CheckStoreBufferFilter)(Object** addr);
-
-
-bool IsAMapPointerAddress(Object** addr) {
- uintptr_t a = reinterpret_cast<uintptr_t>(addr);
- int mod = a % Map::kSize;
- return mod >= Map::kPointerFieldsBeginOffset &&
- mod < Map::kPointerFieldsEndOffset;
-}
-
-
-bool EverythingsAPointer(Object** addr) {
- return true;
-}
-
-
-static void CheckStoreBuffer(Heap* heap,
- Object** current,
- Object** limit,
- Object**** store_buffer_position,
- Object*** store_buffer_top,
- CheckStoreBufferFilter filter,
- Address special_garbage_start,
- Address special_garbage_end) {
- Map* free_space_map = heap->free_space_map();
- for ( ; current < limit; current++) {
- Object* o = *current;
- Address current_address = reinterpret_cast<Address>(current);
- // Skip free space.
- if (o == free_space_map) {
- Address current_address = reinterpret_cast<Address>(current);
- FreeSpace* free_space =
- FreeSpace::cast(HeapObject::FromAddress(current_address));
- int skip = free_space->Size();
- DCHECK(current_address + skip <= reinterpret_cast<Address>(limit));
- DCHECK(skip > 0);
- current_address += skip - kPointerSize;
- current = reinterpret_cast<Object**>(current_address);
- continue;
- }
- // Skip the current linear allocation space between top and limit which is
- // unmarked with the free space map, but can contain junk.
- if (current_address == special_garbage_start &&
- special_garbage_end != special_garbage_start) {
- current_address = special_garbage_end - kPointerSize;
- current = reinterpret_cast<Object**>(current_address);
- continue;
- }
- if (!(*filter)(current)) continue;
- DCHECK(current_address < special_garbage_start ||
- current_address >= special_garbage_end);
- DCHECK(reinterpret_cast<uintptr_t>(o) != kFreeListZapValue);
- // We have to check that the pointer does not point into new space
- // without trying to cast it to a heap object since the hash field of
- // a string can contain values like 1 and 3 which are tagged null
- // pointers.
- if (!heap->InNewSpace(o)) continue;
- while (**store_buffer_position < current &&
- *store_buffer_position < store_buffer_top) {
- (*store_buffer_position)++;
- }
- if (**store_buffer_position != current ||
- *store_buffer_position == store_buffer_top) {
- Object** obj_start = current;
- while (!(*obj_start)->IsMap()) obj_start--;
- UNREACHABLE();
- }
- }
-}
-
-
-// Check that the store buffer contains all intergenerational pointers by
-// scanning a page and ensuring that all pointers to young space are in the
-// store buffer.
-void Heap::OldPointerSpaceCheckStoreBuffer() {
- OldSpace* space = old_pointer_space();
- PageIterator pages(space);
-
- store_buffer()->SortUniq();
-
- while (pages.has_next()) {
- Page* page = pages.next();
- Object** current = reinterpret_cast<Object**>(page->area_start());
-
- Address end = page->area_end();
-
- Object*** store_buffer_position = store_buffer()->Start();
- Object*** store_buffer_top = store_buffer()->Top();
-
- Object** limit = reinterpret_cast<Object**>(end);
- CheckStoreBuffer(this,
- current,
- limit,
- &store_buffer_position,
- store_buffer_top,
- &EverythingsAPointer,
- space->top(),
- space->limit());
- }
-}
-
-
-void Heap::MapSpaceCheckStoreBuffer() {
- MapSpace* space = map_space();
- PageIterator pages(space);
-
- store_buffer()->SortUniq();
-
- while (pages.has_next()) {
- Page* page = pages.next();
- Object** current = reinterpret_cast<Object**>(page->area_start());
-
- Address end = page->area_end();
-
- Object*** store_buffer_position = store_buffer()->Start();
- Object*** store_buffer_top = store_buffer()->Top();
-
- Object** limit = reinterpret_cast<Object**>(end);
- CheckStoreBuffer(this,
- current,
- limit,
- &store_buffer_position,
- store_buffer_top,
- &IsAMapPointerAddress,
- space->top(),
- space->limit());
- }
-}
-
-
-void Heap::LargeObjectSpaceCheckStoreBuffer() {
- LargeObjectIterator it(lo_space());
- for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
- // We only have code, sequential strings, or fixed arrays in large
- // object space, and only fixed arrays can possibly contain pointers to
- // the young generation.
- if (object->IsFixedArray()) {
- Object*** store_buffer_position = store_buffer()->Start();
- Object*** store_buffer_top = store_buffer()->Top();
- Object** current = reinterpret_cast<Object**>(object->address());
- Object** limit =
- reinterpret_cast<Object**>(object->address() + object->Size());
- CheckStoreBuffer(this,
- current,
- limit,
- &store_buffer_position,
- store_buffer_top,
- &EverythingsAPointer,
- NULL,
- NULL);
- }
- }
-}
-#endif
-
-
-void Heap::IterateRoots(ObjectVisitor* v, VisitMode mode) {
- IterateStrongRoots(v, mode);
- IterateWeakRoots(v, mode);
-}
-
-
-void Heap::IterateWeakRoots(ObjectVisitor* v, VisitMode mode) {
- v->VisitPointer(reinterpret_cast<Object**>(&roots_[kStringTableRootIndex]));
- v->Synchronize(VisitorSynchronization::kStringTable);
- if (mode != VISIT_ALL_IN_SCAVENGE &&
- mode != VISIT_ALL_IN_SWEEP_NEWSPACE) {
- // Scavenge collections have special processing for this.
- external_string_table_.Iterate(v);
- }
- v->Synchronize(VisitorSynchronization::kExternalStringsTable);
-}
-
-
-void Heap::IterateSmiRoots(ObjectVisitor* v) {
- // Acquire execution access since we are going to read stack limit values.
- ExecutionAccess access(isolate());
- v->VisitPointers(&roots_[kSmiRootsStart], &roots_[kRootListLength]);
- v->Synchronize(VisitorSynchronization::kSmiRootList);
-}
-
-
-void Heap::IterateStrongRoots(ObjectVisitor* v, VisitMode mode) {
- v->VisitPointers(&roots_[0], &roots_[kStrongRootListLength]);
- v->Synchronize(VisitorSynchronization::kStrongRootList);
-
- v->VisitPointer(BitCast<Object**>(&hidden_string_));
- v->Synchronize(VisitorSynchronization::kInternalizedString);
-
- isolate_->bootstrapper()->Iterate(v);
- v->Synchronize(VisitorSynchronization::kBootstrapper);
- isolate_->Iterate(v);
- v->Synchronize(VisitorSynchronization::kTop);
- Relocatable::Iterate(isolate_, v);
- v->Synchronize(VisitorSynchronization::kRelocatable);
-
- if (isolate_->deoptimizer_data() != NULL) {
- isolate_->deoptimizer_data()->Iterate(v);
- }
- v->Synchronize(VisitorSynchronization::kDebug);
- isolate_->compilation_cache()->Iterate(v);
- v->Synchronize(VisitorSynchronization::kCompilationCache);
-
- // Iterate over local handles in handle scopes.
