| Index: src/heap.cc
|
| diff --git a/src/heap.cc b/src/heap.cc
|
| deleted file mode 100644
|
| index c31339934d7b4a26e128a90eb82bc50a7a21f2c4..0000000000000000000000000000000000000000
|
| --- a/src/heap.cc
|
| +++ /dev/null
|
| @@ -1,6175 +0,0 @@
|
| -// Copyright 2012 the V8 project authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include "src/v8.h"
|
| -
|
| -#include "src/accessors.h"
|
| -#include "src/api.h"
|
| -#include "src/base/once.h"
|
| -#include "src/base/utils/random-number-generator.h"
|
| -#include "src/bootstrapper.h"
|
| -#include "src/codegen.h"
|
| -#include "src/compilation-cache.h"
|
| -#include "src/conversions.h"
|
| -#include "src/cpu-profiler.h"
|
| -#include "src/debug.h"
|
| -#include "src/deoptimizer.h"
|
| -#include "src/global-handles.h"
|
| -#include "src/heap-profiler.h"
|
| -#include "src/incremental-marking.h"
|
| -#include "src/isolate-inl.h"
|
| -#include "src/mark-compact.h"
|
| -#include "src/natives.h"
|
| -#include "src/objects-visiting-inl.h"
|
| -#include "src/objects-visiting.h"
|
| -#include "src/runtime-profiler.h"
|
| -#include "src/scopeinfo.h"
|
| -#include "src/snapshot.h"
|
| -#include "src/store-buffer.h"
|
| -#include "src/utils.h"
|
| -#include "src/v8threads.h"
|
| -#include "src/vm-state-inl.h"
|
| -
|
| -#if V8_TARGET_ARCH_ARM && !V8_INTERPRETED_REGEXP
|
| -#include "src/regexp-macro-assembler.h" // NOLINT
|
| -#include "src/arm/regexp-macro-assembler-arm.h" // NOLINT
|
| -#endif
|
| -#if V8_TARGET_ARCH_MIPS && !V8_INTERPRETED_REGEXP
|
| -#include "src/regexp-macro-assembler.h" // NOLINT
|
| -#include "src/mips/regexp-macro-assembler-mips.h" // NOLINT
|
| -#endif
|
| -#if V8_TARGET_ARCH_MIPS64 && !V8_INTERPRETED_REGEXP
|
| -#include "src/regexp-macro-assembler.h"
|
| -#include "src/mips64/regexp-macro-assembler-mips64.h"
|
| -#endif
|
| -
|
| -namespace v8 {
|
| -namespace internal {
|
| -
|
| -
|
| -Heap::Heap()
|
| - : amount_of_external_allocated_memory_(0),
|
| - amount_of_external_allocated_memory_at_last_global_gc_(0),
|
| - isolate_(NULL),
|
| - code_range_size_(0),
|
| - // semispace_size_ should be a power of 2 and old_generation_size_ should
|
| - // be a multiple of Page::kPageSize.
|
| - reserved_semispace_size_(8 * (kPointerSize / 4) * MB),
|
| - max_semi_space_size_(8 * (kPointerSize / 4) * MB),
|
| - initial_semispace_size_(Page::kPageSize),
|
| - max_old_generation_size_(700ul * (kPointerSize / 4) * MB),
|
| - max_executable_size_(256ul * (kPointerSize / 4) * MB),
|
| - // Variables set based on semispace_size_ and old_generation_size_ in
|
| - // ConfigureHeap.
|
| - // Will be 4 * reserved_semispace_size_ to ensure that young
|
| - // generation can be aligned to its size.
|
| - maximum_committed_(0),
|
| - survived_since_last_expansion_(0),
|
| - sweep_generation_(0),
|
| - always_allocate_scope_depth_(0),
|
| - contexts_disposed_(0),
|
| - global_ic_age_(0),
|
| - flush_monomorphic_ics_(false),
|
| - scan_on_scavenge_pages_(0),
|
| - new_space_(this),
|
| - old_pointer_space_(NULL),
|
| - old_data_space_(NULL),
|
| - code_space_(NULL),
|
| - map_space_(NULL),
|
| - cell_space_(NULL),
|
| - property_cell_space_(NULL),
|
| - lo_space_(NULL),
|
| - gc_state_(NOT_IN_GC),
|
| - gc_post_processing_depth_(0),
|
| - allocations_count_(0),
|
| - raw_allocations_hash_(0),
|
| - dump_allocations_hash_countdown_(FLAG_dump_allocations_digest_at_alloc),
|
| - ms_count_(0),
|
| - gc_count_(0),
|
| - remembered_unmapped_pages_index_(0),
|
| - unflattened_strings_length_(0),
|
| -#ifdef DEBUG
|
| - allocation_timeout_(0),
|
| -#endif // DEBUG
|
| - old_generation_allocation_limit_(kMinimumOldGenerationAllocationLimit),
|
| - old_gen_exhausted_(false),
|
| - inline_allocation_disabled_(false),
|
| - store_buffer_rebuilder_(store_buffer()),
|
| - hidden_string_(NULL),
|
| - gc_safe_size_of_old_object_(NULL),
|
| - total_regexp_code_generated_(0),
|
| - tracer_(this),
|
| - high_survival_rate_period_length_(0),
|
| - promoted_objects_size_(0),
|
| - promotion_rate_(0),
|
| - semi_space_copied_object_size_(0),
|
| - semi_space_copied_rate_(0),
|
| - nodes_died_in_new_space_(0),
|
| - nodes_copied_in_new_space_(0),
|
| - nodes_promoted_(0),
|
| - maximum_size_scavenges_(0),
|
| - max_gc_pause_(0.0),
|
| - total_gc_time_ms_(0.0),
|
| - max_alive_after_gc_(0),
|
| - min_in_mutator_(kMaxInt),
|
| - marking_time_(0.0),
|
| - sweeping_time_(0.0),
|
| - mark_compact_collector_(this),
|
| - store_buffer_(this),
|
| - marking_(this),
|
| - incremental_marking_(this),
|
| - number_idle_notifications_(0),
|
| - last_idle_notification_gc_count_(0),
|
| - last_idle_notification_gc_count_init_(false),
|
| - mark_sweeps_since_idle_round_started_(0),
|
| - gc_count_at_last_idle_gc_(0),
|
| - scavenges_since_last_idle_round_(kIdleScavengeThreshold),
|
| - full_codegen_bytes_generated_(0),
|
| - crankshaft_codegen_bytes_generated_(0),
|
| - gcs_since_last_deopt_(0),
|
| -#ifdef VERIFY_HEAP
|
| - no_weak_object_verification_scope_depth_(0),
|
| -#endif
|
| - allocation_sites_scratchpad_length_(0),
|
| - promotion_queue_(this),
|
| - configured_(false),
|
| - external_string_table_(this),
|
| - chunks_queued_for_free_(NULL),
|
| - gc_callbacks_depth_(0) {
|
| - // Allow build-time customization of the max semispace size. Building
|
| - // V8 with snapshots and a non-default max semispace size is much
|
| - // easier if you can define it as part of the build environment.
|
| -#if defined(V8_MAX_SEMISPACE_SIZE)
|
| - max_semi_space_size_ = reserved_semispace_size_ = V8_MAX_SEMISPACE_SIZE;
|
| -#endif
|
| -
|
| - // Ensure old_generation_size_ is a multiple of kPageSize.
|
| - DCHECK(MB >= Page::kPageSize);
|
| -
|
| - memset(roots_, 0, sizeof(roots_[0]) * kRootListLength);
|
| - set_native_contexts_list(NULL);
|
| - set_array_buffers_list(Smi::FromInt(0));
|
| - set_allocation_sites_list(Smi::FromInt(0));
|
| - set_encountered_weak_collections(Smi::FromInt(0));
|
| - // Put a dummy entry in the remembered pages so we can find the list the
|
| - // minidump even if there are no real unmapped pages.
|
| - RememberUnmappedPage(NULL, false);
|
| -
|
| - ClearObjectStats(true);
|
| -}
|
| -
|
| -
|
| -intptr_t Heap::Capacity() {
|
| - if (!HasBeenSetUp()) return 0;
|
| -
|
| - return new_space_.Capacity() +
|
| - old_pointer_space_->Capacity() +
|
| - old_data_space_->Capacity() +
|
| - code_space_->Capacity() +
|
| - map_space_->Capacity() +
|
| - cell_space_->Capacity() +
|
| - property_cell_space_->Capacity();
|
| -}
|
| -
|
| -
|
| -intptr_t Heap::CommittedMemory() {
|
| - if (!HasBeenSetUp()) return 0;
|
| -
|
| - return new_space_.CommittedMemory() +
|
| - old_pointer_space_->CommittedMemory() +
|
| - old_data_space_->CommittedMemory() +
|
| - code_space_->CommittedMemory() +
|
| - map_space_->CommittedMemory() +
|
| - cell_space_->CommittedMemory() +
|
| - property_cell_space_->CommittedMemory() +
|
| - lo_space_->Size();
|
| -}
|
| -
|
| -
|
| -size_t Heap::CommittedPhysicalMemory() {
|
| - if (!HasBeenSetUp()) return 0;
|
| -
|
| - return new_space_.CommittedPhysicalMemory() +
|
| - old_pointer_space_->CommittedPhysicalMemory() +
|
| - old_data_space_->CommittedPhysicalMemory() +
|
| - code_space_->CommittedPhysicalMemory() +
|
| - map_space_->CommittedPhysicalMemory() +
|
| - cell_space_->CommittedPhysicalMemory() +
|
| - property_cell_space_->CommittedPhysicalMemory() +
|
| - lo_space_->CommittedPhysicalMemory();
|
| -}
|
| -
|
| -
|
| -intptr_t Heap::CommittedMemoryExecutable() {
|
| - if (!HasBeenSetUp()) return 0;
|
| -
|
| - return isolate()->memory_allocator()->SizeExecutable();
|
| -}
|
| -
|
| -
|
| -void Heap::UpdateMaximumCommitted() {
|
| - if (!HasBeenSetUp()) return;
|
| -
|
| - intptr_t current_committed_memory = CommittedMemory();
|
| - if (current_committed_memory > maximum_committed_) {
|
| - maximum_committed_ = current_committed_memory;
|
| - }
|
| -}
|
| -
|
| -
|
| -intptr_t Heap::Available() {
|
| - if (!HasBeenSetUp()) return 0;
|
| -
|
| - return new_space_.Available() +
|
| - old_pointer_space_->Available() +
|
| - old_data_space_->Available() +
|
| - code_space_->Available() +
|
| - map_space_->Available() +
|
| - cell_space_->Available() +
|
| - property_cell_space_->Available();
|
| -}
|
| -
|
| -
|
| -bool Heap::HasBeenSetUp() {
|
| - return old_pointer_space_ != NULL &&
|
| - old_data_space_ != NULL &&
|
| - code_space_ != NULL &&
|
| - map_space_ != NULL &&
|
| - cell_space_ != NULL &&
|
| - property_cell_space_ != NULL &&
|
| - lo_space_ != NULL;
|
| -}
|
| -
|
| -
|
| -int Heap::GcSafeSizeOfOldObject(HeapObject* object) {
|
| - if (IntrusiveMarking::IsMarked(object)) {
|
| - return IntrusiveMarking::SizeOfMarkedObject(object);
|
| - }
|
| - return object->SizeFromMap(object->map());
|
| -}
|
| -
|
| -
|
| -GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space,
|
| - const char** reason) {
|
| - // Is global GC requested?
|
| - if (space != NEW_SPACE) {
|
| - isolate_->counters()->gc_compactor_caused_by_request()->Increment();
|
| - *reason = "GC in old space requested";
|
| - return MARK_COMPACTOR;
|
| - }
|
| -
|
| - if (FLAG_gc_global || (FLAG_stress_compaction && (gc_count_ & 1) != 0)) {
|
| - *reason = "GC in old space forced by flags";
|
| - return MARK_COMPACTOR;
|
| - }
|
| -
|
| - // Is enough data promoted to justify a global GC?
|
| - if (OldGenerationAllocationLimitReached()) {
|
| - isolate_->counters()->gc_compactor_caused_by_promoted_data()->Increment();
|
| - *reason = "promotion limit reached";
|
| - return MARK_COMPACTOR;
|
| - }
|
| -
|
| - // Have allocation in OLD and LO failed?
|
| - if (old_gen_exhausted_) {
|
| - isolate_->counters()->
|
| - gc_compactor_caused_by_oldspace_exhaustion()->Increment();
|
| - *reason = "old generations exhausted";
|
| - return MARK_COMPACTOR;
|
| - }
|
| -
|
| - // Is there enough space left in OLD to guarantee that a scavenge can
|
| - // succeed?
|
| - //
|
| - // Note that MemoryAllocator->MaxAvailable() undercounts the memory available
|
| - // for object promotion. It counts only the bytes that the memory
|
| - // allocator has not yet allocated from the OS and assigned to any space,
|
| - // and does not count available bytes already in the old space or code
|
| - // space. Undercounting is safe---we may get an unrequested full GC when
|
| - // a scavenge would have succeeded.
|
| - if (isolate_->memory_allocator()->MaxAvailable() <= new_space_.Size()) {
|
| - isolate_->counters()->
|
| - gc_compactor_caused_by_oldspace_exhaustion()->Increment();
|
| - *reason = "scavenge might not succeed";
|
| - return MARK_COMPACTOR;
|
| - }
|
| -
|
| - // Default
|
| - *reason = NULL;
|
| - return SCAVENGER;
|
| -}
|
| -
|
| -
|
| -// TODO(1238405): Combine the infrastructure for --heap-stats and
|
| -// --log-gc to avoid the complicated preprocessor and flag testing.
|
| -void Heap::ReportStatisticsBeforeGC() {
|
| - // Heap::ReportHeapStatistics will also log NewSpace statistics when
|
| - // compiled --log-gc is set. The following logic is used to avoid
|
| - // double logging.
|
| -#ifdef DEBUG
|
| - if (FLAG_heap_stats || FLAG_log_gc) new_space_.CollectStatistics();
|
| - if (FLAG_heap_stats) {
|
| - ReportHeapStatistics("Before GC");
|
| - } else if (FLAG_log_gc) {
|
| - new_space_.ReportStatistics();
|
| - }
|
| - if (FLAG_heap_stats || FLAG_log_gc) new_space_.ClearHistograms();
|
| -#else
|
| - if (FLAG_log_gc) {
|
| - new_space_.CollectStatistics();
|
| - new_space_.ReportStatistics();
|
| - new_space_.ClearHistograms();
|
| - }
|
| -#endif // DEBUG
|
| -}
|
| -
|
| -
|
| -void Heap::PrintShortHeapStatistics() {
|
| - if (!FLAG_trace_gc_verbose) return;
|
| - PrintPID("Memory allocator, used: %6" V8_PTR_PREFIX "d KB"
|
| - ", available: %6" V8_PTR_PREFIX "d KB\n",
|
| - isolate_->memory_allocator()->Size() / KB,
|
| - isolate_->memory_allocator()->Available() / KB);
|
| - PrintPID("New space, used: %6" V8_PTR_PREFIX "d KB"
|
| - ", available: %6" V8_PTR_PREFIX "d KB"
|
| - ", committed: %6" V8_PTR_PREFIX "d KB\n",
|
| - new_space_.Size() / KB,
|
| - new_space_.Available() / KB,
|
| - new_space_.CommittedMemory() / KB);
|
| - PrintPID("Old pointers, used: %6" V8_PTR_PREFIX "d KB"
|
| - ", available: %6" V8_PTR_PREFIX "d KB"
|
| - ", committed: %6" V8_PTR_PREFIX "d KB\n",
|
| - old_pointer_space_->SizeOfObjects() / KB,
|
| - old_pointer_space_->Available() / KB,
|
| - old_pointer_space_->CommittedMemory() / KB);
|
| - PrintPID("Old data space, used: %6" V8_PTR_PREFIX "d KB"
|
| - ", available: %6" V8_PTR_PREFIX "d KB"
|
| - ", committed: %6" V8_PTR_PREFIX "d KB\n",
|
| - old_data_space_->SizeOfObjects() / KB,
|
| - old_data_space_->Available() / KB,
|
| - old_data_space_->CommittedMemory() / KB);
|
| - PrintPID("Code space, used: %6" V8_PTR_PREFIX "d KB"
|
| - ", available: %6" V8_PTR_PREFIX "d KB"
|
| - ", committed: %6" V8_PTR_PREFIX "d KB\n",
|
| - code_space_->SizeOfObjects() / KB,
|
| - code_space_->Available() / KB,
|
| - code_space_->CommittedMemory() / KB);
|
| - PrintPID("Map space, used: %6" V8_PTR_PREFIX "d KB"
|
| - ", available: %6" V8_PTR_PREFIX "d KB"
|
| - ", committed: %6" V8_PTR_PREFIX "d KB\n",
|
| - map_space_->SizeOfObjects() / KB,
|
| - map_space_->Available() / KB,
|
| - map_space_->CommittedMemory() / KB);
|
| - PrintPID("Cell space, used: %6" V8_PTR_PREFIX "d KB"
|
| - ", available: %6" V8_PTR_PREFIX "d KB"
|
| - ", committed: %6" V8_PTR_PREFIX "d KB\n",
|
| - cell_space_->SizeOfObjects() / KB,
|
| - cell_space_->Available() / KB,
|
| - cell_space_->CommittedMemory() / KB);
|
| - PrintPID("PropertyCell space, used: %6" V8_PTR_PREFIX "d KB"
|
| - ", available: %6" V8_PTR_PREFIX "d KB"
|
| - ", committed: %6" V8_PTR_PREFIX "d KB\n",
|
| - property_cell_space_->SizeOfObjects() / KB,
|
| - property_cell_space_->Available() / KB,
|
| - property_cell_space_->CommittedMemory() / KB);
|
| - PrintPID("Large object space, used: %6" V8_PTR_PREFIX "d KB"
|
| - ", available: %6" V8_PTR_PREFIX "d KB"
|
| - ", committed: %6" V8_PTR_PREFIX "d KB\n",
|
| - lo_space_->SizeOfObjects() / KB,
|
| - lo_space_->Available() / KB,
|
| - lo_space_->CommittedMemory() / KB);
|
| - PrintPID("All spaces, used: %6" V8_PTR_PREFIX "d KB"
|
| - ", available: %6" V8_PTR_PREFIX "d KB"
|
| - ", committed: %6" V8_PTR_PREFIX "d KB\n",
|
| - this->SizeOfObjects() / KB,
|
| - this->Available() / KB,
|
| - this->CommittedMemory() / KB);
|
| - PrintPID("External memory reported: %6" V8_PTR_PREFIX "d KB\n",
|
| - static_cast<intptr_t>(amount_of_external_allocated_memory_ / KB));
|
| - PrintPID("Total time spent in GC : %.1f ms\n", total_gc_time_ms_);
|
| -}
|
| -
|
| -
|
| -// TODO(1238405): Combine the infrastructure for --heap-stats and
|
| -// --log-gc to avoid the complicated preprocessor and flag testing.
|
| -void Heap::ReportStatisticsAfterGC() {
|
| - // Similar to the before GC, we use some complicated logic to ensure that
|
| - // NewSpace statistics are logged exactly once when --log-gc is turned on.
|
| -#if defined(DEBUG)
|
| - if (FLAG_heap_stats) {
|
| - new_space_.CollectStatistics();
|
| - ReportHeapStatistics("After GC");
|
| - } else if (FLAG_log_gc) {
|
| - new_space_.ReportStatistics();
|
| - }
|
| -#else
|
| - if (FLAG_log_gc) new_space_.ReportStatistics();
|
| -#endif // DEBUG
|
| -}
|
| -
|
| -
|
| -void Heap::GarbageCollectionPrologue() {
|
| - { AllowHeapAllocation for_the_first_part_of_prologue;
|
| - ClearJSFunctionResultCaches();
|
| - gc_count_++;
|
| - unflattened_strings_length_ = 0;
|
| -
|
| - if (FLAG_flush_code && FLAG_flush_code_incrementally) {
|
| - mark_compact_collector()->EnableCodeFlushing(true);
|
| - }
|
| -
|
| -#ifdef VERIFY_HEAP
|
| - if (FLAG_verify_heap) {
|
| - Verify();
|
| - }
|
| -#endif
|
| - }
|
| -
|
| - // Reset GC statistics.
|
| - promoted_objects_size_ = 0;
|
| - semi_space_copied_object_size_ = 0;
|
| - nodes_died_in_new_space_ = 0;
|
| - nodes_copied_in_new_space_ = 0;
|
| - nodes_promoted_ = 0;
|
| -
|
| - UpdateMaximumCommitted();
|
| -
|
| -#ifdef DEBUG
|
| - DCHECK(!AllowHeapAllocation::IsAllowed() && gc_state_ == NOT_IN_GC);
|
| -
|
| - if (FLAG_gc_verbose) Print();
|
| -
|
| - ReportStatisticsBeforeGC();
|
| -#endif // DEBUG
|
| -
|
| - store_buffer()->GCPrologue();
|
| -
|
| - if (isolate()->concurrent_osr_enabled()) {
|
| - isolate()->optimizing_compiler_thread()->AgeBufferedOsrJobs();
|
| - }
|
| -
|
| - if (new_space_.IsAtMaximumCapacity()) {
|
| - maximum_size_scavenges_++;
|
| - } else {
|
| - maximum_size_scavenges_ = 0;
|
| - }
|
| - CheckNewSpaceExpansionCriteria();
|
| -}
|
| -
|
| -
|
| -intptr_t Heap::SizeOfObjects() {
|
| - intptr_t total = 0;
|
| - AllSpaces spaces(this);
|
| - for (Space* space = spaces.next(); space != NULL; space = spaces.next()) {
|
| - total += space->SizeOfObjects();
|
| - }
|
| - return total;
|
| -}
|
| -
|
| -
|
| -void Heap::ClearAllICsByKind(Code::Kind kind) {
|
| - HeapObjectIterator it(code_space());
|
| -
|
| - for (Object* object = it.Next(); object != NULL; object = it.Next()) {
|
| - Code* code = Code::cast(object);
|
| - Code::Kind current_kind = code->kind();
|
| - if (current_kind == Code::FUNCTION ||
|
| - current_kind == Code::OPTIMIZED_FUNCTION) {
|
| - code->ClearInlineCaches(kind);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::RepairFreeListsAfterBoot() {
|
| - PagedSpaces spaces(this);
|
| - for (PagedSpace* space = spaces.next();
|
| - space != NULL;
|
| - space = spaces.next()) {
|
| - space->RepairFreeListsAfterBoot();
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::ProcessPretenuringFeedback() {
|
| - if (FLAG_allocation_site_pretenuring) {
|
| - int tenure_decisions = 0;
|
| - int dont_tenure_decisions = 0;
|
| - int allocation_mementos_found = 0;
|
| - int allocation_sites = 0;
|
| - int active_allocation_sites = 0;
|
| -
|
| - // If the scratchpad overflowed, we have to iterate over the allocation
|
| - // sites list.
|
| - // TODO(hpayer): We iterate over the whole list of allocation sites when
|
| - // we grew to the maximum semi-space size to deopt maybe tenured
|
| - // allocation sites. We could hold the maybe tenured allocation sites
|
| - // in a seperate data structure if this is a performance problem.
|
| - bool deopt_maybe_tenured = DeoptMaybeTenuredAllocationSites();
|
| - bool use_scratchpad =
|
| - allocation_sites_scratchpad_length_ < kAllocationSiteScratchpadSize &&
|
| - !deopt_maybe_tenured;
|
| -
|
| - int i = 0;
|
| - Object* list_element = allocation_sites_list();
|
| - bool trigger_deoptimization = false;
|
| - bool maximum_size_scavenge = MaximumSizeScavenge();
|
| - while (use_scratchpad ?
|
| - i < allocation_sites_scratchpad_length_ :
|
| - list_element->IsAllocationSite()) {
|
| - AllocationSite* site = use_scratchpad ?
|
| - AllocationSite::cast(allocation_sites_scratchpad()->get(i)) :
|
| - AllocationSite::cast(list_element);
|
| - allocation_mementos_found += site->memento_found_count();
|
| - if (site->memento_found_count() > 0) {
|
| - active_allocation_sites++;
|
| - if (site->DigestPretenuringFeedback(maximum_size_scavenge)) {
|
| - trigger_deoptimization = true;
|
| - }
|
| - if (site->GetPretenureMode() == TENURED) {
|
| - tenure_decisions++;
|
| - } else {
|
| - dont_tenure_decisions++;
|
| - }
|
| - allocation_sites++;
|
| - }
|
| -
|
| - if (deopt_maybe_tenured && site->IsMaybeTenure()) {
|
| - site->set_deopt_dependent_code(true);
|
| - trigger_deoptimization = true;
|
| - }
|
| -
|
| - if (use_scratchpad) {
|
| - i++;
|
| - } else {
|
| - list_element = site->weak_next();
|
| - }
|
| - }
|
| -
|
| - if (trigger_deoptimization) {
|
| - isolate_->stack_guard()->RequestDeoptMarkedAllocationSites();
|
| - }
|
| -
|
| - FlushAllocationSitesScratchpad();
|
| -
|
| - if (FLAG_trace_pretenuring_statistics &&
|
| - (allocation_mementos_found > 0 ||
|
| - tenure_decisions > 0 ||
|
| - dont_tenure_decisions > 0)) {
|
| - PrintF("GC: (mode, #visited allocation sites, #active allocation sites, "
|
| - "#mementos, #tenure decisions, #donttenure decisions) "
|
| - "(%s, %d, %d, %d, %d, %d)\n",
|
| - use_scratchpad ? "use scratchpad" : "use list",
|
| - allocation_sites,
|
| - active_allocation_sites,
|
| - allocation_mementos_found,
|
| - tenure_decisions,
|
| - dont_tenure_decisions);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::DeoptMarkedAllocationSites() {
|
| - // TODO(hpayer): If iterating over the allocation sites list becomes a
|
| - // performance issue, use a cache heap data structure instead (similar to the
|
| - // allocation sites scratchpad).
|
| - Object* list_element = allocation_sites_list();
|
| - while (list_element->IsAllocationSite()) {
|
| - AllocationSite* site = AllocationSite::cast(list_element);
|
| - if (site->deopt_dependent_code()) {
|
| - site->dependent_code()->MarkCodeForDeoptimization(
|
| - isolate_,
|
| - DependentCode::kAllocationSiteTenuringChangedGroup);
|
| - site->set_deopt_dependent_code(false);
|
| - }
|
| - list_element = site->weak_next();
|
| - }
|
| - Deoptimizer::DeoptimizeMarkedCode(isolate_);
|
| -}
|
| -
|
| -
|
| -void Heap::GarbageCollectionEpilogue() {
|
| - store_buffer()->GCEpilogue();
|
| -
|
| - // In release mode, we only zap the from space under heap verification.
|
| - if (Heap::ShouldZapGarbage()) {
|
| - ZapFromSpace();
|
| - }
|
| -
|
| - // Process pretenuring feedback and update allocation sites.
|
| - ProcessPretenuringFeedback();
|
| -
|
| -#ifdef VERIFY_HEAP
|
| - if (FLAG_verify_heap) {
|
| - Verify();
|
| - }
|
| -#endif
|
| -
|
| - AllowHeapAllocation for_the_rest_of_the_epilogue;
|
| -
|
| -#ifdef DEBUG
|
| - if (FLAG_print_global_handles) isolate_->global_handles()->Print();
|
| - if (FLAG_print_handles) PrintHandles();
|
| - if (FLAG_gc_verbose) Print();
|
| - if (FLAG_code_stats) ReportCodeStatistics("After GC");
|
| -#endif
|
| - if (FLAG_deopt_every_n_garbage_collections > 0) {
|
| - // TODO(jkummerow/ulan/jarin): This is not safe! We can't assume that
|
| - // the topmost optimized frame can be deoptimized safely, because it
|
| - // might not have a lazy bailout point right after its current PC.
|
| - if (++gcs_since_last_deopt_ == FLAG_deopt_every_n_garbage_collections) {
|
| - Deoptimizer::DeoptimizeAll(isolate());
|
| - gcs_since_last_deopt_ = 0;
|
| - }
|
| - }
|
| -
|
| - UpdateMaximumCommitted();
|
| -
|
| - isolate_->counters()->alive_after_last_gc()->Set(
|
| - static_cast<int>(SizeOfObjects()));
|
| -
|
| - isolate_->counters()->string_table_capacity()->Set(
|
| - string_table()->Capacity());
|
| - isolate_->counters()->number_of_symbols()->Set(
|
| - string_table()->NumberOfElements());
|
| -
|
| - if (full_codegen_bytes_generated_ + crankshaft_codegen_bytes_generated_ > 0) {
|
| - isolate_->counters()->codegen_fraction_crankshaft()->AddSample(
|
| - static_cast<int>((crankshaft_codegen_bytes_generated_ * 100.0) /
|
| - (crankshaft_codegen_bytes_generated_
|
| - + full_codegen_bytes_generated_)));
|
| - }
|
| -
|
| - if (CommittedMemory() > 0) {
|
| - isolate_->counters()->external_fragmentation_total()->AddSample(
|
| - static_cast<int>(100 - (SizeOfObjects() * 100.0) / CommittedMemory()));
|
| -
|
| - isolate_->counters()->heap_fraction_new_space()->
|
| - AddSample(static_cast<int>(
|
| - (new_space()->CommittedMemory() * 100.0) / CommittedMemory()));
|
| - isolate_->counters()->heap_fraction_old_pointer_space()->AddSample(
|
| - static_cast<int>(
|
| - (old_pointer_space()->CommittedMemory() * 100.0) /
|
| - CommittedMemory()));
|
| - isolate_->counters()->heap_fraction_old_data_space()->AddSample(
|
| - static_cast<int>(
|
| - (old_data_space()->CommittedMemory() * 100.0) /
|
| - CommittedMemory()));
|
| - isolate_->counters()->heap_fraction_code_space()->
|
| - AddSample(static_cast<int>(
|
| - (code_space()->CommittedMemory() * 100.0) / CommittedMemory()));
|
| - isolate_->counters()->heap_fraction_map_space()->AddSample(
|
| - static_cast<int>(
|
| - (map_space()->CommittedMemory() * 100.0) / CommittedMemory()));
|
| - isolate_->counters()->heap_fraction_cell_space()->AddSample(
|
| - static_cast<int>(
|
| - (cell_space()->CommittedMemory() * 100.0) / CommittedMemory()));
|
| - isolate_->counters()->heap_fraction_property_cell_space()->
|
| - AddSample(static_cast<int>(
|
| - (property_cell_space()->CommittedMemory() * 100.0) /
|
| - CommittedMemory()));
|
| - isolate_->counters()->heap_fraction_lo_space()->
|
| - AddSample(static_cast<int>(
|
| - (lo_space()->CommittedMemory() * 100.0) / CommittedMemory()));
|
| -
|
| - isolate_->counters()->heap_sample_total_committed()->AddSample(
|
| - static_cast<int>(CommittedMemory() / KB));
|
| - isolate_->counters()->heap_sample_total_used()->AddSample(
|
| - static_cast<int>(SizeOfObjects() / KB));
|
| - isolate_->counters()->heap_sample_map_space_committed()->AddSample(
|
| - static_cast<int>(map_space()->CommittedMemory() / KB));
|
| - isolate_->counters()->heap_sample_cell_space_committed()->AddSample(
|
| - static_cast<int>(cell_space()->CommittedMemory() / KB));
|
| - isolate_->counters()->
|
| - heap_sample_property_cell_space_committed()->
|
| - AddSample(static_cast<int>(
|
| - property_cell_space()->CommittedMemory() / KB));
|
| - isolate_->counters()->heap_sample_code_space_committed()->AddSample(
|
| - static_cast<int>(code_space()->CommittedMemory() / KB));
|
| -
|
| - isolate_->counters()->heap_sample_maximum_committed()->AddSample(
|
| - static_cast<int>(MaximumCommittedMemory() / KB));
|
| - }
|
| -
|
| -#define UPDATE_COUNTERS_FOR_SPACE(space) \
|
| - isolate_->counters()->space##_bytes_available()->Set( \
|
| - static_cast<int>(space()->Available())); \
|
| - isolate_->counters()->space##_bytes_committed()->Set( \
|
| - static_cast<int>(space()->CommittedMemory())); \
|
| - isolate_->counters()->space##_bytes_used()->Set( \
|
| - static_cast<int>(space()->SizeOfObjects()));
|
| -#define UPDATE_FRAGMENTATION_FOR_SPACE(space) \
|
| - if (space()->CommittedMemory() > 0) { \
|
| - isolate_->counters()->external_fragmentation_##space()->AddSample( \
|
| - static_cast<int>(100 - \
|
| - (space()->SizeOfObjects() * 100.0) / space()->CommittedMemory())); \
|
| - }
|
| -#define UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(space) \
|
| - UPDATE_COUNTERS_FOR_SPACE(space) \
|
| - UPDATE_FRAGMENTATION_FOR_SPACE(space)
|
| -
|
| - UPDATE_COUNTERS_FOR_SPACE(new_space)
|
| - UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(old_pointer_space)
|
| - UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(old_data_space)
|
| - UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(code_space)
|
| - UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(map_space)
|
| - UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(cell_space)
|
| - UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(property_cell_space)
|
| - UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(lo_space)
|
| -#undef UPDATE_COUNTERS_FOR_SPACE
|
| -#undef UPDATE_FRAGMENTATION_FOR_SPACE
|
| -#undef UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE
|
| -
|
| -#ifdef DEBUG
|
| - ReportStatisticsAfterGC();
|
| -#endif // DEBUG
|
| -
|
| - // Remember the last top pointer so that we can later find out
|
| - // whether we allocated in new space since the last GC.
|
| - new_space_top_after_last_gc_ = new_space()->top();
|
| -}
|
| -
|
| -
|
| -void Heap::CollectAllGarbage(int flags,
|
| - const char* gc_reason,
|
| - const v8::GCCallbackFlags gc_callback_flags) {
|
| - // Since we are ignoring the return value, the exact choice of space does
|
| - // not matter, so long as we do not specify NEW_SPACE, which would not
|
| - // cause a full GC.
|
| - mark_compact_collector_.SetFlags(flags);
|
| - CollectGarbage(OLD_POINTER_SPACE, gc_reason, gc_callback_flags);
|
| - mark_compact_collector_.SetFlags(kNoGCFlags);
|
| -}
|
| -
|
| -
|
| -void Heap::CollectAllAvailableGarbage(const char* gc_reason) {
|
| - // Since we are ignoring the return value, the exact choice of space does
|
| - // not matter, so long as we do not specify NEW_SPACE, which would not
|
| - // cause a full GC.
|
| - // Major GC would invoke weak handle callbacks on weakly reachable
|
| - // handles, but won't collect weakly reachable objects until next
|
| - // major GC. Therefore if we collect aggressively and weak handle callback
|
| - // has been invoked, we rerun major GC to release objects which become
|
| - // garbage.
|
| - // Note: as weak callbacks can execute arbitrary code, we cannot
|
| - // hope that eventually there will be no weak callbacks invocations.
|
| - // Therefore stop recollecting after several attempts.
|
| - if (isolate()->concurrent_recompilation_enabled()) {
|
| - // The optimizing compiler may be unnecessarily holding on to memory.
|
| - DisallowHeapAllocation no_recursive_gc;
|
| - isolate()->optimizing_compiler_thread()->Flush();
|
| - }
|
| - mark_compact_collector()->SetFlags(kMakeHeapIterableMask |
|
| - kReduceMemoryFootprintMask);
|
| - isolate_->compilation_cache()->Clear();
|
| - const int kMaxNumberOfAttempts = 7;
|
| - const int kMinNumberOfAttempts = 2;
|
| - for (int attempt = 0; attempt < kMaxNumberOfAttempts; attempt++) {
|
| - if (!CollectGarbage(MARK_COMPACTOR, gc_reason, NULL) &&
|
| - attempt + 1 >= kMinNumberOfAttempts) {
|
| - break;
|
| - }
|
| - }
|
| - mark_compact_collector()->SetFlags(kNoGCFlags);
|
| - new_space_.Shrink();
|
| - UncommitFromSpace();
|
| - incremental_marking()->UncommitMarkingDeque();
|
| -}
|
| -
|
| -
|
| -void Heap::EnsureFillerObjectAtTop() {
|
| - // There may be an allocation memento behind every object in new space.
|
| - // If we evacuate a not full new space or if we are on the last page of
|
| - // the new space, then there may be uninitialized memory behind the top
|
| - // pointer of the new space page. We store a filler object there to
|
| - // identify the unused space.
|
| - Address from_top = new_space_.top();
|
| - Address from_limit = new_space_.limit();
|
| - if (from_top < from_limit) {
|
| - int remaining_in_page = static_cast<int>(from_limit - from_top);
|
| - CreateFillerObjectAt(from_top, remaining_in_page);
|
| - }
|
| -}
|
| -
|
| -
|
| -bool Heap::CollectGarbage(GarbageCollector collector,
|
| - const char* gc_reason,
|
| - const char* collector_reason,
|
| - const v8::GCCallbackFlags gc_callback_flags) {
|
| - // The VM is in the GC state until exiting this function.
|
| - VMState<GC> state(isolate_);
|
| -
|
| -#ifdef DEBUG
|
| - // Reset the allocation timeout to the GC interval, but make sure to
|
| - // allow at least a few allocations after a collection. The reason
|
| - // for this is that we have a lot of allocation sequences and we
|
| - // assume that a garbage collection will allow the subsequent
|
| - // allocation attempts to go through.
|
| - allocation_timeout_ = Max(6, FLAG_gc_interval);
|
| -#endif
|
| -
|
| - EnsureFillerObjectAtTop();
|
| -
|
| - if (collector == SCAVENGER && !incremental_marking()->IsStopped()) {
|
| - if (FLAG_trace_incremental_marking) {
|
| - PrintF("[IncrementalMarking] Scavenge during marking.\n");
|
| - }
|
| - }
|
| -
|
| - if (collector == MARK_COMPACTOR &&
|
| - !mark_compact_collector()->abort_incremental_marking() &&
|
| - !incremental_marking()->IsStopped() &&
|
| - !incremental_marking()->should_hurry() &&
|
| - FLAG_incremental_marking_steps) {
|
| - // Make progress in incremental marking.
|
| - const intptr_t kStepSizeWhenDelayedByScavenge = 1 * MB;
|
| - incremental_marking()->Step(kStepSizeWhenDelayedByScavenge,
|
| - IncrementalMarking::NO_GC_VIA_STACK_GUARD);
|
| - if (!incremental_marking()->IsComplete() && !FLAG_gc_global) {
|
| - if (FLAG_trace_incremental_marking) {
|
| - PrintF("[IncrementalMarking] Delaying MarkSweep.\n");
|
| - }
|
| - collector = SCAVENGER;
|
| - collector_reason = "incremental marking delaying mark-sweep";
|
| - }
|
| - }
|
| -
|
| - bool next_gc_likely_to_collect_more = false;
|
| -
|
| - {
|
| - tracer()->Start(collector, gc_reason, collector_reason);
|
| - DCHECK(AllowHeapAllocation::IsAllowed());
|
| - DisallowHeapAllocation no_allocation_during_gc;
|
| - GarbageCollectionPrologue();
|
| -
|
| - {
|
| - HistogramTimerScope histogram_timer_scope(
|
| - (collector == SCAVENGER) ? isolate_->counters()->gc_scavenger()
|
| - : isolate_->counters()->gc_compactor());
|
| - next_gc_likely_to_collect_more =
|
| - PerformGarbageCollection(collector, gc_callback_flags);
|
| - }
|
| -
|
| - GarbageCollectionEpilogue();
|
| - tracer()->Stop();
|
| - }
|
| -
|
| - // Start incremental marking for the next cycle. The heap snapshot
|
| - // generator needs incremental marking to stay off after it aborted.
|
| - if (!mark_compact_collector()->abort_incremental_marking() &&
|
| - incremental_marking()->IsStopped() &&
|
| - incremental_marking()->WorthActivating() &&
|
| - NextGCIsLikelyToBeFull()) {
|
| - incremental_marking()->Start();
|
| - }
|
| -
|
| - return next_gc_likely_to_collect_more;
|
| -}
|
| -
|
| -
|
| -int Heap::NotifyContextDisposed() {
|
| - if (isolate()->concurrent_recompilation_enabled()) {
|
| - // Flush the queued recompilation tasks.
|
| - isolate()->optimizing_compiler_thread()->Flush();
|
| - }
|
| - flush_monomorphic_ics_ = true;
|
| - AgeInlineCaches();
|
| - return ++contexts_disposed_;
|
| -}
|
| -
|
| -
|
| -void Heap::MoveElements(FixedArray* array,
|
| - int dst_index,
|
| - int src_index,
|
| - int len) {
|
| - if (len == 0) return;
|
| -
|
| - DCHECK(array->map() != fixed_cow_array_map());
|
| - Object** dst_objects = array->data_start() + dst_index;
|
| - MemMove(dst_objects, array->data_start() + src_index, len * kPointerSize);
|
| - if (!InNewSpace(array)) {
|
| - for (int i = 0; i < len; i++) {
|
| - // TODO(hpayer): check store buffer for entries
|
| - if (InNewSpace(dst_objects[i])) {
|
| - RecordWrite(array->address(), array->OffsetOfElementAt(dst_index + i));
|
| - }
|
| - }
|
| - }
|
| - incremental_marking()->RecordWrites(array);
|
| -}
|
| -
|
| -
|
| -#ifdef VERIFY_HEAP
|
| -// Helper class for verifying the string table.
|
| -class StringTableVerifier : public ObjectVisitor {
|
| - public:
|
| - void VisitPointers(Object** start, Object** end) {
|
| - // Visit all HeapObject pointers in [start, end).
|
| - for (Object** p = start; p < end; p++) {
|
| - if ((*p)->IsHeapObject()) {
|
| - // Check that the string is actually internalized.
|
| - CHECK((*p)->IsTheHole() || (*p)->IsUndefined() ||
|
| - (*p)->IsInternalizedString());
|
| - }
|
| - }
|
| - }
|
| -};
|
| -
|
| -
|
| -static void VerifyStringTable(Heap* heap) {
|
| - StringTableVerifier verifier;
|
| - heap->string_table()->IterateElements(&verifier);
|
| -}
|
| -#endif // VERIFY_HEAP
|
| -
|
| -
|
| -static bool AbortIncrementalMarkingAndCollectGarbage(
|
| - Heap* heap,
|
| - AllocationSpace space,
|
| - const char* gc_reason = NULL) {
|
| - heap->mark_compact_collector()->SetFlags(Heap::kAbortIncrementalMarkingMask);
|
| - bool result = heap->CollectGarbage(space, gc_reason);
|
| - heap->mark_compact_collector()->SetFlags(Heap::kNoGCFlags);
|
| - return result;
|
| -}
|
| -
|
| -
|
| -void Heap::ReserveSpace(int *sizes, Address *locations_out) {
|
| - bool gc_performed = true;
|
| - int counter = 0;
|
| - static const int kThreshold = 20;
|
| - while (gc_performed && counter++ < kThreshold) {
|
| - gc_performed = false;
|
| - DCHECK(NEW_SPACE == FIRST_PAGED_SPACE - 1);
|
| - for (int space = NEW_SPACE; space <= LAST_PAGED_SPACE; space++) {
|
| - if (sizes[space] != 0) {
|
| - AllocationResult allocation;
|
| - if (space == NEW_SPACE) {
|
| - allocation = new_space()->AllocateRaw(sizes[space]);
|
| - } else {
|
| - allocation = paged_space(space)->AllocateRaw(sizes[space]);
|
| - }
|
| - FreeListNode* node;
|
| - if (!allocation.To(&node)) {
|
| - if (space == NEW_SPACE) {
|
| - Heap::CollectGarbage(NEW_SPACE,
|
| - "failed to reserve space in the new space");
|
| - } else {
|
| - AbortIncrementalMarkingAndCollectGarbage(
|
| - this,
|
| - static_cast<AllocationSpace>(space),
|
| - "failed to reserve space in paged space");
|
| - }
|
| - gc_performed = true;
|
| - break;
|
| - } else {
|
| - // Mark with a free list node, in case we have a GC before
|
| - // deserializing.
|
| - node->set_size(this, sizes[space]);
|
| - locations_out[space] = node->address();
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - if (gc_performed) {
|
| - // Failed to reserve the space after several attempts.
|
| - V8::FatalProcessOutOfMemory("Heap::ReserveSpace");
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::EnsureFromSpaceIsCommitted() {
|
| - if (new_space_.CommitFromSpaceIfNeeded()) return;
|
| -
|
| - // Committing memory to from space failed.
|
| - // Memory is exhausted and we will die.
|
| - V8::FatalProcessOutOfMemory("Committing semi space failed.");
|
| -}
|
| -
|
| -
|
| -void Heap::ClearJSFunctionResultCaches() {
|
| - if (isolate_->bootstrapper()->IsActive()) return;
|
| -
|
| - Object* context = native_contexts_list();
|
| - while (!context->IsUndefined()) {
|
| - // Get the caches for this context. GC can happen when the context
|
| - // is not fully initialized, so the caches can be undefined.
|
| - Object* caches_or_undefined =
|
| - Context::cast(context)->get(Context::JSFUNCTION_RESULT_CACHES_INDEX);
|
| - if (!caches_or_undefined->IsUndefined()) {
|
| - FixedArray* caches = FixedArray::cast(caches_or_undefined);
|
| - // Clear the caches:
|
| - int length = caches->length();
|
| - for (int i = 0; i < length; i++) {
|
| - JSFunctionResultCache::cast(caches->get(i))->Clear();
|
| - }
|
| - }
|
| - // Get the next context:
|
| - context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::ClearNormalizedMapCaches() {
|
| - if (isolate_->bootstrapper()->IsActive() &&
|
| - !incremental_marking()->IsMarking()) {
|
| - return;
|
| - }
|
| -
|
| - Object* context = native_contexts_list();
|
| - while (!context->IsUndefined()) {
|
| - // GC can happen when the context is not fully initialized,
|
| - // so the cache can be undefined.
|
| - Object* cache =
|
| - Context::cast(context)->get(Context::NORMALIZED_MAP_CACHE_INDEX);
|
| - if (!cache->IsUndefined()) {
|
| - NormalizedMapCache::cast(cache)->Clear();
|
| - }
|
| - context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::UpdateSurvivalStatistics(int start_new_space_size) {
|
| - if (start_new_space_size == 0) return;
|
| -
|
| - promotion_rate_ =
|
| - (static_cast<double>(promoted_objects_size_) /
|
| - static_cast<double>(start_new_space_size) * 100);
|
| -
|
| - semi_space_copied_rate_ =
|
| - (static_cast<double>(semi_space_copied_object_size_) /
|
| - static_cast<double>(start_new_space_size) * 100);
|
| -
|
| - double survival_rate = promotion_rate_ + semi_space_copied_rate_;
|
| -
|
| - if (survival_rate > kYoungSurvivalRateHighThreshold) {
|
| - high_survival_rate_period_length_++;
|
| - } else {
|
| - high_survival_rate_period_length_ = 0;
|
| - }
|
| -}
|
| -
|
| -bool Heap::PerformGarbageCollection(
|
| - GarbageCollector collector,
|
| - const v8::GCCallbackFlags gc_callback_flags) {
|
| - int freed_global_handles = 0;
|
| -
|
| - if (collector != SCAVENGER) {
|
| - PROFILE(isolate_, CodeMovingGCEvent());
|
| - }
|
| -
|
| -#ifdef VERIFY_HEAP
|
| - if (FLAG_verify_heap) {
|
| - VerifyStringTable(this);
|
| - }
|
| -#endif
|
| -
|
| - GCType gc_type =
|
| - collector == MARK_COMPACTOR ? kGCTypeMarkSweepCompact : kGCTypeScavenge;
|
| -
|
| - { GCCallbacksScope scope(this);
|
| - if (scope.CheckReenter()) {
|
| - AllowHeapAllocation allow_allocation;
|
| - GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL);
|
| - VMState<EXTERNAL> state(isolate_);
|
| - HandleScope handle_scope(isolate_);
|
| - CallGCPrologueCallbacks(gc_type, kNoGCCallbackFlags);
|
| - }
|
| - }
|
| -
|
| - EnsureFromSpaceIsCommitted();
|
| -
|
| - int start_new_space_size = Heap::new_space()->SizeAsInt();
|
| -
|
| - if (IsHighSurvivalRate()) {
|
| - // We speed up the incremental marker if it is running so that it
|
| - // does not fall behind the rate of promotion, which would cause a
|
| - // constantly growing old space.
|
| - incremental_marking()->NotifyOfHighPromotionRate();
|
| - }
|
| -
|
| - if (collector == MARK_COMPACTOR) {
|
| - // Perform mark-sweep with optional compaction.
|
| - MarkCompact();
|
| - sweep_generation_++;
|
| - // Temporarily set the limit for case when PostGarbageCollectionProcessing
|
| - // allocates and triggers GC. The real limit is set at after
|
| - // PostGarbageCollectionProcessing.
|
| - old_generation_allocation_limit_ =
|
| - OldGenerationAllocationLimit(PromotedSpaceSizeOfObjects(), 0);
|
| - old_gen_exhausted_ = false;
|
| - } else {
|
| - Scavenge();
|
| - }
|
| -
|
| - UpdateSurvivalStatistics(start_new_space_size);
|
| -
|
| - isolate_->counters()->objs_since_last_young()->Set(0);
|
| -
|
| - // Callbacks that fire after this point might trigger nested GCs and
|
| - // restart incremental marking, the assertion can't be moved down.
|
| - DCHECK(collector == SCAVENGER || incremental_marking()->IsStopped());
|
| -
|
| - gc_post_processing_depth_++;
|
| - { AllowHeapAllocation allow_allocation;
|
| - GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL);
|
| - freed_global_handles =
|
| - isolate_->global_handles()->PostGarbageCollectionProcessing(collector);
|
| - }
|
| - gc_post_processing_depth_--;
|
| -
|
| - isolate_->eternal_handles()->PostGarbageCollectionProcessing(this);
|
| -
|
| - // Update relocatables.
|
| - Relocatable::PostGarbageCollectionProcessing(isolate_);
|
| -
|
| - if (collector == MARK_COMPACTOR) {
|
| - // Register the amount of external allocated memory.
|
| - amount_of_external_allocated_memory_at_last_global_gc_ =
|
| - amount_of_external_allocated_memory_;
|
| - old_generation_allocation_limit_ =
|
| - OldGenerationAllocationLimit(PromotedSpaceSizeOfObjects(),
|
| - freed_global_handles);
|
| - }
|
| -
|
| - { GCCallbacksScope scope(this);
|
| - if (scope.CheckReenter()) {
|
| - AllowHeapAllocation allow_allocation;
|
| - GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL);
|
| - VMState<EXTERNAL> state(isolate_);
|
| - HandleScope handle_scope(isolate_);
|
| - CallGCEpilogueCallbacks(gc_type, gc_callback_flags);
|
| - }
|
| - }
|
| -
|
| -#ifdef VERIFY_HEAP
|
| - if (FLAG_verify_heap) {
|
| - VerifyStringTable(this);
|
| - }
|
| -#endif
|
| -
|
| - return freed_global_handles > 0;
|
| -}
|
| -
|
| -
|
| -void Heap::CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags) {
|
| - for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) {
|
| - if (gc_type & gc_prologue_callbacks_[i].gc_type) {
|
| - if (!gc_prologue_callbacks_[i].pass_isolate_) {
|
| - v8::GCPrologueCallback callback =
|
| - reinterpret_cast<v8::GCPrologueCallback>(
|
| - gc_prologue_callbacks_[i].callback);
|
| - callback(gc_type, flags);
|
| - } else {
|
| - v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(this->isolate());
|
| - gc_prologue_callbacks_[i].callback(isolate, gc_type, flags);
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::CallGCEpilogueCallbacks(GCType gc_type,
|
| - GCCallbackFlags gc_callback_flags) {
|
| - for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) {
|
| - if (gc_type & gc_epilogue_callbacks_[i].gc_type) {
|
| - if (!gc_epilogue_callbacks_[i].pass_isolate_) {
|
| - v8::GCPrologueCallback callback =
|
| - reinterpret_cast<v8::GCPrologueCallback>(
|
| - gc_epilogue_callbacks_[i].callback);
|
| - callback(gc_type, gc_callback_flags);
|
| - } else {
|
| - v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(this->isolate());
|
| - gc_epilogue_callbacks_[i].callback(
|
| - isolate, gc_type, gc_callback_flags);
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::MarkCompact() {
|
| - gc_state_ = MARK_COMPACT;
|
| - LOG(isolate_, ResourceEvent("markcompact", "begin"));
|
| -
|
| - uint64_t size_of_objects_before_gc = SizeOfObjects();
|
| -
|
| - mark_compact_collector_.Prepare();
|
| -
|
| - ms_count_++;
|
| -
|
| - MarkCompactPrologue();
|
| -
|
| - mark_compact_collector_.CollectGarbage();
|
| -
|
| - LOG(isolate_, ResourceEvent("markcompact", "end"));
|
| -
|
| - gc_state_ = NOT_IN_GC;
|
| -
|
| - isolate_->counters()->objs_since_last_full()->Set(0);
|
| -
|
| - flush_monomorphic_ics_ = false;
|
| -
|
| - if (FLAG_allocation_site_pretenuring) {
|
| - EvaluateOldSpaceLocalPretenuring(size_of_objects_before_gc);
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::MarkCompactPrologue() {
|
| - // At any old GC clear the keyed lookup cache to enable collection of unused
|
| - // maps.