- isolate_->handle_scope_implementer()->Iterate(v);
- isolate_->IterateDeferredHandles(v);
- v->Synchronize(VisitorSynchronization::kHandleScope);
-
- // Iterate over the builtin code objects and code stubs in the
- // heap. Note that it is not necessary to iterate over code objects
- // on scavenge collections.
- if (mode != VISIT_ALL_IN_SCAVENGE) {
- isolate_->builtins()->IterateBuiltins(v);
- }
- v->Synchronize(VisitorSynchronization::kBuiltins);
-
- // Iterate over global handles.
- switch (mode) {
- case VISIT_ONLY_STRONG:
- isolate_->global_handles()->IterateStrongRoots(v);
- break;
- case VISIT_ALL_IN_SCAVENGE:
- isolate_->global_handles()->IterateNewSpaceStrongAndDependentRoots(v);
- break;
- case VISIT_ALL_IN_SWEEP_NEWSPACE:
- case VISIT_ALL:
- isolate_->global_handles()->IterateAllRoots(v);
- break;
- }
- v->Synchronize(VisitorSynchronization::kGlobalHandles);
-
- // Iterate over eternal handles.
- if (mode == VISIT_ALL_IN_SCAVENGE) {
- isolate_->eternal_handles()->IterateNewSpaceRoots(v);
- } else {
- isolate_->eternal_handles()->IterateAllRoots(v);
- }
- v->Synchronize(VisitorSynchronization::kEternalHandles);
-
- // Iterate over pointers being held by inactive threads.
- isolate_->thread_manager()->Iterate(v);
- v->Synchronize(VisitorSynchronization::kThreadManager);
-
- // Iterate over the pointers the Serialization/Deserialization code is
- // holding.
- // During garbage collection this keeps the partial snapshot cache alive.
- // During deserialization of the startup snapshot this creates the partial
- // snapshot cache and deserializes the objects it refers to. During
- // serialization this does nothing, since the partial snapshot cache is
- // empty. However the next thing we do is create the partial snapshot,
- // filling up the partial snapshot cache with objects it needs as we go.
- SerializerDeserializer::Iterate(isolate_, v);
- // We don't do a v->Synchronize call here, because in debug mode that will
- // output a flag to the snapshot. However at this point the serializer and
- // deserializer are deliberately a little unsynchronized (see above) so the
- // checking of the sync flag in the snapshot would fail.
-}
-
-
-// TODO(1236194): Since the heap size is configurable on the command line
-// and through the API, we should gracefully handle the case that the heap
-// size is not big enough to fit all the initial objects.
-bool Heap::ConfigureHeap(int max_semi_space_size,
- int max_old_space_size,
- int max_executable_size,
- size_t code_range_size) {
- if (HasBeenSetUp()) return false;
-
- // Overwrite default configuration.
- if (max_semi_space_size > 0) {
- max_semi_space_size_ = max_semi_space_size * MB;
- }
- if (max_old_space_size > 0) {
- max_old_generation_size_ = max_old_space_size * MB;
- }
- if (max_executable_size > 0) {
- max_executable_size_ = max_executable_size * MB;
- }
-
- // If max space size flags are specified overwrite the configuration.
- if (FLAG_max_semi_space_size > 0) {
- max_semi_space_size_ = FLAG_max_semi_space_size * MB;
- }
- if (FLAG_max_old_space_size > 0) {
- max_old_generation_size_ = FLAG_max_old_space_size * MB;
- }
- if (FLAG_max_executable_size > 0) {
- max_executable_size_ = FLAG_max_executable_size * MB;
- }
-
- if (FLAG_stress_compaction) {
- // This will cause more frequent GCs when stressing.
- max_semi_space_size_ = Page::kPageSize;
- }
-
- if (Snapshot::HaveASnapshotToStartFrom()) {
- // If we are using a snapshot we always reserve the default amount
- // of memory for each semispace because code in the snapshot has
- // write-barrier code that relies on the size and alignment of new
- // space. We therefore cannot use a larger max semispace size
- // than the default reserved semispace size.
- if (max_semi_space_size_ > reserved_semispace_size_) {
- max_semi_space_size_ = reserved_semispace_size_;
- if (FLAG_trace_gc) {
- PrintPID("Max semi-space size cannot be more than %d kbytes\n",
- reserved_semispace_size_ >> 10);
- }
- }
- } else {
- // If we are not using snapshots we reserve space for the actual
- // max semispace size.
- reserved_semispace_size_ = max_semi_space_size_;
- }
-
- // The max executable size must be less than or equal to the max old
- // generation size.
- if (max_executable_size_ > max_old_generation_size_) {
- max_executable_size_ = max_old_generation_size_;
- }
-
- // The new space size must be a power of two to support single-bit testing
- // for containment.
- max_semi_space_size_ = RoundUpToPowerOf2(max_semi_space_size_);
- reserved_semispace_size_ = RoundUpToPowerOf2(reserved_semispace_size_);
-
- if (FLAG_min_semi_space_size > 0) {
- int initial_semispace_size = FLAG_min_semi_space_size * MB;
- if (initial_semispace_size > max_semi_space_size_) {
- initial_semispace_size_ = max_semi_space_size_;
- if (FLAG_trace_gc) {
- PrintPID("Min semi-space size cannot be more than the maximum"
- "semi-space size of %d MB\n", max_semi_space_size_);
- }
- } else {
- initial_semispace_size_ = initial_semispace_size;
- }
- }
-
- initial_semispace_size_ = Min(initial_semispace_size_, max_semi_space_size_);
-
- // The old generation is paged and needs at least one page for each space.
- int paged_space_count = LAST_PAGED_SPACE - FIRST_PAGED_SPACE + 1;
- max_old_generation_size_ =
- Max(static_cast<intptr_t>(paged_space_count * Page::kPageSize),
- max_old_generation_size_);
-
- // We rely on being able to allocate new arrays in paged spaces.