|
| - isolate_->keyed_lookup_cache()->Clear();
|
| - isolate_->context_slot_cache()->Clear();
|
| - isolate_->descriptor_lookup_cache()->Clear();
|
| - RegExpResultsCache::Clear(string_split_cache());
|
| - RegExpResultsCache::Clear(regexp_multiple_cache());
|
| -
|
| - isolate_->compilation_cache()->MarkCompactPrologue();
|
| -
|
| - CompletelyClearInstanceofCache();
|
| -
|
| - FlushNumberStringCache();
|
| - if (FLAG_cleanup_code_caches_at_gc) {
|
| - polymorphic_code_cache()->set_cache(undefined_value());
|
| - }
|
| -
|
| - ClearNormalizedMapCaches();
|
| -}
|
| -
|
| -
|
| -// Helper class for copying HeapObjects
|
| -class ScavengeVisitor: public ObjectVisitor {
|
| - public:
|
| - explicit ScavengeVisitor(Heap* heap) : heap_(heap) {}
|
| -
|
| - void VisitPointer(Object** p) { ScavengePointer(p); }
|
| -
|
| - void VisitPointers(Object** start, Object** end) {
|
| - // Copy all HeapObject pointers in [start, end)
|
| - for (Object** p = start; p < end; p++) ScavengePointer(p);
|
| - }
|
| -
|
| - private:
|
| - void ScavengePointer(Object** p) {
|
| - Object* object = *p;
|
| - if (!heap_->InNewSpace(object)) return;
|
| - Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
|
| - reinterpret_cast<HeapObject*>(object));
|
| - }
|
| -
|
| - Heap* heap_;
|
| -};
|
| -
|
| -
|
| -#ifdef VERIFY_HEAP
|
| -// Visitor class to verify pointers in code or data space do not point into
|
| -// new space.
|
| -class VerifyNonPointerSpacePointersVisitor: public ObjectVisitor {
|
| - public:
|
| - explicit VerifyNonPointerSpacePointersVisitor(Heap* heap) : heap_(heap) {}
|
| - void VisitPointers(Object** start, Object**end) {
|
| - for (Object** current = start; current < end; current++) {
|
| - if ((*current)->IsHeapObject()) {
|
| - CHECK(!heap_->InNewSpace(HeapObject::cast(*current)));
|
| - }
|
| - }
|
| - }
|
| -
|
| - private:
|
| - Heap* heap_;
|
| -};
|
| -
|
| -
|
| -static void VerifyNonPointerSpacePointers(Heap* heap) {
|
| - // Verify that there are no pointers to new space in spaces where we
|
| - // do not expect them.
|
| - VerifyNonPointerSpacePointersVisitor v(heap);
|
| - HeapObjectIterator code_it(heap->code_space());
|
| - for (HeapObject* object = code_it.Next();
|
| - object != NULL; object = code_it.Next())
|
| - object->Iterate(&v);
|
| -
|
| - // The old data space was normally swept conservatively so that the iterator
|
| - // doesn't work, so we normally skip the next bit.
|
| - if (heap->old_data_space()->swept_precisely()) {
|
| - HeapObjectIterator data_it(heap->old_data_space());
|
| - for (HeapObject* object = data_it.Next();
|
| - object != NULL; object = data_it.Next())
|
| - object->Iterate(&v);
|
| - }
|
| -}
|
| -#endif // VERIFY_HEAP
|
| -
|
| -
|
| -void Heap::CheckNewSpaceExpansionCriteria() {
|
| - if (new_space_.Capacity() < new_space_.MaximumCapacity() &&
|
| - survived_since_last_expansion_ > new_space_.Capacity()) {
|
| - // Grow the size of new space if there is room to grow, enough data
|
| - // has survived scavenge since the last expansion and we are not in
|
| - // high promotion mode.
|
| - new_space_.Grow();
|
| - survived_since_last_expansion_ = 0;
|
| - }
|
| -}
|
| -
|
| -
|
| -static bool IsUnscavengedHeapObject(Heap* heap, Object** p) {
|
| - return heap->InNewSpace(*p) &&
|
| - !HeapObject::cast(*p)->map_word().IsForwardingAddress();
|
| -}
|
| -
|
| -
|
| -void Heap::ScavengeStoreBufferCallback(
|
| - Heap* heap,
|
| - MemoryChunk* page,
|
| - StoreBufferEvent event) {
|
| - heap->store_buffer_rebuilder_.Callback(page, event);
|
| -}
|
| -
|
| -
|
| -void StoreBufferRebuilder::Callback(MemoryChunk* page, StoreBufferEvent event) {
|
| - if (event == kStoreBufferStartScanningPagesEvent) {
|
| - start_of_current_page_ = NULL;
|
| - current_page_ = NULL;
|
| - } else if (event == kStoreBufferScanningPageEvent) {
|
| - if (current_page_ != NULL) {
|
| - // If this page already overflowed the store buffer during this iteration.
|
| - if (current_page_->scan_on_scavenge()) {
|
| - // Then we should wipe out the entries that have been added for it.
|
| - store_buffer_->SetTop(start_of_current_page_);
|
| - } else if (store_buffer_->Top() - start_of_current_page_ >=
|
| - (store_buffer_->Limit() - store_buffer_->Top()) >> 2) {
|
| - // Did we find too many pointers in the previous page? The heuristic is
|
| - // that no page can take more then 1/5 the remaining slots in the store
|
| - // buffer.
|
| - current_page_->set_scan_on_scavenge(true);
|
| - store_buffer_->SetTop(start_of_current_page_);
|
| - } else {
|
| - // In this case the page we scanned took a reasonable number of slots in
|
| - // the store buffer. It has now been rehabilitated and is no longer
|
| - // marked scan_on_scavenge.
|
| - DCHECK(!current_page_->scan_on_scavenge());
|
| - }
|
| - }
|
| - start_of_current_page_ = store_buffer_->Top();
|
| - current_page_ = page;
|
| - } else if (event == kStoreBufferFullEvent) {
|
| - // The current page overflowed the store buffer again. Wipe out its entries
|
| - // in the store buffer and mark it scan-on-scavenge again. This may happen
|
| - // several times while scanning.
|
| - if (current_page_ == NULL) {
|
| - // Store Buffer overflowed while scanning promoted objects. These are not
|
| - // in any particular page, though they are likely to be clustered by the
|
| - // allocation routines.
|
| - store_buffer_->EnsureSpace(StoreBuffer::kStoreBufferSize / 2);
|
| - } else {
|
| - // Store Buffer overflowed while scanning a particular old space page for
|
| - // pointers to new space.
|
| - DCHECK(current_page_ == page);
|
| - DCHECK(page != NULL);
|
| - current_page_->set_scan_on_scavenge(true);
|
| - DCHECK(start_of_current_page_ != store_buffer_->Top());
|
| - store_buffer_->SetTop(start_of_current_page_);
|
| - }
|
| - } else {
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -void PromotionQueue::Initialize() {
|
| - // Assumes that a NewSpacePage exactly fits a number of promotion queue
|
| - // entries (where each is a pair of intptr_t). This allows us to simplify
|
| - // the test fpr when to switch pages.
|
| - DCHECK((Page::kPageSize - MemoryChunk::kBodyOffset) % (2 * kPointerSize)
|
| - == 0);
|
| - limit_ = reinterpret_cast<intptr_t*>(heap_->new_space()->ToSpaceStart());
|
| - front_ = rear_ =
|
| - reinterpret_cast<intptr_t*>(heap_->new_space()->ToSpaceEnd());
|
| - emergency_stack_ = NULL;
|
| - guard_ = false;
|
| -}
|
| -
|
| -
|
| -void PromotionQueue::RelocateQueueHead() {
|
| - DCHECK(emergency_stack_ == NULL);
|
| -
|
| - Page* p = Page::FromAllocationTop(reinterpret_cast<Address>(rear_));
|
| - intptr_t* head_start = rear_;
|
| - intptr_t* head_end =
|
| - Min(front_, reinterpret_cast<intptr_t*>(p->area_end()));
|
| -
|
| - int entries_count =
|
| - static_cast<int>(head_end - head_start) / kEntrySizeInWords;
|
| -
|
| - emergency_stack_ = new List<Entry>(2 * entries_count);
|
| -
|
| - while (head_start != head_end) {
|
| - int size = static_cast<int>(*(head_start++));
|
| - HeapObject* obj = reinterpret_cast<HeapObject*>(*(head_start++));
|
| - emergency_stack_->Add(Entry(obj, size));
|
| - }
|
| - rear_ = head_end;
|
| -}
|
| -
|
| -
|
| -class ScavengeWeakObjectRetainer : public WeakObjectRetainer {
|
| - public:
|
| - explicit ScavengeWeakObjectRetainer(Heap* heap) : heap_(heap) { }
|
| -
|
| - virtual Object* RetainAs(Object* object) {
|
| - if (!heap_->InFromSpace(object)) {
|
| - return object;
|
| - }
|
| -
|
| - MapWord map_word = HeapObject::cast(object)->map_word();
|
| - if (map_word.IsForwardingAddress()) {
|
| - return map_word.ToForwardingAddress();
|
| - }
|
| - return NULL;
|
| - }
|
| -
|
| - private:
|
| - Heap* heap_;
|
| -};
|
| -
|
| -
|
| -void Heap::Scavenge() {
|
| - RelocationLock relocation_lock(this);
|
| -
|
| -#ifdef VERIFY_HEAP
|
| - if (FLAG_verify_heap) VerifyNonPointerSpacePointers(this);
|
| -#endif
|
| -
|
| - gc_state_ = SCAVENGE;
|
| -
|
| - // Implements Cheney's copying algorithm
|
| - LOG(isolate_, ResourceEvent("scavenge", "begin"));
|
| -
|
| - // Clear descriptor cache.
|
| - isolate_->descriptor_lookup_cache()->Clear();
|
| -
|
| - // Used for updating survived_since_last_expansion_ at function end.
|
| - intptr_t survived_watermark = PromotedSpaceSizeOfObjects();
|
| -
|
| - SelectScavengingVisitorsTable();
|
| -
|
| - incremental_marking()->PrepareForScavenge();
|
| -
|
| - // Flip the semispaces. After flipping, to space is empty, from space has
|
| - // live objects.
|
| - new_space_.Flip();
|
| - new_space_.ResetAllocationInfo();
|
| -
|
| - // We need to sweep newly copied objects which can be either in the
|
| - // to space or promoted to the old generation. For to-space
|
| - // objects, we treat the bottom of the to space as a queue. Newly
|
| - // copied and unswept objects lie between a 'front' mark and the
|
| - // allocation pointer.
|
| - //
|
| - // Promoted objects can go into various old-generation spaces, and
|
| - // can be allocated internally in the spaces (from the free list).
|
| - // We treat the top of the to space as a queue of addresses of
|
| - // promoted objects. The addresses of newly promoted and unswept
|
| - // objects lie between a 'front' mark and a 'rear' mark that is
|
| - // updated as a side effect of promoting an object.
|
| - //
|
| - // There is guaranteed to be enough room at the top of the to space
|
| - // for the addresses of promoted objects: every object promoted
|
| - // frees up its size in bytes from the top of the new space, and
|
| - // objects are at least one pointer in size.
|
| - Address new_space_front = new_space_.ToSpaceStart();
|
| - promotion_queue_.Initialize();
|
| -
|
| -#ifdef DEBUG
|
| - store_buffer()->Clean();
|
| -#endif
|
| -
|
| - ScavengeVisitor scavenge_visitor(this);
|
| - // Copy roots.
|
| - IterateRoots(&scavenge_visitor, VISIT_ALL_IN_SCAVENGE);
|
| -
|
| - // Copy objects reachable from the old generation.
|
| - {
|
| - StoreBufferRebuildScope scope(this,
|
| - store_buffer(),
|
| - &ScavengeStoreBufferCallback);
|
| - store_buffer()->IteratePointersToNewSpace(&ScavengeObject);
|
| - }
|
| -
|
| - // Copy objects reachable from simple cells by scavenging cell values
|
| - // directly.
|
| - HeapObjectIterator cell_iterator(cell_space_);
|
| - for (HeapObject* heap_object = cell_iterator.Next();
|
| - heap_object != NULL;
|
| - heap_object = cell_iterator.Next()) {
|
| - if (heap_object->IsCell()) {
|
| - Cell* cell = Cell::cast(heap_object);
|
| - Address value_address = cell->ValueAddress();
|
| - scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(value_address));
|
| - }
|
| - }
|
| -
|
| - // Copy objects reachable from global property cells by scavenging global
|
| - // property cell values directly.
|
| - HeapObjectIterator js_global_property_cell_iterator(property_cell_space_);
|
| - for (HeapObject* heap_object = js_global_property_cell_iterator.Next();
|
| - heap_object != NULL;
|
| - heap_object = js_global_property_cell_iterator.Next()) {
|
| - if (heap_object->IsPropertyCell()) {
|
| - PropertyCell* cell = PropertyCell::cast(heap_object);
|
| - Address value_address = cell->ValueAddress();
|
| - scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(value_address));
|
| - Address type_address = cell->TypeAddress();
|
| - scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(type_address));
|
| - }
|
| - }
|
| -
|
| - // Copy objects reachable from the encountered weak collections list.
|
| - scavenge_visitor.VisitPointer(&encountered_weak_collections_);
|
| -
|
| - // Copy objects reachable from the code flushing candidates list.
|
| - MarkCompactCollector* collector = mark_compact_collector();
|
| - if (collector->is_code_flushing_enabled()) {
|
| - collector->code_flusher()->IteratePointersToFromSpace(&scavenge_visitor);
|
| - }
|
| -
|
| - new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
|
| -
|
| - while (isolate()->global_handles()->IterateObjectGroups(
|
| - &scavenge_visitor, &IsUnscavengedHeapObject)) {
|
| - new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
|
| - }
|
| - isolate()->global_handles()->RemoveObjectGroups();
|
| - isolate()->global_handles()->RemoveImplicitRefGroups();
|
| -
|
| - isolate_->global_handles()->IdentifyNewSpaceWeakIndependentHandles(
|
| - &IsUnscavengedHeapObject);
|
| - isolate_->global_handles()->IterateNewSpaceWeakIndependentRoots(
|
| - &scavenge_visitor);
|
| - new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
|
| -
|
| - UpdateNewSpaceReferencesInExternalStringTable(
|
| - &UpdateNewSpaceReferenceInExternalStringTableEntry);
|
| -
|
| - promotion_queue_.Destroy();
|
| -
|
| - incremental_marking()->UpdateMarkingDequeAfterScavenge();
|
| -
|
| - ScavengeWeakObjectRetainer weak_object_retainer(this);
|
| - ProcessWeakReferences(&weak_object_retainer);
|
| -
|
| - DCHECK(new_space_front == new_space_.top());
|
| -
|
| - // Set age mark.
|
| - new_space_.set_age_mark(new_space_.top());
|
| -
|
| - new_space_.LowerInlineAllocationLimit(
|
| - new_space_.inline_allocation_limit_step());
|
| -
|
| - // Update how much has survived scavenge.
|
| - IncrementYoungSurvivorsCounter(static_cast<int>(
|
| - (PromotedSpaceSizeOfObjects() - survived_watermark) + new_space_.Size()));
|
| -
|
| - LOG(isolate_, ResourceEvent("scavenge", "end"));
|
| -
|
| - gc_state_ = NOT_IN_GC;
|
| -
|
| - scavenges_since_last_idle_round_++;
|
| -}
|
| -
|
| -
|
| -String* Heap::UpdateNewSpaceReferenceInExternalStringTableEntry(Heap* heap,
|
| - Object** p) {
|
| - MapWord first_word = HeapObject::cast(*p)->map_word();
|
| -
|
| - if (!first_word.IsForwardingAddress()) {
|
| - // Unreachable external string can be finalized.
|
| - heap->FinalizeExternalString(String::cast(*p));
|
| - return NULL;
|
| - }
|
| -
|
| - // String is still reachable.
|
| - return String::cast(first_word.ToForwardingAddress());
|
| -}
|
| -
|
| -
|
| -void Heap::UpdateNewSpaceReferencesInExternalStringTable(
|
| - ExternalStringTableUpdaterCallback updater_func) {
|
| -#ifdef VERIFY_HEAP
|
| - if (FLAG_verify_heap) {
|
| - external_string_table_.Verify();
|
| - }
|
| -#endif
|
| -
|
| - if (external_string_table_.new_space_strings_.is_empty()) return;
|
| -
|
| - Object** start = &external_string_table_.new_space_strings_[0];
|
| - Object** end = start + external_string_table_.new_space_strings_.length();
|
| - Object** last = start;
|
| -
|
| - for (Object** p = start; p < end; ++p) {
|
| - DCHECK(InFromSpace(*p));
|
| - String* target = updater_func(this, p);
|
| -
|
| - if (target == NULL) continue;
|
| -
|
| - DCHECK(target->IsExternalString());
|
| -
|
| - if (InNewSpace(target)) {
|
| - // String is still in new space. Update the table entry.
|
| - *last = target;
|
| - ++last;
|
| - } else {
|
| - // String got promoted. Move it to the old string list.
|
| - external_string_table_.AddOldString(target);
|
| - }
|
| - }
|
| -
|
| - DCHECK(last <= end);
|
| - external_string_table_.ShrinkNewStrings(static_cast<int>(last - start));
|
| -}
|
| -
|
| -
|
| -void Heap::UpdateReferencesInExternalStringTable(
|
| - ExternalStringTableUpdaterCallback updater_func) {
|
| -
|
| - // Update old space string references.
|
| - if (external_string_table_.old_space_strings_.length() > 0) {
|
| - Object** start = &external_string_table_.old_space_strings_[0];
|
| - Object** end = start + external_string_table_.old_space_strings_.length();
|
| - for (Object** p = start; p < end; ++p) *p = updater_func(this, p);
|
| - }
|
| -
|
| - UpdateNewSpaceReferencesInExternalStringTable(updater_func);
|
| -}
|
| -
|
| -
|
| -void Heap::ProcessWeakReferences(WeakObjectRetainer* retainer) {
|
| - ProcessArrayBuffers(retainer);
|
| - ProcessNativeContexts(retainer);
|
| - // TODO(mvstanton): AllocationSites only need to be processed during
|
| - // MARK_COMPACT, as they live in old space. Verify and address.
|
| - ProcessAllocationSites(retainer);
|
| -}
|
| -
|
| -
|
| -void Heap::ProcessNativeContexts(WeakObjectRetainer* retainer) {
|
| - Object* head = VisitWeakList<Context>(this, native_contexts_list(), retainer);
|
| - // Update the head of the list of contexts.
|
| - set_native_contexts_list(head);
|
| -}
|
| -
|
| -
|
| -void Heap::ProcessArrayBuffers(WeakObjectRetainer* retainer) {
|
| - Object* array_buffer_obj =
|
| - VisitWeakList<JSArrayBuffer>(this, array_buffers_list(), retainer);
|
| - set_array_buffers_list(array_buffer_obj);
|
| -}
|
| -
|
| -
|
| -void Heap::TearDownArrayBuffers() {
|
| - Object* undefined = undefined_value();
|
| - for (Object* o = array_buffers_list(); o != undefined;) {
|
| - JSArrayBuffer* buffer = JSArrayBuffer::cast(o);
|
| - Runtime::FreeArrayBuffer(isolate(), buffer);
|
| - o = buffer->weak_next();
|
| - }
|
| - set_array_buffers_list(undefined);
|
| -}
|
| -
|
| -
|
| -void Heap::ProcessAllocationSites(WeakObjectRetainer* retainer) {
|
| - Object* allocation_site_obj =
|
| - VisitWeakList<AllocationSite>(this, allocation_sites_list(), retainer);
|
| - set_allocation_sites_list(allocation_site_obj);
|
| -}
|
| -
|
| -
|
| -void Heap::ResetAllAllocationSitesDependentCode(PretenureFlag flag) {
|
| - DisallowHeapAllocation no_allocation_scope;
|
| - Object* cur = allocation_sites_list();
|
| - bool marked = false;
|
| - while (cur->IsAllocationSite()) {
|
| - AllocationSite* casted = AllocationSite::cast(cur);
|
| - if (casted->GetPretenureMode() == flag) {
|
| - casted->ResetPretenureDecision();
|
| - casted->set_deopt_dependent_code(true);
|
| - marked = true;
|
| - }
|
| - cur = casted->weak_next();
|
| - }
|
| - if (marked) isolate_->stack_guard()->RequestDeoptMarkedAllocationSites();
|
| -}
|
| -
|
| -
|
| -void Heap::EvaluateOldSpaceLocalPretenuring(
|
| - uint64_t size_of_objects_before_gc) {
|
| - uint64_t size_of_objects_after_gc = SizeOfObjects();
|
| - double old_generation_survival_rate =
|
| - (static_cast<double>(size_of_objects_after_gc) * 100) /
|
| - static_cast<double>(size_of_objects_before_gc);
|
| -
|
| - if (old_generation_survival_rate < kOldSurvivalRateLowThreshold) {
|
| - // Too many objects died in the old generation, pretenuring of wrong
|
| - // allocation sites may be the cause for that. We have to deopt all
|
| - // dependent code registered in the allocation sites to re-evaluate
|
| - // our pretenuring decisions.
|
| - ResetAllAllocationSitesDependentCode(TENURED);
|
| - if (FLAG_trace_pretenuring) {
|
| - PrintF("Deopt all allocation sites dependent code due to low survival "
|
| - "rate in the old generation %f\n", old_generation_survival_rate);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::VisitExternalResources(v8::ExternalResourceVisitor* visitor) {
|
| - DisallowHeapAllocation no_allocation;
|
| - // All external strings are listed in the external string table.
|
| -
|
| - class ExternalStringTableVisitorAdapter : public ObjectVisitor {
|
| - public:
|
| - explicit ExternalStringTableVisitorAdapter(
|
| - v8::ExternalResourceVisitor* visitor) : visitor_(visitor) {}
|
| - virtual void VisitPointers(Object** start, Object** end) {
|
| - for (Object** p = start; p < end; p++) {
|
| - DCHECK((*p)->IsExternalString());
|
| - visitor_->VisitExternalString(Utils::ToLocal(
|
| - Handle<String>(String::cast(*p))));
|
| - }
|
| - }
|
| - private:
|
| - v8::ExternalResourceVisitor* visitor_;
|
| - } external_string_table_visitor(visitor);
|
| -
|
| - external_string_table_.Iterate(&external_string_table_visitor);
|
| -}
|
| -
|
| -
|
| -class NewSpaceScavenger : public StaticNewSpaceVisitor<NewSpaceScavenger> {
|
| - public:
|
| - static inline void VisitPointer(Heap* heap, Object** p) {
|
| - Object* object = *p;
|
| - if (!heap->InNewSpace(object)) return;
|
| - Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
|
| - reinterpret_cast<HeapObject*>(object));
|
| - }
|
| -};
|
| -
|
| -
|
| -Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor,
|
| - Address new_space_front) {
|
| - do {
|
| - SemiSpace::AssertValidRange(new_space_front, new_space_.top());
|
| - // The addresses new_space_front and new_space_.top() define a
|
| - // queue of unprocessed copied objects. Process them until the
|
| - // queue is empty.
|
| - while (new_space_front != new_space_.top()) {
|
| - if (!NewSpacePage::IsAtEnd(new_space_front)) {
|
| - HeapObject* object = HeapObject::FromAddress(new_space_front);
|
| - new_space_front +=
|
| - NewSpaceScavenger::IterateBody(object->map(), object);
|
| - } else {
|
| - new_space_front =
|
| - NewSpacePage::FromLimit(new_space_front)->next_page()->area_start();
|
| - }
|
| - }
|
| -
|
| - // Promote and process all the to-be-promoted objects.
|
| - {
|
| - StoreBufferRebuildScope scope(this,
|
| - store_buffer(),
|
| - &ScavengeStoreBufferCallback);
|
| - while (!promotion_queue()->is_empty()) {
|
| - HeapObject* target;
|
| - int size;
|
| - promotion_queue()->remove(&target, &size);
|
| -
|
| - // Promoted object might be already partially visited
|
| - // during old space pointer iteration. Thus we search specificly
|
| - // for pointers to from semispace instead of looking for pointers
|
| - // to new space.
|
| - DCHECK(!target->IsMap());
|
| - IterateAndMarkPointersToFromSpace(target->address(),
|
| - target->address() + size,
|
| - &ScavengeObject);
|
| - }
|
| - }
|
| -
|
| - // Take another spin if there are now unswept objects in new space
|
| - // (there are currently no more unswept promoted objects).
|
| - } while (new_space_front != new_space_.top());
|
| -
|
| - return new_space_front;
|
| -}
|
| -
|
| -
|
| -STATIC_ASSERT((FixedDoubleArray::kHeaderSize &
|
| - kDoubleAlignmentMask) == 0); // NOLINT
|
| -STATIC_ASSERT((ConstantPoolArray::kFirstEntryOffset &
|
| - kDoubleAlignmentMask) == 0); // NOLINT
|
| -STATIC_ASSERT((ConstantPoolArray::kExtendedFirstOffset &
|
| - kDoubleAlignmentMask) == 0); // NOLINT
|
| -
|
| -
|
| -INLINE(static HeapObject* EnsureDoubleAligned(Heap* heap,
|
| - HeapObject* object,
|
| - int size));
|
| -
|
| -static HeapObject* EnsureDoubleAligned(Heap* heap,
|
| - HeapObject* object,
|
| - int size) {
|
| - if ((OffsetFrom(object->address()) & kDoubleAlignmentMask) != 0) {
|
| - heap->CreateFillerObjectAt(object->address(), kPointerSize);
|
| - return HeapObject::FromAddress(object->address() + kPointerSize);
|
| - } else {
|
| - heap->CreateFillerObjectAt(object->address() + size - kPointerSize,
|
| - kPointerSize);
|
| - return object;
|
| - }
|
| -}
|
| -
|
| -
|
| -enum LoggingAndProfiling {
|
| - LOGGING_AND_PROFILING_ENABLED,
|
| - LOGGING_AND_PROFILING_DISABLED
|
| -};
|
| -
|
| -
|
| -enum MarksHandling { TRANSFER_MARKS, IGNORE_MARKS };
|
| -
|
| -
|
| -template<MarksHandling marks_handling,
|
| - LoggingAndProfiling logging_and_profiling_mode>
|
| -class ScavengingVisitor : public StaticVisitorBase {
|
| - public:
|
| - static void Initialize() {
|
| - table_.Register(kVisitSeqOneByteString, &EvacuateSeqOneByteString);
|
| - table_.Register(kVisitSeqTwoByteString, &EvacuateSeqTwoByteString);
|
| - table_.Register(kVisitShortcutCandidate, &EvacuateShortcutCandidate);
|
| - table_.Register(kVisitByteArray, &EvacuateByteArray);
|
| - table_.Register(kVisitFixedArray, &EvacuateFixedArray);
|
| - table_.Register(kVisitFixedDoubleArray, &EvacuateFixedDoubleArray);
|
| - table_.Register(kVisitFixedTypedArray, &EvacuateFixedTypedArray);
|
| - table_.Register(kVisitFixedFloat64Array, &EvacuateFixedFloat64Array);
|
| -
|
| - table_.Register(kVisitNativeContext,
|
| - &ObjectEvacuationStrategy<POINTER_OBJECT>::
|
| - template VisitSpecialized<Context::kSize>);
|
| -
|
| - table_.Register(kVisitConsString,
|
| - &ObjectEvacuationStrategy<POINTER_OBJECT>::
|
| - template VisitSpecialized<ConsString::kSize>);
|
| -
|
| - table_.Register(kVisitSlicedString,
|
| - &ObjectEvacuationStrategy<POINTER_OBJECT>::
|
| - template VisitSpecialized<SlicedString::kSize>);
|
| -
|
| - table_.Register(kVisitSymbol,
|
| - &ObjectEvacuationStrategy<POINTER_OBJECT>::
|
| - template VisitSpecialized<Symbol::kSize>);
|
| -
|
| - table_.Register(kVisitSharedFunctionInfo,
|
| - &ObjectEvacuationStrategy<POINTER_OBJECT>::
|
| - template VisitSpecialized<SharedFunctionInfo::kSize>);
|
| -
|
| - table_.Register(kVisitJSWeakCollection,
|
| - &ObjectEvacuationStrategy<POINTER_OBJECT>::
|
| - Visit);
|
| -
|
| - table_.Register(kVisitJSArrayBuffer,
|
| - &ObjectEvacuationStrategy<POINTER_OBJECT>::
|
| - Visit);
|
| -
|
| - table_.Register(kVisitJSTypedArray,
|
| - &ObjectEvacuationStrategy<POINTER_OBJECT>::
|
| - Visit);
|
| -
|
| - table_.Register(kVisitJSDataView,
|
| - &ObjectEvacuationStrategy<POINTER_OBJECT>::
|
| - Visit);
|
| -
|
| - table_.Register(kVisitJSRegExp,
|
| - &ObjectEvacuationStrategy<POINTER_OBJECT>::
|
| - Visit);
|
| -
|
| - if (marks_handling == IGNORE_MARKS) {
|
| - table_.Register(kVisitJSFunction,
|
| - &ObjectEvacuationStrategy<POINTER_OBJECT>::
|
| - template VisitSpecialized<JSFunction::kSize>);
|
| - } else {
|
| - table_.Register(kVisitJSFunction, &EvacuateJSFunction);
|
| - }
|
| -
|
| - table_.RegisterSpecializations<ObjectEvacuationStrategy<DATA_OBJECT>,
|
| - kVisitDataObject,
|
| - kVisitDataObjectGeneric>();
|
| -
|
| - table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>,
|
| - kVisitJSObject,
|
| - kVisitJSObjectGeneric>();
|
| -
|
| - table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>,
|
| - kVisitStruct,
|
| - kVisitStructGeneric>();
|
| - }
|
| -
|
| - static VisitorDispatchTable<ScavengingCallback>* GetTable() {
|
| - return &table_;
|
| - }
|
| -
|
| - private:
|
| - enum ObjectContents { DATA_OBJECT, POINTER_OBJECT };
|
| -
|
| - static void RecordCopiedObject(Heap* heap, HeapObject* obj) {
|
| - bool should_record = false;
|
| -#ifdef DEBUG
|
| - should_record = FLAG_heap_stats;
|
| -#endif
|
| - should_record = should_record || FLAG_log_gc;
|
| - if (should_record) {
|
| - if (heap->new_space()->Contains(obj)) {
|
| - heap->new_space()->RecordAllocation(obj);
|
| - } else {
|
| - heap->new_space()->RecordPromotion(obj);
|
| - }
|
| - }
|
| - }
|
| -
|
| - // Helper function used by CopyObject to copy a source object to an
|
| - // allocated target object and update the forwarding pointer in the source
|
| - // object. Returns the target object.
|
| - INLINE(static void MigrateObject(Heap* heap,
|
| - HeapObject* source,
|
| - HeapObject* target,
|
| - int size)) {
|
| - // If we migrate into to-space, then the to-space top pointer should be
|
| - // right after the target object. Incorporate double alignment
|
| - // over-allocation.
|
| - DCHECK(!heap->InToSpace(target) ||
|
| - target->address() + size == heap->new_space()->top() ||
|
| - target->address() + size + kPointerSize == heap->new_space()->top());
|
| -
|
| - // Make sure that we do not overwrite the promotion queue which is at
|
| - // the end of to-space.
|
| - DCHECK(!heap->InToSpace(target) ||
|
| - heap->promotion_queue()->IsBelowPromotionQueue(
|
| - heap->new_space()->top()));
|
| -
|
| - // Copy the content of source to target.
|
| - heap->CopyBlock(target->address(), source->address(), size);
|
| -
|
| - // Set the forwarding address.
|
| - source->set_map_word(MapWord::FromForwardingAddress(target));
|
| -
|
| - if (logging_and_profiling_mode == LOGGING_AND_PROFILING_ENABLED) {
|
| - // Update NewSpace stats if necessary.
|
| - RecordCopiedObject(heap, target);
|
| - heap->OnMoveEvent(target, source, size);
|
| - }
|
| -
|
| - if (marks_handling == TRANSFER_MARKS) {
|
| - if (Marking::TransferColor(source, target)) {
|
| - MemoryChunk::IncrementLiveBytesFromGC(target->address(), size);
|
| - }
|
| - }
|
| - }
|
| -
|
| - template<int alignment>
|
| - static inline bool SemiSpaceCopyObject(Map* map,
|
| - HeapObject** slot,
|
| - HeapObject* object,
|
| - int object_size) {
|
| - Heap* heap = map->GetHeap();
|
| -
|
| - int allocation_size = object_size;
|
| - if (alignment != kObjectAlignment) {
|
| - DCHECK(alignment == kDoubleAlignment);
|
| - allocation_size += kPointerSize;
|
| - }
|
| -
|
| - DCHECK(heap->AllowedToBeMigrated(object, NEW_SPACE));
|
| - AllocationResult allocation =
|
| - heap->new_space()->AllocateRaw(allocation_size);
|
| -
|
| - HeapObject* target = NULL; // Initialization to please compiler.
|
| - if (allocation.To(&target)) {
|
| - if (alignment != kObjectAlignment) {
|
| - target = EnsureDoubleAligned(heap, target, allocation_size);
|
| - }
|
| -
|
| - // Order is important here: Set the promotion limit before migrating
|
| - // the object. Otherwise we may end up overwriting promotion queue
|
| - // entries when we migrate the object.
|
| - heap->promotion_queue()->SetNewLimit(heap->new_space()->top());
|
| -
|
| - // Order is important: slot might be inside of the target if target
|
| - // was allocated over a dead object and slot comes from the store
|
| - // buffer.
|
| - *slot = target;
|
| - MigrateObject(heap, object, target, object_size);
|
| -
|
| - heap->IncrementSemiSpaceCopiedObjectSize(object_size);
|
| - return true;
|
| - }
|
| - return false;
|
| - }
|
| -
|
| -
|
| - template<ObjectContents object_contents, int alignment>
|
| - static inline bool PromoteObject(Map* map,
|
| - HeapObject** slot,
|
| - HeapObject* object,
|
| - int object_size) {
|
| - Heap* heap = map->GetHeap();
|
| -
|
| - int allocation_size = object_size;
|
| - if (alignment != kObjectAlignment) {
|
| - DCHECK(alignment == kDoubleAlignment);
|
| - allocation_size += kPointerSize;
|
| - }
|
| -
|
| - AllocationResult allocation;
|
| - if (object_contents == DATA_OBJECT) {
|
| - DCHECK(heap->AllowedToBeMigrated(object, OLD_DATA_SPACE));
|
| - allocation = heap->old_data_space()->AllocateRaw(allocation_size);
|
| - } else {
|
| - DCHECK(heap->AllowedToBeMigrated(object, OLD_POINTER_SPACE));
|
| - allocation = heap->old_pointer_space()->AllocateRaw(allocation_size);
|
| - }
|
| -
|
| - HeapObject* target = NULL; // Initialization to please compiler.
|
| - if (allocation.To(&target)) {
|
| - if (alignment != kObjectAlignment) {
|
| - target = EnsureDoubleAligned(heap, target, allocation_size);
|
| - }
|
| -
|
| - // Order is important: slot might be inside of the target if target
|
| - // was allocated over a dead object and slot comes from the store
|
| - // buffer.
|
| - *slot = target;
|
| - MigrateObject(heap, object, target, object_size);
|
| -
|
| - if (object_contents == POINTER_OBJECT) {
|
| - if (map->instance_type() == JS_FUNCTION_TYPE) {
|
| - heap->promotion_queue()->insert(
|
| - target, JSFunction::kNonWeakFieldsEndOffset);
|
| - } else {
|
| - heap->promotion_queue()->insert(target, object_size);
|
| - }
|
| - }
|
| - heap->IncrementPromotedObjectsSize(object_size);
|
| - return true;
|
| - }
|
| - return false;
|
| - }
|
| -
|
| -
|
| - template<ObjectContents object_contents, int alignment>
|
| - static inline void EvacuateObject(Map* map,
|
| - HeapObject** slot,
|
| - HeapObject* object,
|
| - int object_size) {
|
| - SLOW_DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
|
| - SLOW_DCHECK(object->Size() == object_size);
|
| - Heap* heap = map->GetHeap();
|
| -
|
| - if (!heap->ShouldBePromoted(object->address(), object_size)) {
|
| - // A semi-space copy may fail due to fragmentation. In that case, we
|
| - // try to promote the object.
|
| - if (SemiSpaceCopyObject<alignment>(map, slot, object, object_size)) {
|
| - return;
|
| - }
|
| - }
|
| -
|
| - if (PromoteObject<object_contents, alignment>(
|
| - map, slot, object, object_size)) {
|
| - return;
|
| - }
|
| -
|
| - // If promotion failed, we try to copy the object to the other semi-space
|
| - if (SemiSpaceCopyObject<alignment>(map, slot, object, object_size)) return;
|
| -
|
| - UNREACHABLE();
|
| - }
|
| -
|
| -
|
| - static inline void EvacuateJSFunction(Map* map,
|
| - HeapObject** slot,
|
| - HeapObject* object) {
|
| - ObjectEvacuationStrategy<POINTER_OBJECT>::
|
| - template VisitSpecialized<JSFunction::kSize>(map, slot, object);
|
| -
|
| - HeapObject* target = *slot;
|
| - MarkBit mark_bit = Marking::MarkBitFrom(target);
|
| - if (Marking::IsBlack(mark_bit)) {
|
| - // This object is black and it might not be rescanned by marker.
|
| - // We should explicitly record code entry slot for compaction because
|
| - // promotion queue processing (IterateAndMarkPointersToFromSpace) will
|
| - // miss it as it is not HeapObject-tagged.
|
| - Address code_entry_slot =
|
| - target->address() + JSFunction::kCodeEntryOffset;
|
| - Code* code = Code::cast(Code::GetObjectFromEntryAddress(code_entry_slot));
|
| - map->GetHeap()->mark_compact_collector()->
|
| - RecordCodeEntrySlot(code_entry_slot, code);
|
| - }
|
| - }
|
| -
|
| -
|
| - static inline void EvacuateFixedArray(Map* map,
|
| - HeapObject** slot,
|
| - HeapObject* object) {
|
| - int object_size = FixedArray::BodyDescriptor::SizeOf(map, object);
|
| - EvacuateObject<POINTER_OBJECT, kObjectAlignment>(
|
| - map, slot, object, object_size);
|
| - }
|
| -
|
| -
|
| - static inline void EvacuateFixedDoubleArray(Map* map,
|
| - HeapObject** slot,
|
| - HeapObject* object) {
|
| - int length = reinterpret_cast<FixedDoubleArray*>(object)->length();
|
| - int object_size = FixedDoubleArray::SizeFor(length);
|
| - EvacuateObject<DATA_OBJECT, kDoubleAlignment>(
|
| - map, slot, object, object_size);
|
| - }
|
| -
|
| -
|
| - static inline void EvacuateFixedTypedArray(Map* map,
|
| - HeapObject** slot,
|
| - HeapObject* object) {
|
| - int object_size = reinterpret_cast<FixedTypedArrayBase*>(object)->size();
|
| - EvacuateObject<DATA_OBJECT, kObjectAlignment>(
|
| - map, slot, object, object_size);
|
| - }
|
| -
|
| -
|
| - static inline void EvacuateFixedFloat64Array(Map* map,
|
| - HeapObject** slot,
|
| - HeapObject* object) {
|
| - int object_size = reinterpret_cast<FixedFloat64Array*>(object)->size();
|
| - EvacuateObject<DATA_OBJECT, kDoubleAlignment>(
|
| - map, slot, object, object_size);
|
| - }
|
| -
|
| -
|
| - static inline void EvacuateByteArray(Map* map,
|
| - HeapObject** slot,
|
| - HeapObject* object) {
|
| - int object_size = reinterpret_cast<ByteArray*>(object)->ByteArraySize();
|
| - EvacuateObject<DATA_OBJECT, kObjectAlignment>(
|
| - map, slot, object, object_size);
|
| - }
|
| -
|
| -
|
| - static inline void EvacuateSeqOneByteString(Map* map,
|
| - HeapObject** slot,
|
| - HeapObject* object) {
|
| - int object_size = SeqOneByteString::cast(object)->
|
| - SeqOneByteStringSize(map->instance_type());
|
| - EvacuateObject<DATA_OBJECT, kObjectAlignment>(
|
| - map, slot, object, object_size);
|
| - }
|
| -
|
| -
|
| - static inline void EvacuateSeqTwoByteString(Map* map,
|
| - HeapObject** slot,
|
| - HeapObject* object) {
|
| - int object_size = SeqTwoByteString::cast(object)->
|
| - SeqTwoByteStringSize(map->instance_type());
|
| - EvacuateObject<DATA_OBJECT, kObjectAlignment>(
|
| - map, slot, object, object_size);
|
| - }
|
| -
|
| -
|
| - static inline void EvacuateShortcutCandidate(Map* map,
|
| - HeapObject** slot,
|
| - HeapObject* object) {
|
| - DCHECK(IsShortcutCandidate(map->instance_type()));
|
| -
|
| - Heap* heap = map->GetHeap();
|
| -
|
| - if (marks_handling == IGNORE_MARKS &&
|
| - ConsString::cast(object)->unchecked_second() ==
|
| - heap->empty_string()) {
|
| - HeapObject* first =
|
| - HeapObject::cast(ConsString::cast(object)->unchecked_first());
|
| -
|
| - *slot = first;
|
| -
|
| - if (!heap->InNewSpace(first)) {
|
| - object->set_map_word(MapWord::FromForwardingAddress(first));
|
| - return;
|
| - }
|
| -
|
| - MapWord first_word = first->map_word();
|
| - if (first_word.IsForwardingAddress()) {
|
| - HeapObject* target = first_word.ToForwardingAddress();
|
| -
|
| - *slot = target;
|
| - object->set_map_word(MapWord::FromForwardingAddress(target));
|
| - return;
|
| - }
|
| -
|
| - heap->DoScavengeObject(first->map(), slot, first);
|
| - object->set_map_word(MapWord::FromForwardingAddress(*slot));
|
| - return;
|
| - }
|
| -
|
| - int object_size = ConsString::kSize;
|
| - EvacuateObject<POINTER_OBJECT, kObjectAlignment>(
|
| - map, slot, object, object_size);
|
| - }
|
| -
|
| - template<ObjectContents object_contents>
|
| - class ObjectEvacuationStrategy {
|
| - public:
|
| - template<int object_size>
|
| - static inline void VisitSpecialized(Map* map,
|
| - HeapObject** slot,
|
| - HeapObject* object) {
|
| - EvacuateObject<object_contents, kObjectAlignment>(
|
| - map, slot, object, object_size);
|
| - }
|
| -
|
| - static inline void Visit(Map* map,
|
| - HeapObject** slot,
|
| - HeapObject* object) {
|
| - int object_size = map->instance_size();
|
| - EvacuateObject<object_contents, kObjectAlignment>(
|
| - map, slot, object, object_size);
|
| - }
|
| - };
|
| -
|
| - static VisitorDispatchTable<ScavengingCallback> table_;
|
| -};
|
| -
|
| -
|
| -template<MarksHandling marks_handling,
|
| - LoggingAndProfiling logging_and_profiling_mode>
|
| -VisitorDispatchTable<ScavengingCallback>
|
| - ScavengingVisitor<marks_handling, logging_and_profiling_mode>::table_;
|
| -
|
| -
|
| -static void InitializeScavengingVisitorsTables() {
|
| - ScavengingVisitor<TRANSFER_MARKS,
|
| - LOGGING_AND_PROFILING_DISABLED>::Initialize();
|
| - ScavengingVisitor<IGNORE_MARKS, LOGGING_AND_PROFILING_DISABLED>::Initialize();
|
| - ScavengingVisitor<TRANSFER_MARKS,
|
| - LOGGING_AND_PROFILING_ENABLED>::Initialize();
|
| - ScavengingVisitor<IGNORE_MARKS, LOGGING_AND_PROFILING_ENABLED>::Initialize();
|
| -}
|
| -
|
| -
|
| -void Heap::SelectScavengingVisitorsTable() {
|
| - bool logging_and_profiling =
|
| - FLAG_verify_predictable ||
|
| - isolate()->logger()->is_logging() ||
|
| - isolate()->cpu_profiler()->is_profiling() ||
|
| - (isolate()->heap_profiler() != NULL &&
|
| - isolate()->heap_profiler()->is_tracking_object_moves());
|
| -
|
| - if (!incremental_marking()->IsMarking()) {
|
| - if (!logging_and_profiling) {
|
| - scavenging_visitors_table_.CopyFrom(
|
| - ScavengingVisitor<IGNORE_MARKS,
|
| - LOGGING_AND_PROFILING_DISABLED>::GetTable());
|
| - } else {
|
| - scavenging_visitors_table_.CopyFrom(
|
| - ScavengingVisitor<IGNORE_MARKS,
|
| - LOGGING_AND_PROFILING_ENABLED>::GetTable());
|
| - }
|
| - } else {
|
| - if (!logging_and_profiling) {
|
| - scavenging_visitors_table_.CopyFrom(
|
| - ScavengingVisitor<TRANSFER_MARKS,
|
| - LOGGING_AND_PROFILING_DISABLED>::GetTable());
|
| - } else {
|
| - scavenging_visitors_table_.CopyFrom(
|
| - ScavengingVisitor<TRANSFER_MARKS,
|
| - LOGGING_AND_PROFILING_ENABLED>::GetTable());
|
| - }
|
| -
|
| - if (incremental_marking()->IsCompacting()) {
|
| - // When compacting forbid short-circuiting of cons-strings.
|
| - // Scavenging code relies on the fact that new space object
|
| - // can't be evacuated into evacuation candidate but
|
| - // short-circuiting violates this assumption.
|
| - scavenging_visitors_table_.Register(
|
| - StaticVisitorBase::kVisitShortcutCandidate,
|
| - scavenging_visitors_table_.GetVisitorById(
|
| - StaticVisitorBase::kVisitConsString));
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) {
|
| - SLOW_DCHECK(object->GetIsolate()->heap()->InFromSpace(object));
|
| - MapWord first_word = object->map_word();
|
| - SLOW_DCHECK(!first_word.IsForwardingAddress());
|
| - Map* map = first_word.ToMap();
|
| - map->GetHeap()->DoScavengeObject(map, p, object);
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocatePartialMap(InstanceType instance_type,
|
| - int instance_size) {
|
| - Object* result;
|
| - AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE, MAP_SPACE);
|
| - if (!allocation.To(&result)) return allocation;
|
| -
|
| - // Map::cast cannot be used due to uninitialized map field.
|
| - reinterpret_cast<Map*>(result)->set_map(raw_unchecked_meta_map());
|
| - reinterpret_cast<Map*>(result)->set_instance_type(instance_type);
|
| - reinterpret_cast<Map*>(result)->set_instance_size(instance_size);
|
| - reinterpret_cast<Map*>(result)->set_visitor_id(
|
| - StaticVisitorBase::GetVisitorId(instance_type, instance_size));
|
| - reinterpret_cast<Map*>(result)->set_inobject_properties(0);
|
| - reinterpret_cast<Map*>(result)->set_pre_allocated_property_fields(0);
|
| - reinterpret_cast<Map*>(result)->set_unused_property_fields(0);
|
| - reinterpret_cast<Map*>(result)->set_bit_field(0);
|
| - reinterpret_cast<Map*>(result)->set_bit_field2(0);
|
| - int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) |
|
| - Map::OwnsDescriptors::encode(true);
|
| - reinterpret_cast<Map*>(result)->set_bit_field3(bit_field3);
|
| - return result;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateMap(InstanceType instance_type,
|
| - int instance_size,
|
| - ElementsKind elements_kind) {
|
| - HeapObject* result;
|
| - AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE, MAP_SPACE);
|
| - if (!allocation.To(&result)) return allocation;
|
| -
|
| - result->set_map_no_write_barrier(meta_map());
|
| - Map* map = Map::cast(result);
|
| - map->set_instance_type(instance_type);
|
| - map->set_visitor_id(
|
| - StaticVisitorBase::GetVisitorId(instance_type, instance_size));
|
| - map->set_prototype(null_value(), SKIP_WRITE_BARRIER);
|
| - map->set_constructor(null_value(), SKIP_WRITE_BARRIER);
|
| - map->set_instance_size(instance_size);
|
| - map->set_inobject_properties(0);
|
| - map->set_pre_allocated_property_fields(0);
|
| - map->set_code_cache(empty_fixed_array(), SKIP_WRITE_BARRIER);
|
| - map->set_dependent_code(DependentCode::cast(empty_fixed_array()),
|
| - SKIP_WRITE_BARRIER);
|
| - map->init_back_pointer(undefined_value());
|
| - map->set_unused_property_fields(0);
|
| - map->set_instance_descriptors(empty_descriptor_array());
|
| - map->set_bit_field(0);
|
| - map->set_bit_field2(1 << Map::kIsExtensible);
|
| - int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) |
|
| - Map::OwnsDescriptors::encode(true);
|
| - map->set_bit_field3(bit_field3);
|
| - map->set_elements_kind(elements_kind);
|
| -
|
| - return map;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateFillerObject(int size,
|
| - bool double_align,
|
| - AllocationSpace space) {
|
| - HeapObject* obj;
|
| - { AllocationResult allocation = AllocateRaw(size, space, space);
|
| - if (!allocation.To(&obj)) return allocation;
|
| - }
|
| -#ifdef DEBUG
|
| - MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
|
| - DCHECK(chunk->owner()->identity() == space);
|
| -#endif
|
| - CreateFillerObjectAt(obj->address(), size);
|
| - return obj;
|
| -}
|
| -
|
| -
|
| -const Heap::StringTypeTable Heap::string_type_table[] = {
|
| -#define STRING_TYPE_ELEMENT(type, size, name, camel_name) \
|
| - {type, size, k##camel_name##MapRootIndex},
|
| - STRING_TYPE_LIST(STRING_TYPE_ELEMENT)
|
| -#undef STRING_TYPE_ELEMENT
|
| -};
|
| -
|
| -
|
| -const Heap::ConstantStringTable Heap::constant_string_table[] = {
|
| -#define CONSTANT_STRING_ELEMENT(name, contents) \
|
| - {contents, k##name##RootIndex},
|
| - INTERNALIZED_STRING_LIST(CONSTANT_STRING_ELEMENT)
|
| -#undef CONSTANT_STRING_ELEMENT
|
| -};
|
| -
|
| -
|
| -const Heap::StructTable Heap::struct_table[] = {
|
| -#define STRUCT_TABLE_ELEMENT(NAME, Name, name) \
|
| - { NAME##_TYPE, Name::kSize, k##Name##MapRootIndex },
|
| - STRUCT_LIST(STRUCT_TABLE_ELEMENT)
|
| -#undef STRUCT_TABLE_ELEMENT
|
| -};
|
| -
|
| -
|
| -bool Heap::CreateInitialMaps() {
|
| - HeapObject* obj;
|
| - { AllocationResult allocation = AllocatePartialMap(MAP_TYPE, Map::kSize);
|
| - if (!allocation.To(&obj)) return false;
|
| - }
|
| - // Map::cast cannot be used due to uninitialized map field.