- DCHECK(Page::kMaxRegularHeapObjectSize >=
- (JSArray::kSize +
- FixedArray::SizeFor(JSObject::kInitialMaxFastElementArray) +
- AllocationMemento::kSize));
-
- code_range_size_ = code_range_size * MB;
-
- configured_ = true;
- return true;
-}
-
-
-bool Heap::ConfigureHeapDefault() {
- return ConfigureHeap(0, 0, 0, 0);
-}
-
-
-void Heap::RecordStats(HeapStats* stats, bool take_snapshot) {
- *stats->start_marker = HeapStats::kStartMarker;
- *stats->end_marker = HeapStats::kEndMarker;
- *stats->new_space_size = new_space_.SizeAsInt();
- *stats->new_space_capacity = static_cast<int>(new_space_.Capacity());
- *stats->old_pointer_space_size = old_pointer_space_->SizeOfObjects();
- *stats->old_pointer_space_capacity = old_pointer_space_->Capacity();
- *stats->old_data_space_size = old_data_space_->SizeOfObjects();
- *stats->old_data_space_capacity = old_data_space_->Capacity();
- *stats->code_space_size = code_space_->SizeOfObjects();
- *stats->code_space_capacity = code_space_->Capacity();
- *stats->map_space_size = map_space_->SizeOfObjects();
- *stats->map_space_capacity = map_space_->Capacity();
- *stats->cell_space_size = cell_space_->SizeOfObjects();
- *stats->cell_space_capacity = cell_space_->Capacity();
- *stats->property_cell_space_size = property_cell_space_->SizeOfObjects();
- *stats->property_cell_space_capacity = property_cell_space_->Capacity();
- *stats->lo_space_size = lo_space_->Size();
- isolate_->global_handles()->RecordStats(stats);
- *stats->memory_allocator_size = isolate()->memory_allocator()->Size();
- *stats->memory_allocator_capacity =
- isolate()->memory_allocator()->Size() +
- isolate()->memory_allocator()->Available();
- *stats->os_error = base::OS::GetLastError();
- isolate()->memory_allocator()->Available();
- if (take_snapshot) {
- HeapIterator iterator(this);
- for (HeapObject* obj = iterator.next();
- obj != NULL;
- obj = iterator.next()) {
- InstanceType type = obj->map()->instance_type();
- DCHECK(0 <= type && type <= LAST_TYPE);
- stats->objects_per_type[type]++;
- stats->size_per_type[type] += obj->Size();
- }
- }
-}
-
-
-intptr_t Heap::PromotedSpaceSizeOfObjects() {
- return old_pointer_space_->SizeOfObjects()
- + old_data_space_->SizeOfObjects()
- + code_space_->SizeOfObjects()
- + map_space_->SizeOfObjects()
- + cell_space_->SizeOfObjects()
- + property_cell_space_->SizeOfObjects()
- + lo_space_->SizeOfObjects();
-}
-
-
-int64_t Heap::PromotedExternalMemorySize() {
- if (amount_of_external_allocated_memory_
- <= amount_of_external_allocated_memory_at_last_global_gc_) return 0;
- return amount_of_external_allocated_memory_
- - amount_of_external_allocated_memory_at_last_global_gc_;
-}
-
-
-intptr_t Heap::OldGenerationAllocationLimit(intptr_t old_gen_size,
- int freed_global_handles) {
- const int kMaxHandles = 1000;
- const int kMinHandles = 100;
- double min_factor = 1.1;
- double max_factor = 4;
- // We set the old generation growing factor to 2 to grow the heap slower on
- // memory-constrained devices.
- if (max_old_generation_size_ <= kMaxOldSpaceSizeMediumMemoryDevice) {
- max_factor = 2;
- }
- // If there are many freed global handles, then the next full GC will
- // likely collect a lot of garbage. Choose the heap growing factor
- // depending on freed global handles.
- // TODO(ulan, hpayer): Take into account mutator utilization.
- double factor;
- if (freed_global_handles <= kMinHandles) {
- factor = max_factor;
- } else if (freed_global_handles >= kMaxHandles) {
- factor = min_factor;
- } else {
- // Compute factor using linear interpolation between points
- // (kMinHandles, max_factor) and (kMaxHandles, min_factor).
- factor = max_factor -
- (freed_global_handles - kMinHandles) * (max_factor - min_factor) /
- (kMaxHandles - kMinHandles);
- }
-
- if (FLAG_stress_compaction ||
- mark_compact_collector()->reduce_memory_footprint_) {
- factor = min_factor;
- }
-
- intptr_t limit = static_cast<intptr_t>(old_gen_size * factor);
- limit = Max(limit, kMinimumOldGenerationAllocationLimit);
- limit += new_space_.Capacity();
- intptr_t halfway_to_the_max = (old_gen_size + max_old_generation_size_) / 2;
- return Min(limit, halfway_to_the_max);
-}
-
-
-void Heap::EnableInlineAllocation() {
- if (!inline_allocation_disabled_) return;
- inline_allocation_disabled_ = false;
-
- // Update inline allocation limit for new space.
- new_space()->UpdateInlineAllocationLimit(0);
-}
-
-
-void Heap::DisableInlineAllocation() {
- if (inline_allocation_disabled_) return;
- inline_allocation_disabled_ = true;
-
- // Update inline allocation limit for new space.
- new_space()->UpdateInlineAllocationLimit(0);
-
- // Update inline allocation limit for old spaces.
- PagedSpaces spaces(this);
- for (PagedSpace* space = spaces.next();
- space != NULL;
- space = spaces.next()) {
- space->EmptyAllocationInfo();
- }
-}
-
-
-V8_DECLARE_ONCE(initialize_gc_once);
-
-static void InitializeGCOnce() {
- InitializeScavengingVisitorsTables();
- NewSpaceScavenger::Initialize();
- MarkCompactCollector::Initialize();
-}
-
-
-bool Heap::SetUp() {
-#ifdef DEBUG
- allocation_timeout_ = FLAG_gc_interval;
-#endif
-
- // Initialize heap spaces and initial maps and objects. Whenever something
- // goes wrong, just return false. The caller should check the results and
- // call Heap::TearDown() to release allocated memory.
- //
- // If the heap is not yet configured (e.g. through the API), configure it.
- // Configuration is based on the flags new-space-size (really the semispace
- // size) and old-space-size if set or the initial values of semispace_size_
- // and old_generation_size_ otherwise.
- if (!configured_) {
- if (!ConfigureHeapDefault()) return false;
- }
-
- base::CallOnce(&initialize_gc_once, &InitializeGCOnce);
-
- MarkMapPointersAsEncoded(false);
-
- // Set up memory allocator.
- if (!isolate_->memory_allocator()->SetUp(MaxReserved(), MaxExecutableSize()))
- return false;
-
- // Set up new space.
- if (!new_space_.SetUp(reserved_semispace_size_, max_semi_space_size_)) {
- return false;
- }
- new_space_top_after_last_gc_ = new_space()->top();
-
- // Initialize old pointer space.
- old_pointer_space_ =
- new OldSpace(this,
- max_old_generation_size_,
- OLD_POINTER_SPACE,
- NOT_EXECUTABLE);
- if (old_pointer_space_ == NULL) return false;
- if (!old_pointer_space_->SetUp()) return false;
-
- // Initialize old data space.
- old_data_space_ =
- new OldSpace(this,
- max_old_generation_size_,
- OLD_DATA_SPACE,
- NOT_EXECUTABLE);
- if (old_data_space_ == NULL) return false;
- if (!old_data_space_->SetUp()) return false;
-
- if (!isolate_->code_range()->SetUp(code_range_size_)) return false;
-
- // Initialize the code space, set its maximum capacity to the old
- // generation size. It needs executable memory.
- code_space_ =
- new OldSpace(this, max_old_generation_size_, CODE_SPACE, EXECUTABLE);
- if (code_space_ == NULL) return false;
- if (!code_space_->SetUp()) return false;
-
- // Initialize map space.
- map_space_ = new MapSpace(this, max_old_generation_size_, MAP_SPACE);
- if (map_space_ == NULL) return false;
- if (!map_space_->SetUp()) return false;
-
- // Initialize simple cell space.
- cell_space_ = new CellSpace(this, max_old_generation_size_, CELL_SPACE);
- if (cell_space_ == NULL) return false;
- if (!cell_space_->SetUp()) return false;
-
- // Initialize global property cell space.
- property_cell_space_ = new PropertyCellSpace(this, max_old_generation_size_,
- PROPERTY_CELL_SPACE);
- if (property_cell_space_ == NULL) return false;
- if (!property_cell_space_->SetUp()) return false;
-
- // The large object code space may contain code or data. We set the memory
- // to be non-executable here for safety, but this means we need to enable it
- // explicitly when allocating large code objects.
- lo_space_ = new LargeObjectSpace(this, max_old_generation_size_, LO_SPACE);
- if (lo_space_ == NULL) return false;
- if (!lo_space_->SetUp()) return false;
-
- // Set up the seed that is used to randomize the string hash function.
- DCHECK(hash_seed() == 0);
- if (FLAG_randomize_hashes) {
- if (FLAG_hash_seed == 0) {
- int rnd = isolate()->random_number_generator()->NextInt();
- set_hash_seed(Smi::FromInt(rnd & Name::kHashBitMask));
- } else {
- set_hash_seed(Smi::FromInt(FLAG_hash_seed));
- }
- }
-
- LOG(isolate_, IntPtrTEvent("heap-capacity", Capacity()));
- LOG(isolate_, IntPtrTEvent("heap-available", Available()));
-
- store_buffer()->SetUp();
-
- mark_compact_collector()->SetUp();
-
- return true;
-}
-
-
-bool Heap::CreateHeapObjects() {
- // Create initial maps.
- if (!CreateInitialMaps()) return false;
- CreateApiObjects();
-
- // Create initial objects
- CreateInitialObjects();
- CHECK_EQ(0, gc_count_);
-
- set_native_contexts_list(undefined_value());
- set_array_buffers_list(undefined_value());
- set_allocation_sites_list(undefined_value());
- weak_object_to_code_table_ = undefined_value();
- return true;
-}
-
-
-void Heap::SetStackLimits() {
- DCHECK(isolate_ != NULL);
- DCHECK(isolate_ == isolate());
- // On 64 bit machines, pointers are generally out of range of Smis. We write
- // something that looks like an out of range Smi to the GC.
-
- // Set up the special root array entries containing the stack limits.
- // These are actually addresses, but the tag makes the GC ignore it.
- roots_[kStackLimitRootIndex] =
- reinterpret_cast<Object*>(
- (isolate_->stack_guard()->jslimit() & ~kSmiTagMask) | kSmiTag);
- roots_[kRealStackLimitRootIndex] =
- reinterpret_cast<Object*>(
- (isolate_->stack_guard()->real_jslimit() & ~kSmiTagMask) | kSmiTag);
-}
-
-
-void Heap::TearDown() {
-#ifdef VERIFY_HEAP
- if (FLAG_verify_heap) {
- Verify();
- }
-#endif
-
- UpdateMaximumCommitted();
-
- if (FLAG_print_cumulative_gc_stat) {
- PrintF("\n");
- PrintF("gc_count=%d ", gc_count_);
- PrintF("mark_sweep_count=%d ", ms_count_);
- PrintF("max_gc_pause=%.1f ", get_max_gc_pause());
- PrintF("total_gc_time=%.1f ", total_gc_time_ms_);
- PrintF("min_in_mutator=%.1f ", get_min_in_mutator());
- PrintF("max_alive_after_gc=%" V8_PTR_PREFIX "d ",
- get_max_alive_after_gc());
- PrintF("total_marking_time=%.1f ", tracer_.cumulative_sweeping_duration());
- PrintF("total_sweeping_time=%.1f ", tracer_.cumulative_sweeping_duration());
- PrintF("\n\n");
- }
-
- if (FLAG_print_max_heap_committed) {
- PrintF("\n");
- PrintF("maximum_committed_by_heap=%" V8_PTR_PREFIX "d ",
- MaximumCommittedMemory());
- PrintF("maximum_committed_by_new_space=%" V8_PTR_PREFIX "d ",
- new_space_.MaximumCommittedMemory());
- PrintF("maximum_committed_by_old_pointer_space=%" V8_PTR_PREFIX "d ",
- old_data_space_->MaximumCommittedMemory());
- PrintF("maximum_committed_by_old_data_space=%" V8_PTR_PREFIX "d ",
- old_pointer_space_->MaximumCommittedMemory());
- PrintF("maximum_committed_by_old_data_space=%" V8_PTR_PREFIX "d ",
- old_pointer_space_->MaximumCommittedMemory());
- PrintF("maximum_committed_by_code_space=%" V8_PTR_PREFIX "d ",
- code_space_->MaximumCommittedMemory());
- PrintF("maximum_committed_by_map_space=%" V8_PTR_PREFIX "d ",
- map_space_->MaximumCommittedMemory());
- PrintF("maximum_committed_by_cell_space=%" V8_PTR_PREFIX "d ",
- cell_space_->MaximumCommittedMemory());
- PrintF("maximum_committed_by_property_space=%" V8_PTR_PREFIX "d ",
- property_cell_space_->MaximumCommittedMemory());
- PrintF("maximum_committed_by_lo_space=%" V8_PTR_PREFIX "d ",
- lo_space_->MaximumCommittedMemory());
- PrintF("\n\n");
- }
-
- if (FLAG_verify_predictable) {
- PrintAlloctionsHash();
- }
-
- TearDownArrayBuffers();
-
- isolate_->global_handles()->TearDown();
-
- external_string_table_.TearDown();
-
- mark_compact_collector()->TearDown();
-
- new_space_.TearDown();
-
- if (old_pointer_space_ != NULL) {
- old_pointer_space_->TearDown();
- delete old_pointer_space_;
- old_pointer_space_ = NULL;
- }
-
- if (old_data_space_ != NULL) {
- old_data_space_->TearDown();
- delete old_data_space_;
- old_data_space_ = NULL;
- }
-
- if (code_space_ != NULL) {
- code_space_->TearDown();
- delete code_space_;
- code_space_ = NULL;
- }
-
- if (map_space_ != NULL) {
- map_space_->TearDown();
- delete map_space_;
- map_space_ = NULL;
- }
-
- if (cell_space_ != NULL) {
- cell_space_->TearDown();
- delete cell_space_;
- cell_space_ = NULL;
- }
-
- if (property_cell_space_ != NULL) {
- property_cell_space_->TearDown();
- delete property_cell_space_;
- property_cell_space_ = NULL;
- }
-
- if (lo_space_ != NULL) {
- lo_space_->TearDown();
- delete lo_space_;
- lo_space_ = NULL;
- }
-
- store_buffer()->TearDown();
- incremental_marking()->TearDown();
-
- isolate_->memory_allocator()->TearDown();
-}
-
-
-void Heap::AddGCPrologueCallback(v8::Isolate::GCPrologueCallback callback,
- GCType gc_type,
- bool pass_isolate) {
- DCHECK(callback != NULL);
- GCPrologueCallbackPair pair(callback, gc_type, pass_isolate);
- DCHECK(!gc_prologue_callbacks_.Contains(pair));
- return gc_prologue_callbacks_.Add(pair);
-}
-
-
-void Heap::RemoveGCPrologueCallback(v8::Isolate::GCPrologueCallback callback) {
- DCHECK(callback != NULL);
- for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) {
- if (gc_prologue_callbacks_[i].callback == callback) {
- gc_prologue_callbacks_.Remove(i);
- return;
- }
- }
- UNREACHABLE();
-}
-
-
-void Heap::AddGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback,
- GCType gc_type,
- bool pass_isolate) {
- DCHECK(callback != NULL);
- GCEpilogueCallbackPair pair(callback, gc_type, pass_isolate);
- DCHECK(!gc_epilogue_callbacks_.Contains(pair));
- return gc_epilogue_callbacks_.Add(pair);
-}
-
-
-void Heap::RemoveGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback) {
- DCHECK(callback != NULL);
- for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) {
- if (gc_epilogue_callbacks_[i].callback == callback) {
- gc_epilogue_callbacks_.Remove(i);
- return;
- }
- }
- UNREACHABLE();
-}
-
-
-// TODO(ishell): Find a better place for this.