|
| - Map* new_meta_map = reinterpret_cast<Map*>(obj);
|
| - set_meta_map(new_meta_map);
|
| - new_meta_map->set_map(new_meta_map);
|
| -
|
| - { // Partial map allocation
|
| -#define ALLOCATE_PARTIAL_MAP(instance_type, size, field_name) \
|
| - { Map* map; \
|
| - if (!AllocatePartialMap((instance_type), (size)).To(&map)) return false; \
|
| - set_##field_name##_map(map); \
|
| - }
|
| -
|
| - ALLOCATE_PARTIAL_MAP(FIXED_ARRAY_TYPE, kVariableSizeSentinel, fixed_array);
|
| - ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, undefined);
|
| - ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, null);
|
| - ALLOCATE_PARTIAL_MAP(CONSTANT_POOL_ARRAY_TYPE, kVariableSizeSentinel,
|
| - constant_pool_array);
|
| -
|
| -#undef ALLOCATE_PARTIAL_MAP
|
| - }
|
| -
|
| - // Allocate the empty array.
|
| - { AllocationResult allocation = AllocateEmptyFixedArray();
|
| - if (!allocation.To(&obj)) return false;
|
| - }
|
| - set_empty_fixed_array(FixedArray::cast(obj));
|
| -
|
| - { AllocationResult allocation = Allocate(null_map(), OLD_POINTER_SPACE);
|
| - if (!allocation.To(&obj)) return false;
|
| - }
|
| - set_null_value(Oddball::cast(obj));
|
| - Oddball::cast(obj)->set_kind(Oddball::kNull);
|
| -
|
| - { AllocationResult allocation = Allocate(undefined_map(), OLD_POINTER_SPACE);
|
| - if (!allocation.To(&obj)) return false;
|
| - }
|
| - set_undefined_value(Oddball::cast(obj));
|
| - Oddball::cast(obj)->set_kind(Oddball::kUndefined);
|
| - DCHECK(!InNewSpace(undefined_value()));
|
| -
|
| - // Set preliminary exception sentinel value before actually initializing it.
|
| - set_exception(null_value());
|
| -
|
| - // Allocate the empty descriptor array.
|
| - { AllocationResult allocation = AllocateEmptyFixedArray();
|
| - if (!allocation.To(&obj)) return false;
|
| - }
|
| - set_empty_descriptor_array(DescriptorArray::cast(obj));
|
| -
|
| - // Allocate the constant pool array.
|
| - { AllocationResult allocation = AllocateEmptyConstantPoolArray();
|
| - if (!allocation.To(&obj)) return false;
|
| - }
|
| - set_empty_constant_pool_array(ConstantPoolArray::cast(obj));
|
| -
|
| - // Fix the instance_descriptors for the existing maps.
|
| - meta_map()->set_code_cache(empty_fixed_array());
|
| - meta_map()->set_dependent_code(DependentCode::cast(empty_fixed_array()));
|
| - meta_map()->init_back_pointer(undefined_value());
|
| - meta_map()->set_instance_descriptors(empty_descriptor_array());
|
| -
|
| - fixed_array_map()->set_code_cache(empty_fixed_array());
|
| - fixed_array_map()->set_dependent_code(
|
| - DependentCode::cast(empty_fixed_array()));
|
| - fixed_array_map()->init_back_pointer(undefined_value());
|
| - fixed_array_map()->set_instance_descriptors(empty_descriptor_array());
|
| -
|
| - undefined_map()->set_code_cache(empty_fixed_array());
|
| - undefined_map()->set_dependent_code(DependentCode::cast(empty_fixed_array()));
|
| - undefined_map()->init_back_pointer(undefined_value());
|
| - undefined_map()->set_instance_descriptors(empty_descriptor_array());
|
| -
|
| - null_map()->set_code_cache(empty_fixed_array());
|
| - null_map()->set_dependent_code(DependentCode::cast(empty_fixed_array()));
|
| - null_map()->init_back_pointer(undefined_value());
|
| - null_map()->set_instance_descriptors(empty_descriptor_array());
|
| -
|
| - constant_pool_array_map()->set_code_cache(empty_fixed_array());
|
| - constant_pool_array_map()->set_dependent_code(
|
| - DependentCode::cast(empty_fixed_array()));
|
| - constant_pool_array_map()->init_back_pointer(undefined_value());
|
| - constant_pool_array_map()->set_instance_descriptors(empty_descriptor_array());
|
| -
|
| - // Fix prototype object for existing maps.
|
| - meta_map()->set_prototype(null_value());
|
| - meta_map()->set_constructor(null_value());
|
| -
|
| - fixed_array_map()->set_prototype(null_value());
|
| - fixed_array_map()->set_constructor(null_value());
|
| -
|
| - undefined_map()->set_prototype(null_value());
|
| - undefined_map()->set_constructor(null_value());
|
| -
|
| - null_map()->set_prototype(null_value());
|
| - null_map()->set_constructor(null_value());
|
| -
|
| - constant_pool_array_map()->set_prototype(null_value());
|
| - constant_pool_array_map()->set_constructor(null_value());
|
| -
|
| - { // Map allocation
|
| -#define ALLOCATE_MAP(instance_type, size, field_name) \
|
| - { Map* map; \
|
| - if (!AllocateMap((instance_type), size).To(&map)) return false; \
|
| - set_##field_name##_map(map); \
|
| - }
|
| -
|
| -#define ALLOCATE_VARSIZE_MAP(instance_type, field_name) \
|
| - ALLOCATE_MAP(instance_type, kVariableSizeSentinel, field_name)
|
| -
|
| - ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, fixed_cow_array)
|
| - DCHECK(fixed_array_map() != fixed_cow_array_map());
|
| -
|
| - ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, scope_info)
|
| - ALLOCATE_MAP(HEAP_NUMBER_TYPE, HeapNumber::kSize, heap_number)
|
| - ALLOCATE_MAP(
|
| - MUTABLE_HEAP_NUMBER_TYPE, HeapNumber::kSize, mutable_heap_number)
|
| - ALLOCATE_MAP(SYMBOL_TYPE, Symbol::kSize, symbol)
|
| - ALLOCATE_MAP(FOREIGN_TYPE, Foreign::kSize, foreign)
|
| -
|
| - ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, the_hole);
|
| - ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, boolean);
|
| - ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, uninitialized);
|
| - ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, arguments_marker);
|
| - ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, no_interceptor_result_sentinel);
|
| - ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, exception);
|
| - ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, termination_exception);
|
| -
|
| - for (unsigned i = 0; i < ARRAY_SIZE(string_type_table); i++) {
|
| - const StringTypeTable& entry = string_type_table[i];
|
| - { AllocationResult allocation = AllocateMap(entry.type, entry.size);
|
| - if (!allocation.To(&obj)) return false;
|
| - }
|
| - // Mark cons string maps as unstable, because their objects can change
|
| - // maps during GC.
|
| - Map* map = Map::cast(obj);
|
| - if (StringShape(entry.type).IsCons()) map->mark_unstable();
|
| - roots_[entry.index] = map;
|
| - }
|
| -
|
| - ALLOCATE_VARSIZE_MAP(STRING_TYPE, undetectable_string)
|
| - undetectable_string_map()->set_is_undetectable();
|
| -
|
| - ALLOCATE_VARSIZE_MAP(ASCII_STRING_TYPE, undetectable_ascii_string);
|
| - undetectable_ascii_string_map()->set_is_undetectable();
|
| -
|
| - ALLOCATE_VARSIZE_MAP(FIXED_DOUBLE_ARRAY_TYPE, fixed_double_array)
|
| - ALLOCATE_VARSIZE_MAP(BYTE_ARRAY_TYPE, byte_array)
|
| - ALLOCATE_VARSIZE_MAP(FREE_SPACE_TYPE, free_space)
|
| -
|
| -#define ALLOCATE_EXTERNAL_ARRAY_MAP(Type, type, TYPE, ctype, size) \
|
| - ALLOCATE_MAP(EXTERNAL_##TYPE##_ARRAY_TYPE, ExternalArray::kAlignedSize, \
|
| - external_##type##_array)
|
| -
|
| - TYPED_ARRAYS(ALLOCATE_EXTERNAL_ARRAY_MAP)
|
| -#undef ALLOCATE_EXTERNAL_ARRAY_MAP
|
| -
|
| -#define ALLOCATE_FIXED_TYPED_ARRAY_MAP(Type, type, TYPE, ctype, size) \
|
| - ALLOCATE_VARSIZE_MAP(FIXED_##TYPE##_ARRAY_TYPE, \
|
| - fixed_##type##_array)
|
| -
|
| - TYPED_ARRAYS(ALLOCATE_FIXED_TYPED_ARRAY_MAP)
|
| -#undef ALLOCATE_FIXED_TYPED_ARRAY_MAP
|
| -
|
| - ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, sloppy_arguments_elements)
|
| -
|
| - ALLOCATE_VARSIZE_MAP(CODE_TYPE, code)
|
| -
|
| - ALLOCATE_MAP(CELL_TYPE, Cell::kSize, cell)
|
| - ALLOCATE_MAP(PROPERTY_CELL_TYPE, PropertyCell::kSize, global_property_cell)
|
| - ALLOCATE_MAP(FILLER_TYPE, kPointerSize, one_pointer_filler)
|
| - ALLOCATE_MAP(FILLER_TYPE, 2 * kPointerSize, two_pointer_filler)
|
| -
|
| -
|
| - for (unsigned i = 0; i < ARRAY_SIZE(struct_table); i++) {
|
| - const StructTable& entry = struct_table[i];
|
| - Map* map;
|
| - if (!AllocateMap(entry.type, entry.size).To(&map))
|
| - return false;
|
| - roots_[entry.index] = map;
|
| - }
|
| -
|
| - ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, hash_table)
|
| - ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, ordered_hash_table)
|
| -
|
| - ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, function_context)
|
| - ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, catch_context)
|
| - ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, with_context)
|
| - ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, block_context)
|
| - ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, module_context)
|
| - ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, global_context)
|
| -
|
| - ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, native_context)
|
| - native_context_map()->set_dictionary_map(true);
|
| - native_context_map()->set_visitor_id(
|
| - StaticVisitorBase::kVisitNativeContext);
|
| -
|
| - ALLOCATE_MAP(SHARED_FUNCTION_INFO_TYPE, SharedFunctionInfo::kAlignedSize,
|
| - shared_function_info)
|
| -
|
| - ALLOCATE_MAP(JS_MESSAGE_OBJECT_TYPE, JSMessageObject::kSize,
|
| - message_object)
|
| - ALLOCATE_MAP(JS_OBJECT_TYPE, JSObject::kHeaderSize + kPointerSize,
|
| - external)
|
| - external_map()->set_is_extensible(false);
|
| -#undef ALLOCATE_VARSIZE_MAP
|
| -#undef ALLOCATE_MAP
|
| - }
|
| -
|
| - { // Empty arrays
|
| - { ByteArray* byte_array;
|
| - if (!AllocateByteArray(0, TENURED).To(&byte_array)) return false;
|
| - set_empty_byte_array(byte_array);
|
| - }
|
| -
|
| -#define ALLOCATE_EMPTY_EXTERNAL_ARRAY(Type, type, TYPE, ctype, size) \
|
| - { ExternalArray* obj; \
|
| - if (!AllocateEmptyExternalArray(kExternal##Type##Array).To(&obj)) \
|
| - return false; \
|
| - set_empty_external_##type##_array(obj); \
|
| - }
|
| -
|
| - TYPED_ARRAYS(ALLOCATE_EMPTY_EXTERNAL_ARRAY)
|
| -#undef ALLOCATE_EMPTY_EXTERNAL_ARRAY
|
| -
|
| -#define ALLOCATE_EMPTY_FIXED_TYPED_ARRAY(Type, type, TYPE, ctype, size) \
|
| - { FixedTypedArrayBase* obj; \
|
| - if (!AllocateEmptyFixedTypedArray(kExternal##Type##Array).To(&obj)) \
|
| - return false; \
|
| - set_empty_fixed_##type##_array(obj); \
|
| - }
|
| -
|
| - TYPED_ARRAYS(ALLOCATE_EMPTY_FIXED_TYPED_ARRAY)
|
| -#undef ALLOCATE_EMPTY_FIXED_TYPED_ARRAY
|
| - }
|
| - DCHECK(!InNewSpace(empty_fixed_array()));
|
| - return true;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateHeapNumber(double value,
|
| - MutableMode mode,
|
| - PretenureFlag pretenure) {
|
| - // Statically ensure that it is safe to allocate heap numbers in paged
|
| - // spaces.
|
| - int size = HeapNumber::kSize;
|
| - STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxRegularHeapObjectSize);
|
| -
|
| - AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
|
| -
|
| - HeapObject* result;
|
| - { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
|
| - if (!allocation.To(&result)) return allocation;
|
| - }
|
| -
|
| - Map* map = mode == MUTABLE ? mutable_heap_number_map() : heap_number_map();
|
| - HeapObject::cast(result)->set_map_no_write_barrier(map);
|
| - HeapNumber::cast(result)->set_value(value);
|
| - return result;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateCell(Object* value) {
|
| - int size = Cell::kSize;
|
| - STATIC_ASSERT(Cell::kSize <= Page::kMaxRegularHeapObjectSize);
|
| -
|
| - HeapObject* result;
|
| - { AllocationResult allocation = AllocateRaw(size, CELL_SPACE, CELL_SPACE);
|
| - if (!allocation.To(&result)) return allocation;
|
| - }
|
| - result->set_map_no_write_barrier(cell_map());
|
| - Cell::cast(result)->set_value(value);
|
| - return result;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocatePropertyCell() {
|
| - int size = PropertyCell::kSize;
|
| - STATIC_ASSERT(PropertyCell::kSize <= Page::kMaxRegularHeapObjectSize);
|
| -
|
| - HeapObject* result;
|
| - AllocationResult allocation =
|
| - AllocateRaw(size, PROPERTY_CELL_SPACE, PROPERTY_CELL_SPACE);
|
| - if (!allocation.To(&result)) return allocation;
|
| -
|
| - result->set_map_no_write_barrier(global_property_cell_map());
|
| - PropertyCell* cell = PropertyCell::cast(result);
|
| - cell->set_dependent_code(DependentCode::cast(empty_fixed_array()),
|
| - SKIP_WRITE_BARRIER);
|
| - cell->set_value(the_hole_value());
|
| - cell->set_type(HeapType::None());
|
| - return result;
|
| -}
|
| -
|
| -
|
| -void Heap::CreateApiObjects() {
|
| - HandleScope scope(isolate());
|
| - Factory* factory = isolate()->factory();
|
| - Handle<Map> new_neander_map =
|
| - factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
|
| -
|
| - // Don't use Smi-only elements optimizations for objects with the neander
|
| - // map. There are too many cases where element values are set directly with a
|
| - // bottleneck to trap the Smi-only -> fast elements transition, and there
|
| - // appears to be no benefit for optimize this case.
|
| - new_neander_map->set_elements_kind(TERMINAL_FAST_ELEMENTS_KIND);
|
| - set_neander_map(*new_neander_map);
|
| -
|
| - Handle<JSObject> listeners = factory->NewNeanderObject();
|
| - Handle<FixedArray> elements = factory->NewFixedArray(2);
|
| - elements->set(0, Smi::FromInt(0));
|
| - listeners->set_elements(*elements);
|
| - set_message_listeners(*listeners);
|
| -}
|
| -
|
| -
|
| -void Heap::CreateJSEntryStub() {
|
| - JSEntryStub stub(isolate());
|
| - set_js_entry_code(*stub.GetCode());
|
| -}
|
| -
|
| -
|
| -void Heap::CreateJSConstructEntryStub() {
|
| - JSConstructEntryStub stub(isolate());
|
| - set_js_construct_entry_code(*stub.GetCode());
|
| -}
|
| -
|
| -
|
| -void Heap::CreateFixedStubs() {
|
| - // Here we create roots for fixed stubs. They are needed at GC
|
| - // for cooking and uncooking (check out frames.cc).
|
| - // The eliminates the need for doing dictionary lookup in the
|
| - // stub cache for these stubs.
|
| - HandleScope scope(isolate());
|
| -
|
| - // Create stubs that should be there, so we don't unexpectedly have to
|
| - // create them if we need them during the creation of another stub.
|
| - // Stub creation mixes raw pointers and handles in an unsafe manner so
|
| - // we cannot create stubs while we are creating stubs.
|
| - CodeStub::GenerateStubsAheadOfTime(isolate());
|
| -
|
| - // MacroAssembler::Abort calls (usually enabled with --debug-code) depend on
|
| - // CEntryStub, so we need to call GenerateStubsAheadOfTime before JSEntryStub
|
| - // is created.
|
| -
|
| - // gcc-4.4 has problem generating correct code of following snippet:
|
| - // { JSEntryStub stub;
|
| - // js_entry_code_ = *stub.GetCode();
|
| - // }
|
| - // { JSConstructEntryStub stub;
|
| - // js_construct_entry_code_ = *stub.GetCode();
|
| - // }
|
| - // To workaround the problem, make separate functions without inlining.
|
| - Heap::CreateJSEntryStub();
|
| - Heap::CreateJSConstructEntryStub();
|
| -}
|
| -
|
| -
|
| -void Heap::CreateInitialObjects() {
|
| - HandleScope scope(isolate());
|
| - Factory* factory = isolate()->factory();
|
| -
|
| - // The -0 value must be set before NewNumber works.
|
| - set_minus_zero_value(*factory->NewHeapNumber(-0.0, IMMUTABLE, TENURED));
|
| - DCHECK(std::signbit(minus_zero_value()->Number()) != 0);
|
| -
|
| - set_nan_value(
|
| - *factory->NewHeapNumber(base::OS::nan_value(), IMMUTABLE, TENURED));
|
| - set_infinity_value(*factory->NewHeapNumber(V8_INFINITY, IMMUTABLE, TENURED));
|
| -
|
| - // The hole has not been created yet, but we want to put something
|
| - // predictable in the gaps in the string table, so lets make that Smi zero.
|
| - set_the_hole_value(reinterpret_cast<Oddball*>(Smi::FromInt(0)));
|
| -
|
| - // Allocate initial string table.
|
| - set_string_table(*StringTable::New(isolate(), kInitialStringTableSize));
|
| -
|
| - // Finish initializing oddballs after creating the string table.
|
| - Oddball::Initialize(isolate(),
|
| - factory->undefined_value(),
|
| - "undefined",
|
| - factory->nan_value(),
|
| - Oddball::kUndefined);
|
| -
|
| - // Initialize the null_value.
|
| - Oddball::Initialize(isolate(),
|
| - factory->null_value(),
|
| - "null",
|
| - handle(Smi::FromInt(0), isolate()),
|
| - Oddball::kNull);
|
| -
|
| - set_true_value(*factory->NewOddball(factory->boolean_map(),
|
| - "true",
|
| - handle(Smi::FromInt(1), isolate()),
|
| - Oddball::kTrue));
|
| -
|
| - set_false_value(*factory->NewOddball(factory->boolean_map(),
|
| - "false",
|
| - handle(Smi::FromInt(0), isolate()),
|
| - Oddball::kFalse));
|
| -
|
| - set_the_hole_value(*factory->NewOddball(factory->the_hole_map(),
|
| - "hole",
|
| - handle(Smi::FromInt(-1), isolate()),
|
| - Oddball::kTheHole));
|
| -
|
| - set_uninitialized_value(
|
| - *factory->NewOddball(factory->uninitialized_map(),
|
| - "uninitialized",
|
| - handle(Smi::FromInt(-1), isolate()),
|
| - Oddball::kUninitialized));
|
| -
|
| - set_arguments_marker(*factory->NewOddball(factory->arguments_marker_map(),
|
| - "arguments_marker",
|
| - handle(Smi::FromInt(-4), isolate()),
|
| - Oddball::kArgumentMarker));
|
| -
|
| - set_no_interceptor_result_sentinel(
|
| - *factory->NewOddball(factory->no_interceptor_result_sentinel_map(),
|
| - "no_interceptor_result_sentinel",
|
| - handle(Smi::FromInt(-2), isolate()),
|
| - Oddball::kOther));
|
| -
|
| - set_termination_exception(
|
| - *factory->NewOddball(factory->termination_exception_map(),
|
| - "termination_exception",
|
| - handle(Smi::FromInt(-3), isolate()),
|
| - Oddball::kOther));
|
| -
|
| - set_exception(
|
| - *factory->NewOddball(factory->exception_map(),
|
| - "exception",
|
| - handle(Smi::FromInt(-5), isolate()),
|
| - Oddball::kException));
|
| -
|
| - for (unsigned i = 0; i < ARRAY_SIZE(constant_string_table); i++) {
|
| - Handle<String> str =
|
| - factory->InternalizeUtf8String(constant_string_table[i].contents);
|
| - roots_[constant_string_table[i].index] = *str;
|
| - }
|
| -
|
| - // Allocate the hidden string which is used to identify the hidden properties
|
| - // in JSObjects. The hash code has a special value so that it will not match
|
| - // the empty string when searching for the property. It cannot be part of the
|
| - // loop above because it needs to be allocated manually with the special
|
| - // hash code in place. The hash code for the hidden_string is zero to ensure
|
| - // that it will always be at the first entry in property descriptors.
|
| - hidden_string_ = *factory->NewOneByteInternalizedString(
|
| - OneByteVector("", 0), String::kEmptyStringHash);
|
| -
|
| - // Create the code_stubs dictionary. The initial size is set to avoid
|
| - // expanding the dictionary during bootstrapping.
|
| - set_code_stubs(*UnseededNumberDictionary::New(isolate(), 128));
|
| -
|
| - // Create the non_monomorphic_cache used in stub-cache.cc. The initial size
|
| - // is set to avoid expanding the dictionary during bootstrapping.
|
| - set_non_monomorphic_cache(*UnseededNumberDictionary::New(isolate(), 64));
|
| -
|
| - set_polymorphic_code_cache(PolymorphicCodeCache::cast(
|
| - *factory->NewStruct(POLYMORPHIC_CODE_CACHE_TYPE)));
|
| -
|
| - set_instanceof_cache_function(Smi::FromInt(0));
|
| - set_instanceof_cache_map(Smi::FromInt(0));
|
| - set_instanceof_cache_answer(Smi::FromInt(0));
|
| -
|
| - CreateFixedStubs();
|
| -
|
| - // Allocate the dictionary of intrinsic function names.
|
| - Handle<NameDictionary> intrinsic_names =
|
| - NameDictionary::New(isolate(), Runtime::kNumFunctions);
|
| - Runtime::InitializeIntrinsicFunctionNames(isolate(), intrinsic_names);
|
| - set_intrinsic_function_names(*intrinsic_names);
|
| -
|
| - set_number_string_cache(*factory->NewFixedArray(
|
| - kInitialNumberStringCacheSize * 2, TENURED));
|
| -
|
| - // Allocate cache for single character one byte strings.
|
| - set_single_character_string_cache(*factory->NewFixedArray(
|
| - String::kMaxOneByteCharCode + 1, TENURED));
|
| -
|
| - // Allocate cache for string split and regexp-multiple.
|
| - set_string_split_cache(*factory->NewFixedArray(
|
| - RegExpResultsCache::kRegExpResultsCacheSize, TENURED));
|
| - set_regexp_multiple_cache(*factory->NewFixedArray(
|
| - RegExpResultsCache::kRegExpResultsCacheSize, TENURED));
|
| -
|
| - // Allocate cache for external strings pointing to native source code.
|
| - set_natives_source_cache(*factory->NewFixedArray(
|
| - Natives::GetBuiltinsCount()));
|
| -
|
| - set_undefined_cell(*factory->NewCell(factory->undefined_value()));
|
| -
|
| - // The symbol registry is initialized lazily.
|
| - set_symbol_registry(undefined_value());
|
| -
|
| - // Allocate object to hold object observation state.
|
| - set_observation_state(*factory->NewJSObjectFromMap(
|
| - factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize)));
|
| -
|
| - // Microtask queue uses the empty fixed array as a sentinel for "empty".
|
| - // Number of queued microtasks stored in Isolate::pending_microtask_count().
|
| - set_microtask_queue(empty_fixed_array());
|
| -
|
| - set_detailed_stack_trace_symbol(*factory->NewPrivateSymbol());
|
| - set_elements_transition_symbol(*factory->NewPrivateSymbol());
|
| - set_frozen_symbol(*factory->NewPrivateSymbol());
|
| - set_megamorphic_symbol(*factory->NewPrivateSymbol());
|
| - set_nonexistent_symbol(*factory->NewPrivateSymbol());
|
| - set_normal_ic_symbol(*factory->NewPrivateSymbol());
|
| - set_observed_symbol(*factory->NewPrivateSymbol());
|
| - set_stack_trace_symbol(*factory->NewPrivateSymbol());
|
| - set_uninitialized_symbol(*factory->NewPrivateSymbol());
|
| -
|
| - Handle<SeededNumberDictionary> slow_element_dictionary =
|
| - SeededNumberDictionary::New(isolate(), 0, TENURED);
|
| - slow_element_dictionary->set_requires_slow_elements();
|
| - set_empty_slow_element_dictionary(*slow_element_dictionary);
|
| -
|
| - set_materialized_objects(*factory->NewFixedArray(0, TENURED));
|
| -
|
| - // Handling of script id generation is in Factory::NewScript.
|
| - set_last_script_id(Smi::FromInt(v8::UnboundScript::kNoScriptId));
|
| -
|
| - set_allocation_sites_scratchpad(*factory->NewFixedArray(
|
| - kAllocationSiteScratchpadSize, TENURED));
|
| - InitializeAllocationSitesScratchpad();
|
| -
|
| - // Initialize keyed lookup cache.
|
| - isolate_->keyed_lookup_cache()->Clear();
|
| -
|
| - // Initialize context slot cache.
|
| - isolate_->context_slot_cache()->Clear();
|
| -
|
| - // Initialize descriptor cache.
|
| - isolate_->descriptor_lookup_cache()->Clear();
|
| -
|
| - // Initialize compilation cache.
|
| - isolate_->compilation_cache()->Clear();
|
| -}
|
| -
|
| -
|
| -bool Heap::RootCanBeWrittenAfterInitialization(Heap::RootListIndex root_index) {
|
| - RootListIndex writable_roots[] = {
|
| - kStoreBufferTopRootIndex,
|
| - kStackLimitRootIndex,
|
| - kNumberStringCacheRootIndex,
|
| - kInstanceofCacheFunctionRootIndex,
|
| - kInstanceofCacheMapRootIndex,
|
| - kInstanceofCacheAnswerRootIndex,
|
| - kCodeStubsRootIndex,
|
| - kNonMonomorphicCacheRootIndex,
|
| - kPolymorphicCodeCacheRootIndex,
|
| - kLastScriptIdRootIndex,
|
| - kEmptyScriptRootIndex,
|
| - kRealStackLimitRootIndex,
|
| - kArgumentsAdaptorDeoptPCOffsetRootIndex,
|
| - kConstructStubDeoptPCOffsetRootIndex,
|
| - kGetterStubDeoptPCOffsetRootIndex,
|
| - kSetterStubDeoptPCOffsetRootIndex,
|
| - kStringTableRootIndex,
|
| - };
|
| -
|
| - for (unsigned int i = 0; i < ARRAY_SIZE(writable_roots); i++) {
|
| - if (root_index == writable_roots[i])
|
| - return true;
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -
|
| -bool Heap::RootCanBeTreatedAsConstant(RootListIndex root_index) {
|
| - return !RootCanBeWrittenAfterInitialization(root_index) &&
|
| - !InNewSpace(roots_array_start()[root_index]);
|
| -}
|
| -
|
| -
|
| -Object* RegExpResultsCache::Lookup(Heap* heap,
|
| - String* key_string,
|
| - Object* key_pattern,
|
| - ResultsCacheType type) {
|
| - FixedArray* cache;
|
| - if (!key_string->IsInternalizedString()) return Smi::FromInt(0);
|
| - if (type == STRING_SPLIT_SUBSTRINGS) {
|
| - DCHECK(key_pattern->IsString());
|
| - if (!key_pattern->IsInternalizedString()) return Smi::FromInt(0);
|
| - cache = heap->string_split_cache();
|
| - } else {
|
| - DCHECK(type == REGEXP_MULTIPLE_INDICES);
|
| - DCHECK(key_pattern->IsFixedArray());
|
| - cache = heap->regexp_multiple_cache();
|
| - }
|
| -
|
| - uint32_t hash = key_string->Hash();
|
| - uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) &
|
| - ~(kArrayEntriesPerCacheEntry - 1));
|
| - if (cache->get(index + kStringOffset) == key_string &&
|
| - cache->get(index + kPatternOffset) == key_pattern) {
|
| - return cache->get(index + kArrayOffset);
|
| - }
|
| - index =
|
| - ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1));
|
| - if (cache->get(index + kStringOffset) == key_string &&
|
| - cache->get(index + kPatternOffset) == key_pattern) {
|
| - return cache->get(index + kArrayOffset);
|
| - }
|
| - return Smi::FromInt(0);
|
| -}
|
| -
|
| -
|
| -void RegExpResultsCache::Enter(Isolate* isolate,
|
| - Handle<String> key_string,
|
| - Handle<Object> key_pattern,
|
| - Handle<FixedArray> value_array,
|
| - ResultsCacheType type) {
|
| - Factory* factory = isolate->factory();
|
| - Handle<FixedArray> cache;
|
| - if (!key_string->IsInternalizedString()) return;
|
| - if (type == STRING_SPLIT_SUBSTRINGS) {
|
| - DCHECK(key_pattern->IsString());
|
| - if (!key_pattern->IsInternalizedString()) return;
|
| - cache = factory->string_split_cache();
|
| - } else {
|
| - DCHECK(type == REGEXP_MULTIPLE_INDICES);
|
| - DCHECK(key_pattern->IsFixedArray());
|
| - cache = factory->regexp_multiple_cache();
|
| - }
|
| -
|
| - uint32_t hash = key_string->Hash();
|
| - uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) &
|
| - ~(kArrayEntriesPerCacheEntry - 1));
|
| - if (cache->get(index + kStringOffset) == Smi::FromInt(0)) {
|
| - cache->set(index + kStringOffset, *key_string);
|
| - cache->set(index + kPatternOffset, *key_pattern);
|
| - cache->set(index + kArrayOffset, *value_array);
|
| - } else {
|
| - uint32_t index2 =
|
| - ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1));
|
| - if (cache->get(index2 + kStringOffset) == Smi::FromInt(0)) {
|
| - cache->set(index2 + kStringOffset, *key_string);
|
| - cache->set(index2 + kPatternOffset, *key_pattern);
|
| - cache->set(index2 + kArrayOffset, *value_array);
|
| - } else {
|
| - cache->set(index2 + kStringOffset, Smi::FromInt(0));
|
| - cache->set(index2 + kPatternOffset, Smi::FromInt(0));
|
| - cache->set(index2 + kArrayOffset, Smi::FromInt(0));
|
| - cache->set(index + kStringOffset, *key_string);
|
| - cache->set(index + kPatternOffset, *key_pattern);
|
| - cache->set(index + kArrayOffset, *value_array);
|
| - }
|
| - }
|
| - // If the array is a reasonably short list of substrings, convert it into a
|
| - // list of internalized strings.
|
| - if (type == STRING_SPLIT_SUBSTRINGS && value_array->length() < 100) {
|
| - for (int i = 0; i < value_array->length(); i++) {
|
| - Handle<String> str(String::cast(value_array->get(i)), isolate);
|
| - Handle<String> internalized_str = factory->InternalizeString(str);
|
| - value_array->set(i, *internalized_str);
|
| - }
|
| - }
|
| - // Convert backing store to a copy-on-write array.
|
| - value_array->set_map_no_write_barrier(*factory->fixed_cow_array_map());
|
| -}
|
| -
|
| -
|
| -void RegExpResultsCache::Clear(FixedArray* cache) {
|
| - for (int i = 0; i < kRegExpResultsCacheSize; i++) {
|
| - cache->set(i, Smi::FromInt(0));
|
| - }
|
| -}
|
| -
|
| -
|
| -int Heap::FullSizeNumberStringCacheLength() {
|
| - // Compute the size of the number string cache based on the max newspace size.
|
| - // The number string cache has a minimum size based on twice the initial cache
|
| - // size to ensure that it is bigger after being made 'full size'.
|
| - int number_string_cache_size = max_semi_space_size_ / 512;
|
| - number_string_cache_size = Max(kInitialNumberStringCacheSize * 2,
|
| - Min(0x4000, number_string_cache_size));
|
| - // There is a string and a number per entry so the length is twice the number
|
| - // of entries.
|
| - return number_string_cache_size * 2;
|
| -}
|
| -
|
| -
|
| -void Heap::FlushNumberStringCache() {
|
| - // Flush the number to string cache.
|
| - int len = number_string_cache()->length();
|
| - for (int i = 0; i < len; i++) {
|
| - number_string_cache()->set_undefined(i);
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::FlushAllocationSitesScratchpad() {
|
| - for (int i = 0; i < allocation_sites_scratchpad_length_; i++) {
|
| - allocation_sites_scratchpad()->set_undefined(i);
|
| - }
|
| - allocation_sites_scratchpad_length_ = 0;
|
| -}
|
| -
|
| -
|
| -void Heap::InitializeAllocationSitesScratchpad() {
|
| - DCHECK(allocation_sites_scratchpad()->length() ==
|
| - kAllocationSiteScratchpadSize);
|
| - for (int i = 0; i < kAllocationSiteScratchpadSize; i++) {
|
| - allocation_sites_scratchpad()->set_undefined(i);
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::AddAllocationSiteToScratchpad(AllocationSite* site,
|
| - ScratchpadSlotMode mode) {
|
| - if (allocation_sites_scratchpad_length_ < kAllocationSiteScratchpadSize) {
|
| - // We cannot use the normal write-barrier because slots need to be
|
| - // recorded with non-incremental marking as well. We have to explicitly
|
| - // record the slot to take evacuation candidates into account.
|
| - allocation_sites_scratchpad()->set(
|
| - allocation_sites_scratchpad_length_, site, SKIP_WRITE_BARRIER);
|
| - Object** slot = allocation_sites_scratchpad()->RawFieldOfElementAt(
|
| - allocation_sites_scratchpad_length_);
|
| -
|
| - if (mode == RECORD_SCRATCHPAD_SLOT) {
|
| - // We need to allow slots buffer overflow here since the evacuation
|
| - // candidates are not part of the global list of old space pages and
|
| - // releasing an evacuation candidate due to a slots buffer overflow
|
| - // results in lost pages.
|
| - mark_compact_collector()->RecordSlot(
|
| - slot, slot, *slot, SlotsBuffer::IGNORE_OVERFLOW);
|
| - }
|
| - allocation_sites_scratchpad_length_++;
|
| - }
|
| -}
|
| -
|
| -
|
| -Map* Heap::MapForExternalArrayType(ExternalArrayType array_type) {
|
| - return Map::cast(roots_[RootIndexForExternalArrayType(array_type)]);
|
| -}
|
| -
|
| -
|
| -Heap::RootListIndex Heap::RootIndexForExternalArrayType(
|
| - ExternalArrayType array_type) {
|
| - switch (array_type) {
|
| -#define ARRAY_TYPE_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \
|
| - case kExternal##Type##Array: \
|
| - return kExternal##Type##ArrayMapRootIndex;
|
| -
|
| - TYPED_ARRAYS(ARRAY_TYPE_TO_ROOT_INDEX)
|
| -#undef ARRAY_TYPE_TO_ROOT_INDEX
|
| -
|
| - default:
|
| - UNREACHABLE();
|
| - return kUndefinedValueRootIndex;
|
| - }
|
| -}
|
| -
|
| -
|
| -Map* Heap::MapForFixedTypedArray(ExternalArrayType array_type) {
|
| - return Map::cast(roots_[RootIndexForFixedTypedArray(array_type)]);
|
| -}
|
| -
|
| -
|
| -Heap::RootListIndex Heap::RootIndexForFixedTypedArray(
|
| - ExternalArrayType array_type) {
|
| - switch (array_type) {
|
| -#define ARRAY_TYPE_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \
|
| - case kExternal##Type##Array: \
|
| - return kFixed##Type##ArrayMapRootIndex;
|
| -
|
| - TYPED_ARRAYS(ARRAY_TYPE_TO_ROOT_INDEX)
|
| -#undef ARRAY_TYPE_TO_ROOT_INDEX
|
| -
|
| - default:
|
| - UNREACHABLE();
|
| - return kUndefinedValueRootIndex;
|
| - }
|
| -}
|
| -
|
| -
|
| -Heap::RootListIndex Heap::RootIndexForEmptyExternalArray(
|
| - ElementsKind elementsKind) {
|
| - switch (elementsKind) {
|
| -#define ELEMENT_KIND_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \
|
| - case EXTERNAL_##TYPE##_ELEMENTS: \
|
| - return kEmptyExternal##Type##ArrayRootIndex;
|
| -
|
| - TYPED_ARRAYS(ELEMENT_KIND_TO_ROOT_INDEX)
|
| -#undef ELEMENT_KIND_TO_ROOT_INDEX
|
| -
|
| - default:
|
| - UNREACHABLE();
|
| - return kUndefinedValueRootIndex;
|
| - }
|
| -}
|
| -
|
| -
|
| -Heap::RootListIndex Heap::RootIndexForEmptyFixedTypedArray(
|
| - ElementsKind elementsKind) {
|
| - switch (elementsKind) {
|
| -#define ELEMENT_KIND_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \
|
| - case TYPE##_ELEMENTS: \
|
| - return kEmptyFixed##Type##ArrayRootIndex;
|
| -
|
| - TYPED_ARRAYS(ELEMENT_KIND_TO_ROOT_INDEX)
|
| -#undef ELEMENT_KIND_TO_ROOT_INDEX
|
| - default:
|
| - UNREACHABLE();
|
| - return kUndefinedValueRootIndex;
|
| - }
|
| -}
|
| -
|
| -
|
| -ExternalArray* Heap::EmptyExternalArrayForMap(Map* map) {
|
| - return ExternalArray::cast(
|
| - roots_[RootIndexForEmptyExternalArray(map->elements_kind())]);
|
| -}
|
| -
|
| -
|
| -FixedTypedArrayBase* Heap::EmptyFixedTypedArrayForMap(Map* map) {
|
| - return FixedTypedArrayBase::cast(
|
| - roots_[RootIndexForEmptyFixedTypedArray(map->elements_kind())]);
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateForeign(Address address,
|
| - PretenureFlag pretenure) {
|
| - // Statically ensure that it is safe to allocate foreigns in paged spaces.
|
| - STATIC_ASSERT(Foreign::kSize <= Page::kMaxRegularHeapObjectSize);
|
| - AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
|
| - Foreign* result;
|
| - AllocationResult allocation = Allocate(foreign_map(), space);
|
| - if (!allocation.To(&result)) return allocation;
|
| - result->set_foreign_address(address);
|
| - return result;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateByteArray(int length, PretenureFlag pretenure) {
|
| - if (length < 0 || length > ByteArray::kMaxLength) {
|
| - v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true);
|
| - }
|
| - int size = ByteArray::SizeFor(length);
|
| - AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
|
| - HeapObject* result;
|
| - { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
|
| - if (!allocation.To(&result)) return allocation;
|
| - }
|
| -
|
| - result->set_map_no_write_barrier(byte_array_map());
|
| - ByteArray::cast(result)->set_length(length);
|
| - return result;
|
| -}
|
| -
|
| -
|
| -void Heap::CreateFillerObjectAt(Address addr, int size) {
|
| - if (size == 0) return;
|
| - HeapObject* filler = HeapObject::FromAddress(addr);
|
| - if (size == kPointerSize) {
|
| - filler->set_map_no_write_barrier(one_pointer_filler_map());
|
| - } else if (size == 2 * kPointerSize) {
|
| - filler->set_map_no_write_barrier(two_pointer_filler_map());
|
| - } else {
|
| - filler->set_map_no_write_barrier(free_space_map());
|
| - FreeSpace::cast(filler)->set_size(size);
|
| - }
|
| -}
|
| -
|
| -
|
| -bool Heap::CanMoveObjectStart(HeapObject* object) {
|
| - Address address = object->address();
|
| - bool is_in_old_pointer_space = InOldPointerSpace(address);
|
| - bool is_in_old_data_space = InOldDataSpace(address);
|
| -
|
| - if (lo_space()->Contains(object)) return false;
|
| -
|
| - Page* page = Page::FromAddress(address);
|
| - // We can move the object start if:
|
| - // (1) the object is not in old pointer or old data space,
|
| - // (2) the page of the object was already swept,
|
| - // (3) the page was already concurrently swept. This case is an optimization
|
| - // for concurrent sweeping. The WasSwept predicate for concurrently swept
|
| - // pages is set after sweeping all pages.
|
| - return (!is_in_old_pointer_space && !is_in_old_data_space) ||
|
| - page->WasSwept() || page->SweepingCompleted();
|
| -}
|
| -
|
| -
|
| -void Heap::AdjustLiveBytes(Address address, int by, InvocationMode mode) {
|
| - if (incremental_marking()->IsMarking() &&
|
| - Marking::IsBlack(Marking::MarkBitFrom(address))) {
|
| - if (mode == FROM_GC) {
|
| - MemoryChunk::IncrementLiveBytesFromGC(address, by);
|
| - } else {
|
| - MemoryChunk::IncrementLiveBytesFromMutator(address, by);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateExternalArray(int length,
|
| - ExternalArrayType array_type,
|
| - void* external_pointer,
|
| - PretenureFlag pretenure) {
|
| - int size = ExternalArray::kAlignedSize;
|
| - AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
|
| - HeapObject* result;
|
| - { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
|
| - if (!allocation.To(&result)) return allocation;
|
| - }
|
| -
|
| - result->set_map_no_write_barrier(
|
| - MapForExternalArrayType(array_type));
|
| - ExternalArray::cast(result)->set_length(length);
|
| - ExternalArray::cast(result)->set_external_pointer(external_pointer);
|
| - return result;
|
| -}
|
| -
|
| -static void ForFixedTypedArray(ExternalArrayType array_type,
|
| - int* element_size,
|
| - ElementsKind* element_kind) {
|
| - switch (array_type) {
|
| -#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
|
| - case kExternal##Type##Array: \
|
| - *element_size = size; \
|
| - *element_kind = TYPE##_ELEMENTS; \
|
| - return;
|
| -
|
| - TYPED_ARRAYS(TYPED_ARRAY_CASE)
|
| -#undef TYPED_ARRAY_CASE
|
| -
|
| - default:
|
| - *element_size = 0; // Bogus
|
| - *element_kind = UINT8_ELEMENTS; // Bogus
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateFixedTypedArray(int length,
|
| - ExternalArrayType array_type,
|
| - PretenureFlag pretenure) {
|
| - int element_size;
|
| - ElementsKind elements_kind;
|
| - ForFixedTypedArray(array_type, &element_size, &elements_kind);
|
| - int size = OBJECT_POINTER_ALIGN(
|
| - length * element_size + FixedTypedArrayBase::kDataOffset);
|
| -#ifndef V8_HOST_ARCH_64_BIT
|
| - if (array_type == kExternalFloat64Array) {
|
| - size += kPointerSize;
|
| - }
|
| -#endif
|
| - AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
|
| -
|
| - HeapObject* object;
|
| - AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
|
| - if (!allocation.To(&object)) return allocation;
|
| -
|
| - if (array_type == kExternalFloat64Array) {
|
| - object = EnsureDoubleAligned(this, object, size);
|
| - }
|
| -
|
| - object->set_map(MapForFixedTypedArray(array_type));
|
| - FixedTypedArrayBase* elements = FixedTypedArrayBase::cast(object);
|
| - elements->set_length(length);
|
| - memset(elements->DataPtr(), 0, elements->DataSize());
|
| - return elements;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateCode(int object_size, bool immovable) {
|
| - DCHECK(IsAligned(static_cast<intptr_t>(object_size), kCodeAlignment));
|
| - AllocationResult allocation =
|
| - AllocateRaw(object_size, CODE_SPACE, CODE_SPACE);
|
| -
|
| - HeapObject* result;
|
| - if (!allocation.To(&result)) return allocation;
|
| -
|
| - if (immovable) {
|
| - Address address = result->address();
|
| - // Code objects which should stay at a fixed address are allocated either
|
| - // in the first page of code space (objects on the first page of each space
|
| - // are never moved) or in large object space.
|
| - if (!code_space_->FirstPage()->Contains(address) &&
|
| - MemoryChunk::FromAddress(address)->owner()->identity() != LO_SPACE) {
|
| - // Discard the first code allocation, which was on a page where it could
|
| - // be moved.
|
| - CreateFillerObjectAt(result->address(), object_size);
|
| - allocation = lo_space_->AllocateRaw(object_size, EXECUTABLE);
|
| - if (!allocation.To(&result)) return allocation;
|
| - OnAllocationEvent(result, object_size);
|
| - }
|
| - }
|
| -
|
| - result->set_map_no_write_barrier(code_map());
|
| - Code* code = Code::cast(result);
|
| - DCHECK(isolate_->code_range() == NULL ||
|
| - !isolate_->code_range()->valid() ||
|
| - isolate_->code_range()->contains(code->address()));
|
| - code->set_gc_metadata(Smi::FromInt(0));
|
| - code->set_ic_age(global_ic_age_);
|
| - return code;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::CopyCode(Code* code) {
|
| - AllocationResult allocation;
|
| - HeapObject* new_constant_pool;
|
| - if (FLAG_enable_ool_constant_pool &&
|
| - code->constant_pool() != empty_constant_pool_array()) {
|
| - // Copy the constant pool, since edits to the copied code may modify
|
| - // the constant pool.
|
| - allocation = CopyConstantPoolArray(code->constant_pool());
|
| - if (!allocation.To(&new_constant_pool)) return allocation;
|
| - } else {
|
| - new_constant_pool = empty_constant_pool_array();
|
| - }
|
| -
|
| - HeapObject* result;
|
| - // Allocate an object the same size as the code object.
|
| - int obj_size = code->Size();
|
| - allocation = AllocateRaw(obj_size, CODE_SPACE, CODE_SPACE);
|
| - if (!allocation.To(&result)) return allocation;
|
| -
|
| - // Copy code object.
|
| - Address old_addr = code->address();
|
| - Address new_addr = result->address();
|
| - CopyBlock(new_addr, old_addr, obj_size);
|
| - Code* new_code = Code::cast(result);
|
| -
|
| - // Update the constant pool.
|
| - new_code->set_constant_pool(new_constant_pool);
|
| -
|
| - // Relocate the copy.
|
| - DCHECK(isolate_->code_range() == NULL ||
|
| - !isolate_->code_range()->valid() ||
|
| - isolate_->code_range()->contains(code->address()));
|
| - new_code->Relocate(new_addr - old_addr);
|
| - return new_code;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::CopyCode(Code* code, Vector<byte> reloc_info) {
|
| - // Allocate ByteArray and ConstantPoolArray before the Code object, so that we
|
| - // do not risk leaving uninitialized Code object (and breaking the heap).
|
| - ByteArray* reloc_info_array;
|
| - { AllocationResult allocation =
|
| - AllocateByteArray(reloc_info.length(), TENURED);
|
| - if (!allocation.To(&reloc_info_array)) return allocation;
|
| - }
|
| - HeapObject* new_constant_pool;
|
| - if (FLAG_enable_ool_constant_pool &&
|
| - code->constant_pool() != empty_constant_pool_array()) {
|
| - // Copy the constant pool, since edits to the copied code may modify
|
| - // the constant pool.
|
| - AllocationResult allocation =
|
| - CopyConstantPoolArray(code->constant_pool());
|
| - if (!allocation.To(&new_constant_pool)) return allocation;
|
| - } else {
|
| - new_constant_pool = empty_constant_pool_array();
|
| - }
|
| -
|
| - int new_body_size = RoundUp(code->instruction_size(), kObjectAlignment);
|
| -
|
| - int new_obj_size = Code::SizeFor(new_body_size);
|
| -
|
| - Address old_addr = code->address();
|
| -
|
| - size_t relocation_offset =
|
| - static_cast<size_t>(code->instruction_end() - old_addr);
|
| -
|
| - HeapObject* result;
|
| - AllocationResult allocation =
|
| - AllocateRaw(new_obj_size, CODE_SPACE, CODE_SPACE);
|
| - if (!allocation.To(&result)) return allocation;
|
| -
|
| - // Copy code object.
|
| - Address new_addr = result->address();
|
| -
|
| - // Copy header and instructions.
|
| - CopyBytes(new_addr, old_addr, relocation_offset);
|
| -
|
| - Code* new_code = Code::cast(result);
|
| - new_code->set_relocation_info(reloc_info_array);
|
| -
|
| - // Update constant pool.
|
| - new_code->set_constant_pool(new_constant_pool);
|
| -
|
| - // Copy patched rinfo.
|
| - CopyBytes(new_code->relocation_start(),
|
| - reloc_info.start(),
|
| - static_cast<size_t>(reloc_info.length()));
|
| -
|
| - // Relocate the copy.
|
| - DCHECK(isolate_->code_range() == NULL ||
|
| - !isolate_->code_range()->valid() ||
|
| - isolate_->code_range()->contains(code->address()));
|
| - new_code->Relocate(new_addr - old_addr);
|
| -
|
| -#ifdef VERIFY_HEAP
|
| - if (FLAG_verify_heap) code->ObjectVerify();
|
| -#endif
|
| - return new_code;
|
| -}
|
| -
|
| -
|
| -void Heap::InitializeAllocationMemento(AllocationMemento* memento,
|
| - AllocationSite* allocation_site) {
|
| - memento->set_map_no_write_barrier(allocation_memento_map());
|
| - DCHECK(allocation_site->map() == allocation_site_map());
|
| - memento->set_allocation_site(allocation_site, SKIP_WRITE_BARRIER);
|
| - if (FLAG_allocation_site_pretenuring) {
|
| - allocation_site->IncrementMementoCreateCount();
|
| - }
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::Allocate(Map* map, AllocationSpace space,
|
| - AllocationSite* allocation_site) {
|
| - DCHECK(gc_state_ == NOT_IN_GC);
|
| - DCHECK(map->instance_type() != MAP_TYPE);
|
| - // If allocation failures are disallowed, we may allocate in a different
|
| - // space when new space is full and the object is not a large object.
|
| - AllocationSpace retry_space =
|
| - (space != NEW_SPACE) ? space : TargetSpaceId(map->instance_type());
|
| - int size = map->instance_size();
|
| - if (allocation_site != NULL) {
|
| - size += AllocationMemento::kSize;
|
| - }
|
| - HeapObject* result;
|
| - AllocationResult allocation = AllocateRaw(size, space, retry_space);
|
| - if (!allocation.To(&result)) return allocation;
|
| - // No need for write barrier since object is white and map is in old space.
|
| - result->set_map_no_write_barrier(map);
|
| - if (allocation_site != NULL) {
|
| - AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>(
|
| - reinterpret_cast<Address>(result) + map->instance_size());
|
| - InitializeAllocationMemento(alloc_memento, allocation_site);
|
| - }
|
| - return result;
|
| -}
|
| -
|
| -
|
| -void Heap::InitializeJSObjectFromMap(JSObject* obj,
|
| - FixedArray* properties,
|
| - Map* map) {
|
| - obj->set_properties(properties);
|
| - obj->initialize_elements();
|
| - // TODO(1240798): Initialize the object's body using valid initial values
|
| - // according to the object's initial map. For example, if the map's
|
| - // instance type is JS_ARRAY_TYPE, the length field should be initialized
|
| - // to a number (e.g. Smi::FromInt(0)) and the elements initialized to a
|
| - // fixed array (e.g. Heap::empty_fixed_array()). Currently, the object
|
| - // verification code has to cope with (temporarily) invalid objects. See
|
| - // for example, JSArray::JSArrayVerify).
|
| - Object* filler;
|
| - // We cannot always fill with one_pointer_filler_map because objects
|
| - // created from API functions expect their internal fields to be initialized
|
| - // with undefined_value.
|
| - // Pre-allocated fields need to be initialized with undefined_value as well
|
| - // so that object accesses before the constructor completes (e.g. in the
|
| - // debugger) will not cause a crash.
|
| - if (map->constructor()->IsJSFunction() &&
|
| - JSFunction::cast(map->constructor())->
|
| - IsInobjectSlackTrackingInProgress()) {
|
| - // We might want to shrink the object later.