-void Heap::AddWeakObjectToCodeDependency(Handle<Object> obj,
- Handle<DependentCode> dep) {
- DCHECK(!InNewSpace(*obj));
- DCHECK(!InNewSpace(*dep));
- // This handle scope keeps the table handle local to this function, which
- // allows us to safely skip write barriers in table update operations.
- HandleScope scope(isolate());
- Handle<WeakHashTable> table(WeakHashTable::cast(weak_object_to_code_table_),
- isolate());
- table = WeakHashTable::Put(table, obj, dep);
-
- if (ShouldZapGarbage() && weak_object_to_code_table_ != *table) {
- WeakHashTable::cast(weak_object_to_code_table_)->Zap(the_hole_value());
- }
- set_weak_object_to_code_table(*table);
- DCHECK_EQ(*dep, table->Lookup(obj));
-}
-
-
-DependentCode* Heap::LookupWeakObjectToCodeDependency(Handle<Object> obj) {
- Object* dep = WeakHashTable::cast(weak_object_to_code_table_)->Lookup(obj);
- if (dep->IsDependentCode()) return DependentCode::cast(dep);
- return DependentCode::cast(empty_fixed_array());
-}
-
-
-void Heap::EnsureWeakObjectToCodeTable() {
- if (!weak_object_to_code_table()->IsHashTable()) {
- set_weak_object_to_code_table(*WeakHashTable::New(
- isolate(), 16, USE_DEFAULT_MINIMUM_CAPACITY, TENURED));
- }
-}
-
-
-void Heap::FatalProcessOutOfMemory(const char* location, bool take_snapshot) {
- v8::internal::V8::FatalProcessOutOfMemory(location, take_snapshot);
-}
-
-#ifdef DEBUG
-
-class PrintHandleVisitor: public ObjectVisitor {
- public:
- void VisitPointers(Object** start, Object** end) {
- for (Object** p = start; p < end; p++)
- PrintF(" handle %p to %p\n",
- reinterpret_cast<void*>(p),
- reinterpret_cast<void*>(*p));
- }
-};
-
-
-void Heap::PrintHandles() {
- PrintF("Handles:\n");
- PrintHandleVisitor v;
- isolate_->handle_scope_implementer()->Iterate(&v);
-}
-
-#endif
-
-
-Space* AllSpaces::next() {
- switch (counter_++) {
- case NEW_SPACE:
- return heap_->new_space();
- case OLD_POINTER_SPACE:
- return heap_->old_pointer_space();
- case OLD_DATA_SPACE:
- return heap_->old_data_space();
- case CODE_SPACE:
- return heap_->code_space();
- case MAP_SPACE:
- return heap_->map_space();
- case CELL_SPACE:
- return heap_->cell_space();
- case PROPERTY_CELL_SPACE:
- return heap_->property_cell_space();
- case LO_SPACE:
- return heap_->lo_space();
- default:
- return NULL;
- }
-}
-
-
-PagedSpace* PagedSpaces::next() {
- switch (counter_++) {
- case OLD_POINTER_SPACE:
- return heap_->old_pointer_space();
- case OLD_DATA_SPACE:
- return heap_->old_data_space();
- case CODE_SPACE:
- return heap_->code_space();
- case MAP_SPACE:
- return heap_->map_space();
- case CELL_SPACE:
- return heap_->cell_space();
- case PROPERTY_CELL_SPACE:
- return heap_->property_cell_space();
- default:
- return NULL;
- }
-}
-
-
-
-OldSpace* OldSpaces::next() {
- switch (counter_++) {
- case OLD_POINTER_SPACE:
- return heap_->old_pointer_space();
- case OLD_DATA_SPACE:
- return heap_->old_data_space();
- case CODE_SPACE:
- return heap_->code_space();
- default:
- return NULL;
- }
-}
-
-
-SpaceIterator::SpaceIterator(Heap* heap)
- : heap_(heap),
- current_space_(FIRST_SPACE),
- iterator_(NULL),
- size_func_(NULL) {
-}
-
-
-SpaceIterator::SpaceIterator(Heap* heap, HeapObjectCallback size_func)
- : heap_(heap),
- current_space_(FIRST_SPACE),
- iterator_(NULL),
- size_func_(size_func) {
-}
-
-
-SpaceIterator::~SpaceIterator() {
- // Delete active iterator if any.
- delete iterator_;
-}
-
-
-bool SpaceIterator::has_next() {
- // Iterate until no more spaces.
- return current_space_ != LAST_SPACE;
-}
-
-
-ObjectIterator* SpaceIterator::next() {
- if (iterator_ != NULL) {
- delete iterator_;
- iterator_ = NULL;
- // Move to the next space
- current_space_++;
- if (current_space_ > LAST_SPACE) {
- return NULL;
- }
- }
-
- // Return iterator for the new current space.
- return CreateIterator();
-}
-
-
-// Create an iterator for the space to iterate.
-ObjectIterator* SpaceIterator::CreateIterator() {
- DCHECK(iterator_ == NULL);
-
- switch (current_space_) {
- case NEW_SPACE:
- iterator_ = new SemiSpaceIterator(heap_->new_space(), size_func_);
- break;
- case OLD_POINTER_SPACE:
- iterator_ =
- new HeapObjectIterator(heap_->old_pointer_space(), size_func_);
- break;
- case OLD_DATA_SPACE:
- iterator_ = new HeapObjectIterator(heap_->old_data_space(), size_func_);
- break;
- case CODE_SPACE:
- iterator_ = new HeapObjectIterator(heap_->code_space(), size_func_);
- break;
- case MAP_SPACE:
- iterator_ = new HeapObjectIterator(heap_->map_space(), size_func_);
- break;
- case CELL_SPACE:
- iterator_ = new HeapObjectIterator(heap_->cell_space(), size_func_);
- break;
- case PROPERTY_CELL_SPACE:
- iterator_ = new HeapObjectIterator(heap_->property_cell_space(),
- size_func_);
- break;
- case LO_SPACE:
- iterator_ = new LargeObjectIterator(heap_->lo_space(), size_func_);
- break;
- }
-
- // Return the newly allocated iterator;
- DCHECK(iterator_ != NULL);
- return iterator_;
-}
-
-
-class HeapObjectsFilter {
- public:
- virtual ~HeapObjectsFilter() {}
- virtual bool SkipObject(HeapObject* object) = 0;
-};
-
-
-class UnreachableObjectsFilter : public HeapObjectsFilter {
- public:
- explicit UnreachableObjectsFilter(Heap* heap) : heap_(heap) {
- MarkReachableObjects();
- }
-
- ~UnreachableObjectsFilter() {
- heap_->mark_compact_collector()->ClearMarkbits();
- }
-
- bool SkipObject(HeapObject* object) {
- MarkBit mark_bit = Marking::MarkBitFrom(object);
- return !mark_bit.Get();
- }
-
- private:
- class MarkingVisitor : public ObjectVisitor {
- public:
- MarkingVisitor() : marking_stack_(10) {}
-
- void VisitPointers(Object** start, Object** end) {
- for (Object** p = start; p < end; p++) {
- if (!(*p)->IsHeapObject()) continue;
- HeapObject* obj = HeapObject::cast(*p);
- MarkBit mark_bit = Marking::MarkBitFrom(obj);
- if (!mark_bit.Get()) {
- mark_bit.Set();
- marking_stack_.Add(obj);
- }
- }
- }
-
- void TransitiveClosure() {
- while (!marking_stack_.is_empty()) {
- HeapObject* obj = marking_stack_.RemoveLast();
- obj->Iterate(this);
- }
- }
-
- private:
- List<HeapObject*> marking_stack_;
- };
-
- void MarkReachableObjects() {
- MarkingVisitor visitor;
- heap_->IterateRoots(&visitor, VISIT_ALL);
- visitor.TransitiveClosure();
- }
-
- Heap* heap_;
- DisallowHeapAllocation no_allocation_;
-};
-
-
-HeapIterator::HeapIterator(Heap* heap)
- : make_heap_iterable_helper_(heap),
- no_heap_allocation_(),
- heap_(heap),
- filtering_(HeapIterator::kNoFiltering),
- filter_(NULL) {
- Init();
-}
-
-
-HeapIterator::HeapIterator(Heap* heap,
- HeapIterator::HeapObjectsFiltering filtering)
- : make_heap_iterable_helper_(heap),
- no_heap_allocation_(),
- heap_(heap),
- filtering_(filtering),
- filter_(NULL) {
- Init();
-}
-
-
-HeapIterator::~HeapIterator() {
- Shutdown();
-}
-
-
-void HeapIterator::Init() {
- // Start the iteration.