|
| - DCHECK(obj->GetInternalFieldCount() == 0);
|
| - filler = Heap::one_pointer_filler_map();
|
| - } else {
|
| - filler = Heap::undefined_value();
|
| - }
|
| - obj->InitializeBody(map, Heap::undefined_value(), filler);
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateJSObjectFromMap(
|
| - Map* map,
|
| - PretenureFlag pretenure,
|
| - bool allocate_properties,
|
| - AllocationSite* allocation_site) {
|
| - // JSFunctions should be allocated using AllocateFunction to be
|
| - // properly initialized.
|
| - DCHECK(map->instance_type() != JS_FUNCTION_TYPE);
|
| -
|
| - // Both types of global objects should be allocated using
|
| - // AllocateGlobalObject to be properly initialized.
|
| - DCHECK(map->instance_type() != JS_GLOBAL_OBJECT_TYPE);
|
| - DCHECK(map->instance_type() != JS_BUILTINS_OBJECT_TYPE);
|
| -
|
| - // Allocate the backing storage for the properties.
|
| - FixedArray* properties;
|
| - if (allocate_properties) {
|
| - int prop_size = map->InitialPropertiesLength();
|
| - DCHECK(prop_size >= 0);
|
| - { AllocationResult allocation = AllocateFixedArray(prop_size, pretenure);
|
| - if (!allocation.To(&properties)) return allocation;
|
| - }
|
| - } else {
|
| - properties = empty_fixed_array();
|
| - }
|
| -
|
| - // Allocate the JSObject.
|
| - int size = map->instance_size();
|
| - AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, pretenure);
|
| - JSObject* js_obj;
|
| - AllocationResult allocation = Allocate(map, space, allocation_site);
|
| - if (!allocation.To(&js_obj)) return allocation;
|
| -
|
| - // Initialize the JSObject.
|
| - InitializeJSObjectFromMap(js_obj, properties, map);
|
| - DCHECK(js_obj->HasFastElements() ||
|
| - js_obj->HasExternalArrayElements() ||
|
| - js_obj->HasFixedTypedArrayElements());
|
| - return js_obj;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateJSObject(JSFunction* constructor,
|
| - PretenureFlag pretenure,
|
| - AllocationSite* allocation_site) {
|
| - DCHECK(constructor->has_initial_map());
|
| -
|
| - // Allocate the object based on the constructors initial map.
|
| - AllocationResult allocation = AllocateJSObjectFromMap(
|
| - constructor->initial_map(), pretenure, true, allocation_site);
|
| -#ifdef DEBUG
|
| - // Make sure result is NOT a global object if valid.
|
| - HeapObject* obj;
|
| - DCHECK(!allocation.To(&obj) || !obj->IsGlobalObject());
|
| -#endif
|
| - return allocation;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::CopyJSObject(JSObject* source, AllocationSite* site) {
|
| - // Never used to copy functions. If functions need to be copied we
|
| - // have to be careful to clear the literals array.
|
| - SLOW_DCHECK(!source->IsJSFunction());
|
| -
|
| - // Make the clone.
|
| - Map* map = source->map();
|
| - int object_size = map->instance_size();
|
| - HeapObject* clone;
|
| -
|
| - DCHECK(site == NULL || AllocationSite::CanTrack(map->instance_type()));
|
| -
|
| - WriteBarrierMode wb_mode = UPDATE_WRITE_BARRIER;
|
| -
|
| - // If we're forced to always allocate, we use the general allocation
|
| - // functions which may leave us with an object in old space.
|
| - if (always_allocate()) {
|
| - { AllocationResult allocation =
|
| - AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE);
|
| - if (!allocation.To(&clone)) return allocation;
|
| - }
|
| - Address clone_address = clone->address();
|
| - CopyBlock(clone_address,
|
| - source->address(),
|
| - object_size);
|
| - // Update write barrier for all fields that lie beyond the header.
|
| - RecordWrites(clone_address,
|
| - JSObject::kHeaderSize,
|
| - (object_size - JSObject::kHeaderSize) / kPointerSize);
|
| - } else {
|
| - wb_mode = SKIP_WRITE_BARRIER;
|
| -
|
| - { int adjusted_object_size = site != NULL
|
| - ? object_size + AllocationMemento::kSize
|
| - : object_size;
|
| - AllocationResult allocation =
|
| - AllocateRaw(adjusted_object_size, NEW_SPACE, NEW_SPACE);
|
| - if (!allocation.To(&clone)) return allocation;
|
| - }
|
| - SLOW_DCHECK(InNewSpace(clone));
|
| - // Since we know the clone is allocated in new space, we can copy
|
| - // the contents without worrying about updating the write barrier.
|
| - CopyBlock(clone->address(),
|
| - source->address(),
|
| - object_size);
|
| -
|
| - if (site != NULL) {
|
| - AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>(
|
| - reinterpret_cast<Address>(clone) + object_size);
|
| - InitializeAllocationMemento(alloc_memento, site);
|
| - }
|
| - }
|
| -
|
| - SLOW_DCHECK(
|
| - JSObject::cast(clone)->GetElementsKind() == source->GetElementsKind());
|
| - FixedArrayBase* elements = FixedArrayBase::cast(source->elements());
|
| - FixedArray* properties = FixedArray::cast(source->properties());
|
| - // Update elements if necessary.
|
| - if (elements->length() > 0) {
|
| - FixedArrayBase* elem;
|
| - { AllocationResult allocation;
|
| - if (elements->map() == fixed_cow_array_map()) {
|
| - allocation = FixedArray::cast(elements);
|
| - } else if (source->HasFastDoubleElements()) {
|
| - allocation = CopyFixedDoubleArray(FixedDoubleArray::cast(elements));
|
| - } else {
|
| - allocation = CopyFixedArray(FixedArray::cast(elements));
|
| - }
|
| - if (!allocation.To(&elem)) return allocation;
|
| - }
|
| - JSObject::cast(clone)->set_elements(elem, wb_mode);
|
| - }
|
| - // Update properties if necessary.
|
| - if (properties->length() > 0) {
|
| - FixedArray* prop;
|
| - { AllocationResult allocation = CopyFixedArray(properties);
|
| - if (!allocation.To(&prop)) return allocation;
|
| - }
|
| - JSObject::cast(clone)->set_properties(prop, wb_mode);
|
| - }
|
| - // Return the new clone.
|
| - return clone;
|
| -}
|
| -
|
| -
|
| -static inline void WriteOneByteData(Vector<const char> vector,
|
| - uint8_t* chars,
|
| - int len) {
|
| - // Only works for ascii.
|
| - DCHECK(vector.length() == len);
|
| - MemCopy(chars, vector.start(), len);
|
| -}
|
| -
|
| -static inline void WriteTwoByteData(Vector<const char> vector,
|
| - uint16_t* chars,
|
| - int len) {
|
| - const uint8_t* stream = reinterpret_cast<const uint8_t*>(vector.start());
|
| - unsigned stream_length = vector.length();
|
| - while (stream_length != 0) {
|
| - unsigned consumed = 0;
|
| - uint32_t c = unibrow::Utf8::ValueOf(stream, stream_length, &consumed);
|
| - DCHECK(c != unibrow::Utf8::kBadChar);
|
| - DCHECK(consumed <= stream_length);
|
| - stream_length -= consumed;
|
| - stream += consumed;
|
| - if (c > unibrow::Utf16::kMaxNonSurrogateCharCode) {
|
| - len -= 2;
|
| - if (len < 0) break;
|
| - *chars++ = unibrow::Utf16::LeadSurrogate(c);
|
| - *chars++ = unibrow::Utf16::TrailSurrogate(c);
|
| - } else {
|
| - len -= 1;
|
| - if (len < 0) break;
|
| - *chars++ = c;
|
| - }
|
| - }
|
| - DCHECK(stream_length == 0);
|
| - DCHECK(len == 0);
|
| -}
|
| -
|
| -
|
| -static inline void WriteOneByteData(String* s, uint8_t* chars, int len) {
|
| - DCHECK(s->length() == len);
|
| - String::WriteToFlat(s, chars, 0, len);
|
| -}
|
| -
|
| -
|
| -static inline void WriteTwoByteData(String* s, uint16_t* chars, int len) {
|
| - DCHECK(s->length() == len);
|
| - String::WriteToFlat(s, chars, 0, len);
|
| -}
|
| -
|
| -
|
| -template<bool is_one_byte, typename T>
|
| -AllocationResult Heap::AllocateInternalizedStringImpl(
|
| - T t, int chars, uint32_t hash_field) {
|
| - DCHECK(chars >= 0);
|
| - // Compute map and object size.
|
| - int size;
|
| - Map* map;
|
| -
|
| - DCHECK_LE(0, chars);
|
| - DCHECK_GE(String::kMaxLength, chars);
|
| - if (is_one_byte) {
|
| - map = ascii_internalized_string_map();
|
| - size = SeqOneByteString::SizeFor(chars);
|
| - } else {
|
| - map = internalized_string_map();
|
| - size = SeqTwoByteString::SizeFor(chars);
|
| - }
|
| - AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
|
| -
|
| - // Allocate string.
|
| - HeapObject* result;
|
| - { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
|
| - if (!allocation.To(&result)) return allocation;
|
| - }
|
| -
|
| - result->set_map_no_write_barrier(map);
|
| - // Set length and hash fields of the allocated string.
|
| - String* answer = String::cast(result);
|
| - answer->set_length(chars);
|
| - answer->set_hash_field(hash_field);
|
| -
|
| - DCHECK_EQ(size, answer->Size());
|
| -
|
| - if (is_one_byte) {
|
| - WriteOneByteData(t, SeqOneByteString::cast(answer)->GetChars(), chars);
|
| - } else {
|
| - WriteTwoByteData(t, SeqTwoByteString::cast(answer)->GetChars(), chars);
|
| - }
|
| - return answer;
|
| -}
|
| -
|
| -
|
| -// Need explicit instantiations.
|
| -template
|
| -AllocationResult Heap::AllocateInternalizedStringImpl<true>(
|
| - String*, int, uint32_t);
|
| -template
|
| -AllocationResult Heap::AllocateInternalizedStringImpl<false>(
|
| - String*, int, uint32_t);
|
| -template
|
| -AllocationResult Heap::AllocateInternalizedStringImpl<false>(
|
| - Vector<const char>, int, uint32_t);
|
| -
|
| -
|
| -AllocationResult Heap::AllocateRawOneByteString(int length,
|
| - PretenureFlag pretenure) {
|
| - DCHECK_LE(0, length);
|
| - DCHECK_GE(String::kMaxLength, length);
|
| - int size = SeqOneByteString::SizeFor(length);
|
| - DCHECK(size <= SeqOneByteString::kMaxSize);
|
| - AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
|
| -
|
| - HeapObject* result;
|
| - { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
|
| - if (!allocation.To(&result)) return allocation;
|
| - }
|
| -
|
| - // Partially initialize the object.
|
| - result->set_map_no_write_barrier(ascii_string_map());
|
| - String::cast(result)->set_length(length);
|
| - String::cast(result)->set_hash_field(String::kEmptyHashField);
|
| - DCHECK_EQ(size, HeapObject::cast(result)->Size());
|
| -
|
| - return result;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateRawTwoByteString(int length,
|
| - PretenureFlag pretenure) {
|
| - DCHECK_LE(0, length);
|
| - DCHECK_GE(String::kMaxLength, length);
|
| - int size = SeqTwoByteString::SizeFor(length);
|
| - DCHECK(size <= SeqTwoByteString::kMaxSize);
|
| - AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
|
| -
|
| - HeapObject* result;
|
| - { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
|
| - if (!allocation.To(&result)) return allocation;
|
| - }
|
| -
|
| - // Partially initialize the object.
|
| - result->set_map_no_write_barrier(string_map());
|
| - String::cast(result)->set_length(length);
|
| - String::cast(result)->set_hash_field(String::kEmptyHashField);
|
| - DCHECK_EQ(size, HeapObject::cast(result)->Size());
|
| - return result;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateEmptyFixedArray() {
|
| - int size = FixedArray::SizeFor(0);
|
| - HeapObject* result;
|
| - { AllocationResult allocation =
|
| - AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
|
| - if (!allocation.To(&result)) return allocation;
|
| - }
|
| - // Initialize the object.
|
| - result->set_map_no_write_barrier(fixed_array_map());
|
| - FixedArray::cast(result)->set_length(0);
|
| - return result;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateEmptyExternalArray(
|
| - ExternalArrayType array_type) {
|
| - return AllocateExternalArray(0, array_type, NULL, TENURED);
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::CopyAndTenureFixedCOWArray(FixedArray* src) {
|
| - if (!InNewSpace(src)) {
|
| - return src;
|
| - }
|
| -
|
| - int len = src->length();
|
| - HeapObject* obj;
|
| - { AllocationResult allocation = AllocateRawFixedArray(len, TENURED);
|
| - if (!allocation.To(&obj)) return allocation;
|
| - }
|
| - obj->set_map_no_write_barrier(fixed_array_map());
|
| - FixedArray* result = FixedArray::cast(obj);
|
| - result->set_length(len);
|
| -
|
| - // Copy the content
|
| - DisallowHeapAllocation no_gc;
|
| - WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
|
| - for (int i = 0; i < len; i++) result->set(i, src->get(i), mode);
|
| -
|
| - // TODO(mvstanton): The map is set twice because of protection against calling
|
| - // set() on a COW FixedArray. Issue v8:3221 created to track this, and
|
| - // we might then be able to remove this whole method.
|
| - HeapObject::cast(obj)->set_map_no_write_barrier(fixed_cow_array_map());
|
| - return result;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateEmptyFixedTypedArray(
|
| - ExternalArrayType array_type) {
|
| - return AllocateFixedTypedArray(0, array_type, TENURED);
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::CopyFixedArrayWithMap(FixedArray* src, Map* map) {
|
| - int len = src->length();
|
| - HeapObject* obj;
|
| - { AllocationResult allocation = AllocateRawFixedArray(len, NOT_TENURED);
|
| - if (!allocation.To(&obj)) return allocation;
|
| - }
|
| - if (InNewSpace(obj)) {
|
| - obj->set_map_no_write_barrier(map);
|
| - CopyBlock(obj->address() + kPointerSize,
|
| - src->address() + kPointerSize,
|
| - FixedArray::SizeFor(len) - kPointerSize);
|
| - return obj;
|
| - }
|
| - obj->set_map_no_write_barrier(map);
|
| - FixedArray* result = FixedArray::cast(obj);
|
| - result->set_length(len);
|
| -
|
| - // Copy the content
|
| - DisallowHeapAllocation no_gc;
|
| - WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
|
| - for (int i = 0; i < len; i++) result->set(i, src->get(i), mode);
|
| - return result;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::CopyFixedDoubleArrayWithMap(FixedDoubleArray* src,
|
| - Map* map) {
|
| - int len = src->length();
|
| - HeapObject* obj;
|
| - { AllocationResult allocation = AllocateRawFixedDoubleArray(len, NOT_TENURED);
|
| - if (!allocation.To(&obj)) return allocation;
|
| - }
|
| - obj->set_map_no_write_barrier(map);
|
| - CopyBlock(
|
| - obj->address() + FixedDoubleArray::kLengthOffset,
|
| - src->address() + FixedDoubleArray::kLengthOffset,
|
| - FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset);
|
| - return obj;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::CopyConstantPoolArrayWithMap(ConstantPoolArray* src,
|
| - Map* map) {
|
| - HeapObject* obj;
|
| - if (src->is_extended_layout()) {
|
| - ConstantPoolArray::NumberOfEntries small(src,
|
| - ConstantPoolArray::SMALL_SECTION);
|
| - ConstantPoolArray::NumberOfEntries extended(src,
|
| - ConstantPoolArray::EXTENDED_SECTION);
|
| - AllocationResult allocation =
|
| - AllocateExtendedConstantPoolArray(small, extended);
|
| - if (!allocation.To(&obj)) return allocation;
|
| - } else {
|
| - ConstantPoolArray::NumberOfEntries small(src,
|
| - ConstantPoolArray::SMALL_SECTION);
|
| - AllocationResult allocation = AllocateConstantPoolArray(small);
|
| - if (!allocation.To(&obj)) return allocation;
|
| - }
|
| - obj->set_map_no_write_barrier(map);
|
| - CopyBlock(
|
| - obj->address() + ConstantPoolArray::kFirstEntryOffset,
|
| - src->address() + ConstantPoolArray::kFirstEntryOffset,
|
| - src->size() - ConstantPoolArray::kFirstEntryOffset);
|
| - return obj;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateRawFixedArray(int length,
|
| - PretenureFlag pretenure) {
|
| - if (length < 0 || length > FixedArray::kMaxLength) {
|
| - v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true);
|
| - }
|
| - int size = FixedArray::SizeFor(length);
|
| - AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, pretenure);
|
| -
|
| - return AllocateRaw(size, space, OLD_POINTER_SPACE);
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateFixedArrayWithFiller(int length,
|
| - PretenureFlag pretenure,
|
| - Object* filler) {
|
| - DCHECK(length >= 0);
|
| - DCHECK(empty_fixed_array()->IsFixedArray());
|
| - if (length == 0) return empty_fixed_array();
|
| -
|
| - DCHECK(!InNewSpace(filler));
|
| - HeapObject* result;
|
| - { AllocationResult allocation = AllocateRawFixedArray(length, pretenure);
|
| - if (!allocation.To(&result)) return allocation;
|
| - }
|
| -
|
| - result->set_map_no_write_barrier(fixed_array_map());
|
| - FixedArray* array = FixedArray::cast(result);
|
| - array->set_length(length);
|
| - MemsetPointer(array->data_start(), filler, length);
|
| - return array;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateFixedArray(int length, PretenureFlag pretenure) {
|
| - return AllocateFixedArrayWithFiller(length, pretenure, undefined_value());
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateUninitializedFixedArray(int length) {
|
| - if (length == 0) return empty_fixed_array();
|
| -
|
| - HeapObject* obj;
|
| - { AllocationResult allocation = AllocateRawFixedArray(length, NOT_TENURED);
|
| - if (!allocation.To(&obj)) return allocation;
|
| - }
|
| -
|
| - obj->set_map_no_write_barrier(fixed_array_map());
|
| - FixedArray::cast(obj)->set_length(length);
|
| - return obj;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateUninitializedFixedDoubleArray(
|
| - int length,
|
| - PretenureFlag pretenure) {
|
| - if (length == 0) return empty_fixed_array();
|
| -
|
| - HeapObject* elements;
|
| - AllocationResult allocation = AllocateRawFixedDoubleArray(length, pretenure);
|
| - if (!allocation.To(&elements)) return allocation;
|
| -
|
| - elements->set_map_no_write_barrier(fixed_double_array_map());
|
| - FixedDoubleArray::cast(elements)->set_length(length);
|
| - return elements;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateRawFixedDoubleArray(int length,
|
| - PretenureFlag pretenure) {
|
| - if (length < 0 || length > FixedDoubleArray::kMaxLength) {
|
| - v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true);
|
| - }
|
| - int size = FixedDoubleArray::SizeFor(length);
|
| -#ifndef V8_HOST_ARCH_64_BIT
|
| - size += kPointerSize;
|
| -#endif
|
| - AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
|
| -
|
| - HeapObject* object;
|
| - { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
|
| - if (!allocation.To(&object)) return allocation;
|
| - }
|
| -
|
| - return EnsureDoubleAligned(this, object, size);
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateConstantPoolArray(
|
| - const ConstantPoolArray::NumberOfEntries& small) {
|
| - CHECK(small.are_in_range(0, ConstantPoolArray::kMaxSmallEntriesPerType));
|
| - int size = ConstantPoolArray::SizeFor(small);
|
| -#ifndef V8_HOST_ARCH_64_BIT
|
| - size += kPointerSize;
|
| -#endif
|
| - AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, TENURED);
|
| -
|
| - HeapObject* object;
|
| - { AllocationResult allocation = AllocateRaw(size, space, OLD_POINTER_SPACE);
|
| - if (!allocation.To(&object)) return allocation;
|
| - }
|
| - object = EnsureDoubleAligned(this, object, size);
|
| - object->set_map_no_write_barrier(constant_pool_array_map());
|
| -
|
| - ConstantPoolArray* constant_pool = ConstantPoolArray::cast(object);
|
| - constant_pool->Init(small);
|
| - constant_pool->ClearPtrEntries(isolate());
|
| - return constant_pool;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateExtendedConstantPoolArray(
|
| - const ConstantPoolArray::NumberOfEntries& small,
|
| - const ConstantPoolArray::NumberOfEntries& extended) {
|
| - CHECK(small.are_in_range(0, ConstantPoolArray::kMaxSmallEntriesPerType));
|
| - CHECK(extended.are_in_range(0, kMaxInt));
|
| - int size = ConstantPoolArray::SizeForExtended(small, extended);
|
| -#ifndef V8_HOST_ARCH_64_BIT
|
| - size += kPointerSize;
|
| -#endif
|
| - AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, TENURED);
|
| -
|
| - HeapObject* object;
|
| - { AllocationResult allocation = AllocateRaw(size, space, OLD_POINTER_SPACE);
|
| - if (!allocation.To(&object)) return allocation;
|
| - }
|
| - object = EnsureDoubleAligned(this, object, size);
|
| - object->set_map_no_write_barrier(constant_pool_array_map());
|
| -
|
| - ConstantPoolArray* constant_pool = ConstantPoolArray::cast(object);
|
| - constant_pool->InitExtended(small, extended);
|
| - constant_pool->ClearPtrEntries(isolate());
|
| - return constant_pool;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateEmptyConstantPoolArray() {
|
| - ConstantPoolArray::NumberOfEntries small(0, 0, 0, 0);
|
| - int size = ConstantPoolArray::SizeFor(small);
|
| - HeapObject* result;
|
| - { AllocationResult allocation =
|
| - AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
|
| - if (!allocation.To(&result)) return allocation;
|
| - }
|
| - result->set_map_no_write_barrier(constant_pool_array_map());
|
| - ConstantPoolArray::cast(result)->Init(small);
|
| - return result;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateSymbol() {
|
| - // Statically ensure that it is safe to allocate symbols in paged spaces.
|
| - STATIC_ASSERT(Symbol::kSize <= Page::kMaxRegularHeapObjectSize);
|
| -
|
| - HeapObject* result;
|
| - AllocationResult allocation =
|
| - AllocateRaw(Symbol::kSize, OLD_POINTER_SPACE, OLD_POINTER_SPACE);
|
| - if (!allocation.To(&result)) return allocation;
|
| -
|
| - result->set_map_no_write_barrier(symbol_map());
|
| -
|
| - // Generate a random hash value.
|
| - int hash;
|
| - int attempts = 0;
|
| - do {
|
| - hash = isolate()->random_number_generator()->NextInt() & Name::kHashBitMask;
|
| - attempts++;
|
| - } while (hash == 0 && attempts < 30);
|
| - if (hash == 0) hash = 1; // never return 0
|
| -
|
| - Symbol::cast(result)->set_hash_field(
|
| - Name::kIsNotArrayIndexMask | (hash << Name::kHashShift));
|
| - Symbol::cast(result)->set_name(undefined_value());
|
| - Symbol::cast(result)->set_flags(Smi::FromInt(0));
|
| -
|
| - DCHECK(!Symbol::cast(result)->is_private());
|
| - return result;
|
| -}
|
| -
|
| -
|
| -AllocationResult Heap::AllocateStruct(InstanceType type) {
|
| - Map* map;
|
| - switch (type) {
|
| -#define MAKE_CASE(NAME, Name, name) \
|
| - case NAME##_TYPE: map = name##_map(); break;
|
| -STRUCT_LIST(MAKE_CASE)
|
| -#undef MAKE_CASE
|
| - default:
|
| - UNREACHABLE();
|
| - return exception();
|
| - }
|
| - int size = map->instance_size();
|
| - AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, TENURED);
|
| - Struct* result;
|
| - { AllocationResult allocation = Allocate(map, space);
|
| - if (!allocation.To(&result)) return allocation;
|
| - }
|
| - result->InitializeBody(size);
|
| - return result;
|
| -}
|
| -
|
| -
|
| -bool Heap::IsHeapIterable() {
|
| - // TODO(hpayer): This function is not correct. Allocation folding in old
|
| - // space breaks the iterability.
|
| - return (old_pointer_space()->swept_precisely() &&
|
| - old_data_space()->swept_precisely() &&
|
| - new_space_top_after_last_gc_ == new_space()->top());
|
| -}
|
| -
|
| -
|
| -void Heap::MakeHeapIterable() {
|
| - DCHECK(AllowHeapAllocation::IsAllowed());
|
| - if (!IsHeapIterable()) {
|
| - CollectAllGarbage(kMakeHeapIterableMask, "Heap::MakeHeapIterable");
|
| - }
|
| - if (mark_compact_collector()->sweeping_in_progress()) {
|
| - mark_compact_collector()->EnsureSweepingCompleted();
|
| - }
|
| - DCHECK(IsHeapIterable());
|
| -}
|
| -
|
| -
|
| -void Heap::AdvanceIdleIncrementalMarking(intptr_t step_size) {
|
| - incremental_marking()->Step(step_size,
|
| - IncrementalMarking::NO_GC_VIA_STACK_GUARD);
|
| -
|
| - if (incremental_marking()->IsComplete()) {
|
| - bool uncommit = false;
|
| - if (gc_count_at_last_idle_gc_ == gc_count_) {
|
| - // No GC since the last full GC, the mutator is probably not active.
|
| - isolate_->compilation_cache()->Clear();
|
| - uncommit = true;
|
| - }
|
| - CollectAllGarbage(kReduceMemoryFootprintMask,
|
| - "idle notification: finalize incremental");
|
| - mark_sweeps_since_idle_round_started_++;
|
| - gc_count_at_last_idle_gc_ = gc_count_;
|
| - if (uncommit) {
|
| - new_space_.Shrink();
|
| - UncommitFromSpace();
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -bool Heap::IdleNotification(int hint) {
|
| - // If incremental marking is off, we do not perform idle notification.
|
| - if (!FLAG_incremental_marking) return true;
|
| -
|
| - // Hints greater than this value indicate that
|
| - // the embedder is requesting a lot of GC work.
|
| - const int kMaxHint = 1000;
|
| - const int kMinHintForIncrementalMarking = 10;
|
| - // Minimal hint that allows to do full GC.