- space_iterator_ = new SpaceIterator(heap_);
- switch (filtering_) {
- case kFilterUnreachable:
- filter_ = new UnreachableObjectsFilter(heap_);
- break;
- default:
- break;
- }
- object_iterator_ = space_iterator_->next();
-}
-
-
-void HeapIterator::Shutdown() {
-#ifdef DEBUG
- // Assert that in filtering mode we have iterated through all
- // objects. Otherwise, heap will be left in an inconsistent state.
- if (filtering_ != kNoFiltering) {
- DCHECK(object_iterator_ == NULL);
- }
-#endif
- // Make sure the last iterator is deallocated.
- delete space_iterator_;
- space_iterator_ = NULL;
- object_iterator_ = NULL;
- delete filter_;
- filter_ = NULL;
-}
-
-
-HeapObject* HeapIterator::next() {
- if (filter_ == NULL) return NextObject();
-
- HeapObject* obj = NextObject();
- while (obj != NULL && filter_->SkipObject(obj)) obj = NextObject();
- return obj;
-}
-
-
-HeapObject* HeapIterator::NextObject() {
- // No iterator means we are done.
- if (object_iterator_ == NULL) return NULL;
-
- if (HeapObject* obj = object_iterator_->next_object()) {
- // If the current iterator has more objects we are fine.
- return obj;
- } else {
- // Go though the spaces looking for one that has objects.
- while (space_iterator_->has_next()) {
- object_iterator_ = space_iterator_->next();
- if (HeapObject* obj = object_iterator_->next_object()) {
- return obj;
- }
- }
- }
- // Done with the last space.
- object_iterator_ = NULL;
- return NULL;
-}
-
-
-void HeapIterator::reset() {
- // Restart the iterator.
- Shutdown();
- Init();
-}
-
-
-#ifdef DEBUG
-
-Object* const PathTracer::kAnyGlobalObject = NULL;
-
-class PathTracer::MarkVisitor: public ObjectVisitor {
- public:
- explicit MarkVisitor(PathTracer* tracer) : tracer_(tracer) {}
- void VisitPointers(Object** start, Object** end) {
- // Scan all HeapObject pointers in [start, end)
- for (Object** p = start; !tracer_->found() && (p < end); p++) {
- if ((*p)->IsHeapObject())
- tracer_->MarkRecursively(p, this);
- }
- }
-
- private:
- PathTracer* tracer_;
-};
-
-
-class PathTracer::UnmarkVisitor: public ObjectVisitor {
- public:
- explicit UnmarkVisitor(PathTracer* tracer) : tracer_(tracer) {}
- void VisitPointers(Object** start, Object** end) {
- // Scan all HeapObject pointers in [start, end)
- for (Object** p = start; p < end; p++) {
- if ((*p)->IsHeapObject())
- tracer_->UnmarkRecursively(p, this);
- }
- }
-
- private:
- PathTracer* tracer_;
-};
-
-
-void PathTracer::VisitPointers(Object** start, Object** end) {
- bool done = ((what_to_find_ == FIND_FIRST) && found_target_);
- // Visit all HeapObject pointers in [start, end)
- for (Object** p = start; !done && (p < end); p++) {
- if ((*p)->IsHeapObject()) {
- TracePathFrom(p);
- done = ((what_to_find_ == FIND_FIRST) && found_target_);
- }
- }
-}
-
-
-void PathTracer::Reset() {
- found_target_ = false;
- object_stack_.Clear();
-}
-
-
-void PathTracer::TracePathFrom(Object** root) {
- DCHECK((search_target_ == kAnyGlobalObject) ||
- search_target_->IsHeapObject());
- found_target_in_trace_ = false;
- Reset();
-
- MarkVisitor mark_visitor(this);
- MarkRecursively(root, &mark_visitor);
-
- UnmarkVisitor unmark_visitor(this);
- UnmarkRecursively(root, &unmark_visitor);
-
- ProcessResults();
-}
-
-
-static bool SafeIsNativeContext(HeapObject* obj) {
- return obj->map() == obj->GetHeap()->raw_unchecked_native_context_map();
-}
-
-
-void PathTracer::MarkRecursively(Object** p, MarkVisitor* mark_visitor) {
- if (!(*p)->IsHeapObject()) return;
-
- HeapObject* obj = HeapObject::cast(*p);
-
- MapWord map_word = obj->map_word();
- if (!map_word.ToMap()->IsHeapObject()) return; // visited before
-
- if (found_target_in_trace_) return; // stop if target found
- object_stack_.Add(obj);
- if (((search_target_ == kAnyGlobalObject) && obj->IsJSGlobalObject()) ||
- (obj == search_target_)) {
- found_target_in_trace_ = true;
- found_target_ = true;
- return;
- }
-
- bool is_native_context = SafeIsNativeContext(obj);
-
- // not visited yet
- Map* map = Map::cast(map_word.ToMap());
-
- MapWord marked_map_word =
- MapWord::FromRawValue(obj->map_word().ToRawValue() + kMarkTag);
- obj->set_map_word(marked_map_word);
-
- // Scan the object body.
- if (is_native_context && (visit_mode_ == VISIT_ONLY_STRONG)) {
- // This is specialized to scan Context's properly.
- Object** start = reinterpret_cast<Object**>(obj->address() +
- Context::kHeaderSize);
- Object** end = reinterpret_cast<Object**>(obj->address() +
- Context::kHeaderSize + Context::FIRST_WEAK_SLOT * kPointerSize);
- mark_visitor->VisitPointers(start, end);
- } else {
- obj->IterateBody(map->instance_type(), obj->SizeFromMap(map), mark_visitor);
- }
-
- // Scan the map after the body because the body is a lot more interesting
- // when doing leak detection.
- MarkRecursively(reinterpret_cast<Object**>(&map), mark_visitor);
-
- if (!found_target_in_trace_) { // don't pop if found the target
- object_stack_.RemoveLast();
- }
-}
-
-
-void PathTracer::UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor) {
- if (!(*p)->IsHeapObject()) return;
-
- HeapObject* obj = HeapObject::cast(*p);
-
- MapWord map_word = obj->map_word();
- if (map_word.ToMap()->IsHeapObject()) return; // unmarked already
-
- MapWord unmarked_map_word =
- MapWord::FromRawValue(map_word.ToRawValue() - kMarkTag);
- obj->set_map_word(unmarked_map_word);
-
- Map* map = Map::cast(unmarked_map_word.ToMap());
-
- UnmarkRecursively(reinterpret_cast<Object**>(&map), unmark_visitor);
-
- obj->IterateBody(map->instance_type(), obj->SizeFromMap(map), unmark_visitor);
-}
-
-
-void PathTracer::ProcessResults() {
- if (found_target_) {
- OFStream os(stdout);
- os << "=====================================\n"
- << "==== Path to object ====\n"
- << "=====================================\n\n";
-
- DCHECK(!object_stack_.is_empty());
- for (int i = 0; i < object_stack_.length(); i++) {
- if (i > 0) os << "\n |\n |\n V\n\n";
- object_stack_[i]->Print(os);
- }
- os << "=====================================\n";
- }
-}
-
-
-// Triggers a depth-first traversal of reachable objects from one
-// given root object and finds a path to a specific heap object and
-// prints it.
-void Heap::TracePathToObjectFrom(Object* target, Object* root) {
- PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL);
- tracer.VisitPointer(&root);
-}
-
-
-// Triggers a depth-first traversal of reachable objects from roots
-// and finds a path to a specific heap object and prints it.
-void Heap::TracePathToObject(Object* target) {
- PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL);
- IterateRoots(&tracer, VISIT_ONLY_STRONG);
-}
-
-
-// Triggers a depth-first traversal of reachable objects from roots
-// and finds a path to any global object and prints it. Useful for
-// determining the source for leaks of global objects.
-void Heap::TracePathToGlobal() {
- PathTracer tracer(PathTracer::kAnyGlobalObject,
- PathTracer::FIND_ALL,
- VISIT_ALL);
- IterateRoots(&tracer, VISIT_ONLY_STRONG);
-}
-#endif
-
-
-void Heap::UpdateCumulativeGCStatistics(double duration,
- double spent_in_mutator,
- double marking_time) {
- if (FLAG_print_cumulative_gc_stat) {
- total_gc_time_ms_ += duration;
- max_gc_pause_ = Max(max_gc_pause_, duration);
- max_alive_after_gc_ = Max(max_alive_after_gc_, SizeOfObjects());
- min_in_mutator_ = Min(min_in_mutator_, spent_in_mutator);
- } else if (FLAG_trace_gc_verbose) {
- total_gc_time_ms_ += duration;
- }
-
- marking_time_ += marking_time;
-}
-
-
-int KeyedLookupCache::Hash(Handle<Map> map, Handle<Name> name) {
- DisallowHeapAllocation no_gc;
- // Uses only lower 32 bits if pointers are larger.
- uintptr_t addr_hash =
- static_cast<uint32_t>(reinterpret_cast<uintptr_t>(*map)) >> kMapHashShift;
- return static_cast<uint32_t>((addr_hash ^ name->Hash()) & kCapacityMask);
-}
-
-
-int KeyedLookupCache::Lookup(Handle<Map> map, Handle<Name> name) {
- DisallowHeapAllocation no_gc;
- int index = (Hash(map, name) & kHashMask);
- for (int i = 0; i < kEntriesPerBucket; i++) {
- Key& key = keys_[index + i];
- if ((key.map == *map) && key.name->Equals(*name)) {
- return field_offsets_[index + i];
- }
- }
- return kNotFound;
-}
-
-
-void KeyedLookupCache::Update(Handle<Map> map,
- Handle<Name> name,
- int field_offset) {
- DisallowHeapAllocation no_gc;
- if (!name->IsUniqueName()) {
- if (!StringTable::InternalizeStringIfExists(name->GetIsolate(),
- Handle<String>::cast(name)).
- ToHandle(&name)) {
- return;
- }
- }
- // This cache is cleared only between mark compact passes, so we expect the
- // cache to only contain old space names.
- DCHECK(!map->GetIsolate()->heap()->InNewSpace(*name));
-
- int index = (Hash(map, name) & kHashMask);
- // After a GC there will be free slots, so we use them in order (this may
- // help to get the most frequently used one in position 0).
- for (int i = 0; i< kEntriesPerBucket; i++) {
- Key& key = keys_[index];
- Object* free_entry_indicator = NULL;
- if (key.map == free_entry_indicator) {
- key.map = *map;
- key.name = *name;
- field_offsets_[index + i] = field_offset;
- return;
- }
- }
- // No free entry found in this bucket, so we move them all down one and
- // put the new entry at position zero.
- for (int i = kEntriesPerBucket - 1; i > 0; i--) {
- Key& key = keys_[index + i];
- Key& key2 = keys_[index + i - 1];
- key = key2;
- field_offsets_[index + i] = field_offsets_[index + i - 1];
- }
-
- // Write the new first entry.
- Key& key = keys_[index];
- key.map = *map;
- key.name = *name;
- field_offsets_[index] = field_offset;
-}
-
-
-void KeyedLookupCache::Clear() {
- for (int index = 0; index < kLength; index++) keys_[index].map = NULL;
-}
-
-
-void DescriptorLookupCache::Clear() {
- for (int index = 0; index < kLength; index++) keys_[index].source = NULL;
-}
-
-
-void ExternalStringTable::CleanUp() {
- int last = 0;
- for (int i = 0; i < new_space_strings_.length(); ++i) {
- if (new_space_strings_[i] == heap_->the_hole_value()) {
- continue;
- }
- DCHECK(new_space_strings_[i]->IsExternalString());
- if (heap_->InNewSpace(new_space_strings_[i])) {
- new_space_strings_[last++] = new_space_strings_[i];
- } else {
- old_space_strings_.Add(new_space_strings_[i]);
- }
- }
- new_space_strings_.Rewind(last);
- new_space_strings_.Trim();
-
- last = 0;
- for (int i = 0; i < old_space_strings_.length(); ++i) {
- if (old_space_strings_[i] == heap_->the_hole_value()) {
- continue;
- }
- DCHECK(old_space_strings_[i]->IsExternalString());
- DCHECK(!heap_->InNewSpace(old_space_strings_[i]));
- old_space_strings_[last++] = old_space_strings_[i];
- }
- old_space_strings_.Rewind(last);
- old_space_strings_.Trim();
-#ifdef VERIFY_HEAP
- if (FLAG_verify_heap) {
- Verify();
- }
-#endif
-}
-
-
-void ExternalStringTable::TearDown() {
- for (int i = 0; i < new_space_strings_.length(); ++i) {
- heap_->FinalizeExternalString(ExternalString::cast(new_space_strings_[i]));
- }
- new_space_strings_.Free();
- for (int i = 0; i < old_space_strings_.length(); ++i) {
- heap_->FinalizeExternalString(ExternalString::cast(old_space_strings_[i]));
- }
- old_space_strings_.Free();
-}
-
-
-void Heap::QueueMemoryChunkForFree(MemoryChunk* chunk) {
- chunk->set_next_chunk(chunks_queued_for_free_);
- chunks_queued_for_free_ = chunk;
-}
-
-
-void Heap::FreeQueuedChunks() {
- if (chunks_queued_for_free_ == NULL) return;
- MemoryChunk* next;
- MemoryChunk* chunk;
- for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) {
- next = chunk->next_chunk();
- chunk->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED);
-
- if (chunk->owner()->identity() == LO_SPACE) {
- // StoreBuffer::Filter relies on MemoryChunk::FromAnyPointerAddress.
- // If FromAnyPointerAddress encounters a slot that belongs to a large
- // chunk queued for deletion it will fail to find the chunk because
- // it try to perform a search in the list of pages owned by of the large
- // object space and queued chunks were detached from that list.
- // To work around this we split large chunk into normal kPageSize aligned
- // pieces and initialize size, owner and flags field of every piece.
- // If FromAnyPointerAddress encounters a slot that belongs to one of
- // these smaller pieces it will treat it as a slot on a normal Page.
- Address chunk_end = chunk->address() + chunk->size();
- MemoryChunk* inner = MemoryChunk::FromAddress(
- chunk->address() + Page::kPageSize);
- MemoryChunk* inner_last = MemoryChunk::FromAddress(chunk_end - 1);
- while (inner <= inner_last) {
- // Size of a large chunk is always a multiple of
- // OS::AllocateAlignment() so there is always
- // enough space for a fake MemoryChunk header.
- Address area_end = Min(inner->address() + Page::kPageSize, chunk_end);
- // Guard against overflow.
- if (area_end < inner->address()) area_end = chunk_end;
- inner->SetArea(inner->address(), area_end);
- inner->set_size(Page::kPageSize);
- inner->set_owner(lo_space());
- inner->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED);
- inner = MemoryChunk::FromAddress(
- inner->address() + Page::kPageSize);
- }
- }
- }
- isolate_->heap()->store_buffer()->Compact();
- isolate_->heap()->store_buffer()->Filter(MemoryChunk::ABOUT_TO_BE_FREED);
- for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) {
- next = chunk->next_chunk();
- isolate_->memory_allocator()->Free(chunk);
- }
- chunks_queued_for_free_ = NULL;
-}
-
-
-void Heap::RememberUnmappedPage(Address page, bool compacted) {
- uintptr_t p = reinterpret_cast<uintptr_t>(page);
- // Tag the page pointer to make it findable in the dump file.
- if (compacted) {
- p ^= 0xc1ead & (Page::kPageSize - 1); // Cleared.
- } else {
- p ^= 0x1d1ed & (Page::kPageSize - 1); // I died.
- }
- remembered_unmapped_pages_[remembered_unmapped_pages_index_] =
- reinterpret_cast<Address>(p);
- remembered_unmapped_pages_index_++;
- remembered_unmapped_pages_index_ %= kRememberedUnmappedPages;
-}
-
-
-void Heap::ClearObjectStats(bool clear_last_time_stats) {
- memset(object_counts_, 0, sizeof(object_counts_));
- memset(object_sizes_, 0, sizeof(object_sizes_));
- if (clear_last_time_stats) {
- memset(object_counts_last_time_, 0, sizeof(object_counts_last_time_));
- memset(object_sizes_last_time_, 0, sizeof(object_sizes_last_time_));
- }
-}
-
-
-static base::LazyMutex checkpoint_object_stats_mutex = LAZY_MUTEX_INITIALIZER;
-
-
-void Heap::CheckpointObjectStats() {
- base::LockGuard<base::Mutex> lock_guard(
- checkpoint_object_stats_mutex.Pointer());
- Counters* counters = isolate()->counters();
-#define ADJUST_LAST_TIME_OBJECT_COUNT(name) \
- counters->count_of_##name()->Increment( \
- static_cast<int>(object_counts_[name])); \
- counters->count_of_##name()->Decrement( \
- static_cast<int>(object_counts_last_time_[name])); \
- counters->size_of_##name()->Increment( \
- static_cast<int>(object_sizes_[name])); \
- counters->size_of_##name()->Decrement( \
- static_cast<int>(object_sizes_last_time_[name]));
- INSTANCE_TYPE_LIST(ADJUST_LAST_TIME_OBJECT_COUNT)
-#undef ADJUST_LAST_TIME_OBJECT_COUNT
- int index;
-#define ADJUST_LAST_TIME_OBJECT_COUNT(name) \
- index = FIRST_CODE_KIND_SUB_TYPE + Code::name; \
- counters->count_of_CODE_TYPE_##name()->Increment( \
- static_cast<int>(object_counts_[index])); \
- counters->count_of_CODE_TYPE_##name()->Decrement( \
- static_cast<int>(object_counts_last_time_[index])); \
- counters->size_of_CODE_TYPE_##name()->Increment( \
- static_cast<int>(object_sizes_[index])); \
- counters->size_of_CODE_TYPE_##name()->Decrement( \
- static_cast<int>(object_sizes_last_time_[index]));
- CODE_KIND_LIST(ADJUST_LAST_TIME_OBJECT_COUNT)
-#undef ADJUST_LAST_TIME_OBJECT_COUNT
-#define ADJUST_LAST_TIME_OBJECT_COUNT(name) \
- index = FIRST_FIXED_ARRAY_SUB_TYPE + name; \
- counters->count_of_FIXED_ARRAY_##name()->Increment( \
- static_cast<int>(object_counts_[index])); \
- counters->count_of_FIXED_ARRAY_##name()->Decrement( \
- static_cast<int>(object_counts_last_time_[index])); \
- counters->size_of_FIXED_ARRAY_##name()->Increment( \
- static_cast<int>(object_sizes_[index])); \
- counters->size_of_FIXED_ARRAY_##name()->Decrement( \
- static_cast<int>(object_sizes_last_time_[index]));
- FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(ADJUST_LAST_TIME_OBJECT_COUNT)
-#undef ADJUST_LAST_TIME_OBJECT_COUNT
-#define ADJUST_LAST_TIME_OBJECT_COUNT(name) \
- index = \
- FIRST_CODE_AGE_SUB_TYPE + Code::k##name##CodeAge - Code::kFirstCodeAge; \
- counters->count_of_CODE_AGE_##name()->Increment( \
- static_cast<int>(object_counts_[index])); \
- counters->count_of_CODE_AGE_##name()->Decrement( \
- static_cast<int>(object_counts_last_time_[index])); \
- counters->size_of_CODE_AGE_##name()->Increment( \
- static_cast<int>(object_sizes_[index])); \
- counters->size_of_CODE_AGE_##name()->Decrement( \
- static_cast<int>(object_sizes_last_time_[index]));
- CODE_AGE_LIST_COMPLETE(ADJUST_LAST_TIME_OBJECT_COUNT)
-#undef ADJUST_LAST_TIME_OBJECT_COUNT
-
- MemCopy(object_counts_last_time_, object_counts_, sizeof(object_counts_));
- MemCopy(object_sizes_last_time_, object_sizes_, sizeof(object_sizes_));
- ClearObjectStats();
-}
-
-} } // namespace v8::internal
« no previous file with comments | « src/heap.h ('k') | src/heap-inl.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698