|
| - const int kMinHintForFullGC = 100;
|
| - intptr_t size_factor = Min(Max(hint, 20), kMaxHint) / 4;
|
| - // The size factor is in range [5..250]. The numbers here are chosen from
|
| - // experiments. If you changes them, make sure to test with
|
| - // chrome/performance_ui_tests --gtest_filter="GeneralMixMemoryTest.*
|
| - intptr_t step_size =
|
| - size_factor * IncrementalMarking::kAllocatedThreshold;
|
| -
|
| - isolate()->counters()->gc_idle_time_allotted_in_ms()->AddSample(hint);
|
| - HistogramTimerScope idle_notification_scope(
|
| - isolate_->counters()->gc_idle_notification());
|
| -
|
| - if (contexts_disposed_ > 0) {
|
| - contexts_disposed_ = 0;
|
| - int mark_sweep_time = Min(TimeMarkSweepWouldTakeInMs(), 1000);
|
| - if (hint >= mark_sweep_time && !FLAG_expose_gc &&
|
| - incremental_marking()->IsStopped()) {
|
| - HistogramTimerScope scope(isolate_->counters()->gc_context());
|
| - CollectAllGarbage(kReduceMemoryFootprintMask,
|
| - "idle notification: contexts disposed");
|
| - } else {
|
| - AdvanceIdleIncrementalMarking(step_size);
|
| - }
|
| -
|
| - // After context disposal there is likely a lot of garbage remaining, reset
|
| - // the idle notification counters in order to trigger more incremental GCs
|
| - // on subsequent idle notifications.
|
| - StartIdleRound();
|
| - return false;
|
| - }
|
| -
|
| - // By doing small chunks of GC work in each IdleNotification,
|
| - // perform a round of incremental GCs and after that wait until
|
| - // the mutator creates enough garbage to justify a new round.
|
| - // An incremental GC progresses as follows:
|
| - // 1. many incremental marking steps,
|
| - // 2. one old space mark-sweep-compact,
|
| - // Use mark-sweep-compact events to count incremental GCs in a round.
|
| -
|
| - if (mark_sweeps_since_idle_round_started_ >= kMaxMarkSweepsInIdleRound) {
|
| - if (EnoughGarbageSinceLastIdleRound()) {
|
| - StartIdleRound();
|
| - } else {
|
| - return true;
|
| - }
|
| - }
|
| -
|
| - int remaining_mark_sweeps = kMaxMarkSweepsInIdleRound -
|
| - mark_sweeps_since_idle_round_started_;
|
| -
|
| - if (incremental_marking()->IsStopped()) {
|
| - // If there are no more than two GCs left in this idle round and we are
|
| - // allowed to do a full GC, then make those GCs full in order to compact
|
| - // the code space.
|
| - // TODO(ulan): Once we enable code compaction for incremental marking,
|
| - // we can get rid of this special case and always start incremental marking.
|
| - if (remaining_mark_sweeps <= 2 && hint >= kMinHintForFullGC) {
|
| - CollectAllGarbage(kReduceMemoryFootprintMask,
|
| - "idle notification: finalize idle round");
|
| - mark_sweeps_since_idle_round_started_++;
|
| - } else if (hint > kMinHintForIncrementalMarking) {
|
| - incremental_marking()->Start();
|
| - }
|
| - }
|
| - if (!incremental_marking()->IsStopped() &&
|
| - hint > kMinHintForIncrementalMarking) {
|
| - AdvanceIdleIncrementalMarking(step_size);
|
| - }
|
| -
|
| - if (mark_sweeps_since_idle_round_started_ >= kMaxMarkSweepsInIdleRound) {
|
| - FinishIdleRound();
|
| - return true;
|
| - }
|
| -
|
| - // If the IdleNotifcation is called with a large hint we will wait for
|
| - // the sweepter threads here.
|
| - if (hint >= kMinHintForFullGC &&
|
| - mark_compact_collector()->sweeping_in_progress()) {
|
| - mark_compact_collector()->EnsureSweepingCompleted();
|
| - }
|
| -
|
| - return false;
|
| -}
|
| -
|
| -
|
| -#ifdef DEBUG
|
| -
|
| -void Heap::Print() {
|
| - if (!HasBeenSetUp()) return;
|
| - isolate()->PrintStack(stdout);
|
| - AllSpaces spaces(this);
|
| - for (Space* space = spaces.next(); space != NULL; space = spaces.next()) {
|
| - space->Print();
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::ReportCodeStatistics(const char* title) {
|
| - PrintF(">>>>>> Code Stats (%s) >>>>>>\n", title);
|
| - PagedSpace::ResetCodeStatistics(isolate());
|
| - // We do not look for code in new space, map space, or old space. If code
|
| - // somehow ends up in those spaces, we would miss it here.
|
| - code_space_->CollectCodeStatistics();
|
| - lo_space_->CollectCodeStatistics();
|
| - PagedSpace::ReportCodeStatistics(isolate());
|
| -}
|
| -
|
| -
|
| -// This function expects that NewSpace's allocated objects histogram is
|
| -// populated (via a call to CollectStatistics or else as a side effect of a
|
| -// just-completed scavenge collection).
|
| -void Heap::ReportHeapStatistics(const char* title) {
|
| - USE(title);
|
| - PrintF(">>>>>> =============== %s (%d) =============== >>>>>>\n",
|
| - title, gc_count_);
|
| - PrintF("old_generation_allocation_limit_ %" V8_PTR_PREFIX "d\n",
|
| - old_generation_allocation_limit_);
|
| -
|
| - PrintF("\n");
|
| - PrintF("Number of handles : %d\n", HandleScope::NumberOfHandles(isolate_));
|
| - isolate_->global_handles()->PrintStats();
|
| - PrintF("\n");
|
| -
|
| - PrintF("Heap statistics : ");
|
| - isolate_->memory_allocator()->ReportStatistics();
|
| - PrintF("To space : ");
|
| - new_space_.ReportStatistics();
|
| - PrintF("Old pointer space : ");
|
| - old_pointer_space_->ReportStatistics();
|
| - PrintF("Old data space : ");
|
| - old_data_space_->ReportStatistics();
|
| - PrintF("Code space : ");
|
| - code_space_->ReportStatistics();
|
| - PrintF("Map space : ");
|
| - map_space_->ReportStatistics();
|
| - PrintF("Cell space : ");
|
| - cell_space_->ReportStatistics();
|
| - PrintF("PropertyCell space : ");
|
| - property_cell_space_->ReportStatistics();
|
| - PrintF("Large object space : ");
|
| - lo_space_->ReportStatistics();
|
| - PrintF(">>>>>> ========================================= >>>>>>\n");
|
| -}
|
| -
|
| -#endif // DEBUG
|
| -
|
| -bool Heap::Contains(HeapObject* value) {
|
| - return Contains(value->address());
|
| -}
|
| -
|
| -
|
| -bool Heap::Contains(Address addr) {
|
| - if (isolate_->memory_allocator()->IsOutsideAllocatedSpace(addr)) return false;
|
| - return HasBeenSetUp() &&
|
| - (new_space_.ToSpaceContains(addr) ||
|
| - old_pointer_space_->Contains(addr) ||
|
| - old_data_space_->Contains(addr) ||
|
| - code_space_->Contains(addr) ||
|
| - map_space_->Contains(addr) ||
|
| - cell_space_->Contains(addr) ||
|
| - property_cell_space_->Contains(addr) ||
|
| - lo_space_->SlowContains(addr));
|
| -}
|
| -
|
| -
|
| -bool Heap::InSpace(HeapObject* value, AllocationSpace space) {
|
| - return InSpace(value->address(), space);
|
| -}
|
| -
|
| -
|
| -bool Heap::InSpace(Address addr, AllocationSpace space) {
|
| - if (isolate_->memory_allocator()->IsOutsideAllocatedSpace(addr)) return false;
|
| - if (!HasBeenSetUp()) return false;
|
| -
|
| - switch (space) {
|
| - case NEW_SPACE:
|
| - return new_space_.ToSpaceContains(addr);
|
| - case OLD_POINTER_SPACE:
|
| - return old_pointer_space_->Contains(addr);
|
| - case OLD_DATA_SPACE:
|
| - return old_data_space_->Contains(addr);
|
| - case CODE_SPACE:
|
| - return code_space_->Contains(addr);
|
| - case MAP_SPACE:
|
| - return map_space_->Contains(addr);
|
| - case CELL_SPACE:
|
| - return cell_space_->Contains(addr);
|
| - case PROPERTY_CELL_SPACE:
|
| - return property_cell_space_->Contains(addr);
|
| - case LO_SPACE:
|
| - return lo_space_->SlowContains(addr);
|
| - case INVALID_SPACE:
|
| - break;
|
| - }
|
| - UNREACHABLE();
|
| - return false;
|
| -}
|
| -
|
| -
|
| -#ifdef VERIFY_HEAP
|
| -void Heap::Verify() {
|
| - CHECK(HasBeenSetUp());
|
| - HandleScope scope(isolate());
|
| -
|
| - store_buffer()->Verify();
|
| -
|
| - if (mark_compact_collector()->sweeping_in_progress()) {
|
| - // We have to wait here for the sweeper threads to have an iterable heap.
|
| - mark_compact_collector()->EnsureSweepingCompleted();
|
| - }
|
| -
|
| - VerifyPointersVisitor visitor;
|
| - IterateRoots(&visitor, VISIT_ONLY_STRONG);
|
| -
|
| - VerifySmisVisitor smis_visitor;
|
| - IterateSmiRoots(&smis_visitor);
|
| -
|
| - new_space_.Verify();
|
| -
|
| - old_pointer_space_->Verify(&visitor);
|
| - map_space_->Verify(&visitor);
|
| -
|
| - VerifyPointersVisitor no_dirty_regions_visitor;
|
| - old_data_space_->Verify(&no_dirty_regions_visitor);
|
| - code_space_->Verify(&no_dirty_regions_visitor);
|
| - cell_space_->Verify(&no_dirty_regions_visitor);
|
| - property_cell_space_->Verify(&no_dirty_regions_visitor);
|
| -
|
| - lo_space_->Verify();
|
| -}
|
| -#endif
|
| -
|
| -
|
| -void Heap::ZapFromSpace() {
|
| - NewSpacePageIterator it(new_space_.FromSpaceStart(),
|
| - new_space_.FromSpaceEnd());
|
| - while (it.has_next()) {
|
| - NewSpacePage* page = it.next();
|
| - for (Address cursor = page->area_start(), limit = page->area_end();
|
| - cursor < limit;
|
| - cursor += kPointerSize) {
|
| - Memory::Address_at(cursor) = kFromSpaceZapValue;
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::IterateAndMarkPointersToFromSpace(Address start,
|
| - Address end,
|
| - ObjectSlotCallback callback) {
|
| - Address slot_address = start;
|
| -
|
| - // We are not collecting slots on new space objects during mutation
|
| - // thus we have to scan for pointers to evacuation candidates when we
|
| - // promote objects. But we should not record any slots in non-black
|
| - // objects. Grey object's slots would be rescanned.
|
| - // White object might not survive until the end of collection
|
| - // it would be a violation of the invariant to record it's slots.
|
| - bool record_slots = false;
|
| - if (incremental_marking()->IsCompacting()) {
|
| - MarkBit mark_bit = Marking::MarkBitFrom(HeapObject::FromAddress(start));
|
| - record_slots = Marking::IsBlack(mark_bit);
|
| - }
|
| -
|
| - while (slot_address < end) {
|
| - Object** slot = reinterpret_cast<Object**>(slot_address);
|
| - Object* object = *slot;
|
| - // If the store buffer becomes overfull we mark pages as being exempt from
|
| - // the store buffer. These pages are scanned to find pointers that point
|
| - // to the new space. In that case we may hit newly promoted objects and
|
| - // fix the pointers before the promotion queue gets to them. Thus the 'if'.
|
| - if (object->IsHeapObject()) {
|
| - if (Heap::InFromSpace(object)) {
|
| - callback(reinterpret_cast<HeapObject**>(slot),
|
| - HeapObject::cast(object));
|
| - Object* new_object = *slot;
|
| - if (InNewSpace(new_object)) {
|
| - SLOW_DCHECK(Heap::InToSpace(new_object));
|
| - SLOW_DCHECK(new_object->IsHeapObject());
|
| - store_buffer_.EnterDirectlyIntoStoreBuffer(
|
| - reinterpret_cast<Address>(slot));
|
| - }
|
| - SLOW_DCHECK(!MarkCompactCollector::IsOnEvacuationCandidate(new_object));
|
| - } else if (record_slots &&
|
| - MarkCompactCollector::IsOnEvacuationCandidate(object)) {
|
| - mark_compact_collector()->RecordSlot(slot, slot, object);
|
| - }
|
| - }
|
| - slot_address += kPointerSize;
|
| - }
|
| -}
|
| -
|
| -
|
| -#ifdef DEBUG
|
| -typedef bool (*CheckStoreBufferFilter)(Object** addr);
|
| -
|
| -
|
| -bool IsAMapPointerAddress(Object** addr) {
|
| - uintptr_t a = reinterpret_cast<uintptr_t>(addr);
|
| - int mod = a % Map::kSize;
|
| - return mod >= Map::kPointerFieldsBeginOffset &&
|
| - mod < Map::kPointerFieldsEndOffset;
|
| -}
|
| -
|
| -
|
| -bool EverythingsAPointer(Object** addr) {
|
| - return true;
|
| -}
|
| -
|
| -
|
| -static void CheckStoreBuffer(Heap* heap,
|
| - Object** current,
|
| - Object** limit,
|
| - Object**** store_buffer_position,
|
| - Object*** store_buffer_top,
|
| - CheckStoreBufferFilter filter,
|
| - Address special_garbage_start,
|
| - Address special_garbage_end) {
|
| - Map* free_space_map = heap->free_space_map();
|
| - for ( ; current < limit; current++) {
|
| - Object* o = *current;
|
| - Address current_address = reinterpret_cast<Address>(current);
|
| - // Skip free space.
|
| - if (o == free_space_map) {
|
| - Address current_address = reinterpret_cast<Address>(current);
|
| - FreeSpace* free_space =
|
| - FreeSpace::cast(HeapObject::FromAddress(current_address));
|
| - int skip = free_space->Size();
|
| - DCHECK(current_address + skip <= reinterpret_cast<Address>(limit));
|
| - DCHECK(skip > 0);
|
| - current_address += skip - kPointerSize;
|
| - current = reinterpret_cast<Object**>(current_address);
|
| - continue;
|
| - }
|
| - // Skip the current linear allocation space between top and limit which is
|
| - // unmarked with the free space map, but can contain junk.
|
| - if (current_address == special_garbage_start &&
|
| - special_garbage_end != special_garbage_start) {
|
| - current_address = special_garbage_end - kPointerSize;
|
| - current = reinterpret_cast<Object**>(current_address);
|
| - continue;
|
| - }
|
| - if (!(*filter)(current)) continue;
|
| - DCHECK(current_address < special_garbage_start ||
|
| - current_address >= special_garbage_end);
|
| - DCHECK(reinterpret_cast<uintptr_t>(o) != kFreeListZapValue);
|
| - // We have to check that the pointer does not point into new space
|
| - // without trying to cast it to a heap object since the hash field of
|
| - // a string can contain values like 1 and 3 which are tagged null
|
| - // pointers.
|
| - if (!heap->InNewSpace(o)) continue;
|
| - while (**store_buffer_position < current &&
|
| - *store_buffer_position < store_buffer_top) {
|
| - (*store_buffer_position)++;
|
| - }
|
| - if (**store_buffer_position != current ||
|
| - *store_buffer_position == store_buffer_top) {
|
| - Object** obj_start = current;
|
| - while (!(*obj_start)->IsMap()) obj_start--;
|
| - UNREACHABLE();
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -// Check that the store buffer contains all intergenerational pointers by
|
| -// scanning a page and ensuring that all pointers to young space are in the
|
| -// store buffer.
|
| -void Heap::OldPointerSpaceCheckStoreBuffer() {
|
| - OldSpace* space = old_pointer_space();
|
| - PageIterator pages(space);
|
| -
|
| - store_buffer()->SortUniq();
|
| -
|
| - while (pages.has_next()) {
|
| - Page* page = pages.next();
|
| - Object** current = reinterpret_cast<Object**>(page->area_start());
|
| -
|
| - Address end = page->area_end();
|
| -
|
| - Object*** store_buffer_position = store_buffer()->Start();
|
| - Object*** store_buffer_top = store_buffer()->Top();
|
| -
|
| - Object** limit = reinterpret_cast<Object**>(end);
|
| - CheckStoreBuffer(this,
|
| - current,
|
| - limit,
|
| - &store_buffer_position,
|
| - store_buffer_top,
|
| - &EverythingsAPointer,
|
| - space->top(),
|
| - space->limit());
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::MapSpaceCheckStoreBuffer() {
|
| - MapSpace* space = map_space();
|
| - PageIterator pages(space);
|
| -
|
| - store_buffer()->SortUniq();
|
| -
|
| - while (pages.has_next()) {
|
| - Page* page = pages.next();
|
| - Object** current = reinterpret_cast<Object**>(page->area_start());
|
| -
|
| - Address end = page->area_end();
|
| -
|
| - Object*** store_buffer_position = store_buffer()->Start();
|
| - Object*** store_buffer_top = store_buffer()->Top();
|
| -
|
| - Object** limit = reinterpret_cast<Object**>(end);
|
| - CheckStoreBuffer(this,
|
| - current,
|
| - limit,
|
| - &store_buffer_position,
|
| - store_buffer_top,
|
| - &IsAMapPointerAddress,
|
| - space->top(),
|
| - space->limit());
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::LargeObjectSpaceCheckStoreBuffer() {
|
| - LargeObjectIterator it(lo_space());
|
| - for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
|
| - // We only have code, sequential strings, or fixed arrays in large
|
| - // object space, and only fixed arrays can possibly contain pointers to
|
| - // the young generation.
|
| - if (object->IsFixedArray()) {
|
| - Object*** store_buffer_position = store_buffer()->Start();
|
| - Object*** store_buffer_top = store_buffer()->Top();
|
| - Object** current = reinterpret_cast<Object**>(object->address());
|
| - Object** limit =
|
| - reinterpret_cast<Object**>(object->address() + object->Size());
|
| - CheckStoreBuffer(this,
|
| - current,
|
| - limit,
|
| - &store_buffer_position,
|
| - store_buffer_top,
|
| - &EverythingsAPointer,
|
| - NULL,
|
| - NULL);
|
| - }
|
| - }
|
| -}
|
| -#endif
|
| -
|
| -
|
| -void Heap::IterateRoots(ObjectVisitor* v, VisitMode mode) {
|
| - IterateStrongRoots(v, mode);
|
| - IterateWeakRoots(v, mode);
|
| -}
|
| -
|
| -
|
| -void Heap::IterateWeakRoots(ObjectVisitor* v, VisitMode mode) {
|
| - v->VisitPointer(reinterpret_cast<Object**>(&roots_[kStringTableRootIndex]));
|
| - v->Synchronize(VisitorSynchronization::kStringTable);
|
| - if (mode != VISIT_ALL_IN_SCAVENGE &&
|
| - mode != VISIT_ALL_IN_SWEEP_NEWSPACE) {
|
| - // Scavenge collections have special processing for this.
|
| - external_string_table_.Iterate(v);
|
| - }
|
| - v->Synchronize(VisitorSynchronization::kExternalStringsTable);
|
| -}
|
| -
|
| -
|
| -void Heap::IterateSmiRoots(ObjectVisitor* v) {
|
| - // Acquire execution access since we are going to read stack limit values.
|
| - ExecutionAccess access(isolate());
|
| - v->VisitPointers(&roots_[kSmiRootsStart], &roots_[kRootListLength]);
|
| - v->Synchronize(VisitorSynchronization::kSmiRootList);
|
| -}
|
| -
|
| -
|
| -void Heap::IterateStrongRoots(ObjectVisitor* v, VisitMode mode) {
|
| - v->VisitPointers(&roots_[0], &roots_[kStrongRootListLength]);
|
| - v->Synchronize(VisitorSynchronization::kStrongRootList);
|
| -
|
| - v->VisitPointer(BitCast<Object**>(&hidden_string_));
|
| - v->Synchronize(VisitorSynchronization::kInternalizedString);
|
| -
|
| - isolate_->bootstrapper()->Iterate(v);
|
| - v->Synchronize(VisitorSynchronization::kBootstrapper);
|
| - isolate_->Iterate(v);
|
| - v->Synchronize(VisitorSynchronization::kTop);
|
| - Relocatable::Iterate(isolate_, v);
|
| - v->Synchronize(VisitorSynchronization::kRelocatable);
|
| -
|
| - if (isolate_->deoptimizer_data() != NULL) {
|
| - isolate_->deoptimizer_data()->Iterate(v);
|
| - }
|
| - v->Synchronize(VisitorSynchronization::kDebug);
|
| - isolate_->compilation_cache()->Iterate(v);
|
| - v->Synchronize(VisitorSynchronization::kCompilationCache);
|
| -
|
| - // Iterate over local handles in handle scopes.
|
| - isolate_->handle_scope_implementer()->Iterate(v);
|
| - isolate_->IterateDeferredHandles(v);
|
| - v->Synchronize(VisitorSynchronization::kHandleScope);
|
| -
|
| - // Iterate over the builtin code objects and code stubs in the
|
| - // heap. Note that it is not necessary to iterate over code objects
|
| - // on scavenge collections.
|
| - if (mode != VISIT_ALL_IN_SCAVENGE) {
|
| - isolate_->builtins()->IterateBuiltins(v);
|
| - }
|
| - v->Synchronize(VisitorSynchronization::kBuiltins);
|
| -
|
| - // Iterate over global handles.
|
| - switch (mode) {
|
| - case VISIT_ONLY_STRONG:
|
| - isolate_->global_handles()->IterateStrongRoots(v);
|
| - break;
|
| - case VISIT_ALL_IN_SCAVENGE:
|
| - isolate_->global_handles()->IterateNewSpaceStrongAndDependentRoots(v);
|
| - break;
|
| - case VISIT_ALL_IN_SWEEP_NEWSPACE:
|
| - case VISIT_ALL:
|
| - isolate_->global_handles()->IterateAllRoots(v);
|
| - break;
|
| - }
|
| - v->Synchronize(VisitorSynchronization::kGlobalHandles);
|
| -
|
| - // Iterate over eternal handles.
|
| - if (mode == VISIT_ALL_IN_SCAVENGE) {
|
| - isolate_->eternal_handles()->IterateNewSpaceRoots(v);
|
| - } else {
|
| - isolate_->eternal_handles()->IterateAllRoots(v);
|
| - }
|
| - v->Synchronize(VisitorSynchronization::kEternalHandles);
|
| -
|
| - // Iterate over pointers being held by inactive threads.
|
| - isolate_->thread_manager()->Iterate(v);
|
| - v->Synchronize(VisitorSynchronization::kThreadManager);
|
| -
|
| - // Iterate over the pointers the Serialization/Deserialization code is
|
| - // holding.
|
| - // During garbage collection this keeps the partial snapshot cache alive.
|
| - // During deserialization of the startup snapshot this creates the partial
|
| - // snapshot cache and deserializes the objects it refers to. During
|
| - // serialization this does nothing, since the partial snapshot cache is
|
| - // empty. However the next thing we do is create the partial snapshot,
|
| - // filling up the partial snapshot cache with objects it needs as we go.
|
| - SerializerDeserializer::Iterate(isolate_, v);
|
| - // We don't do a v->Synchronize call here, because in debug mode that will
|
| - // output a flag to the snapshot. However at this point the serializer and
|
| - // deserializer are deliberately a little unsynchronized (see above) so the
|
| - // checking of the sync flag in the snapshot would fail.
|
| -}
|
| -
|
| -
|
| -// TODO(1236194): Since the heap size is configurable on the command line
|
| -// and through the API, we should gracefully handle the case that the heap
|
| -// size is not big enough to fit all the initial objects.
|
| -bool Heap::ConfigureHeap(int max_semi_space_size,
|
| - int max_old_space_size,
|
| - int max_executable_size,
|
| - size_t code_range_size) {
|
| - if (HasBeenSetUp()) return false;
|
| -
|
| - // Overwrite default configuration.
|
| - if (max_semi_space_size > 0) {
|
| - max_semi_space_size_ = max_semi_space_size * MB;
|
| - }
|
| - if (max_old_space_size > 0) {
|
| - max_old_generation_size_ = max_old_space_size * MB;
|
| - }
|
| - if (max_executable_size > 0) {
|
| - max_executable_size_ = max_executable_size * MB;
|
| - }
|
| -
|
| - // If max space size flags are specified overwrite the configuration.
|
| - if (FLAG_max_semi_space_size > 0) {
|
| - max_semi_space_size_ = FLAG_max_semi_space_size * MB;
|
| - }
|
| - if (FLAG_max_old_space_size > 0) {
|
| - max_old_generation_size_ = FLAG_max_old_space_size * MB;
|
| - }
|
| - if (FLAG_max_executable_size > 0) {
|
| - max_executable_size_ = FLAG_max_executable_size * MB;
|
| - }
|
| -
|
| - if (FLAG_stress_compaction) {
|
| - // This will cause more frequent GCs when stressing.
|
| - max_semi_space_size_ = Page::kPageSize;
|
| - }
|
| -
|
| - if (Snapshot::HaveASnapshotToStartFrom()) {
|
| - // If we are using a snapshot we always reserve the default amount
|
| - // of memory for each semispace because code in the snapshot has
|
| - // write-barrier code that relies on the size and alignment of new
|
| - // space. We therefore cannot use a larger max semispace size
|
| - // than the default reserved semispace size.
|
| - if (max_semi_space_size_ > reserved_semispace_size_) {
|
| - max_semi_space_size_ = reserved_semispace_size_;
|
| - if (FLAG_trace_gc) {
|
| - PrintPID("Max semi-space size cannot be more than %d kbytes\n",
|
| - reserved_semispace_size_ >> 10);
|
| - }
|
| - }
|
| - } else {
|
| - // If we are not using snapshots we reserve space for the actual
|
| - // max semispace size.
|
| - reserved_semispace_size_ = max_semi_space_size_;
|
| - }
|
| -
|
| - // The max executable size must be less than or equal to the max old
|
| - // generation size.
|
| - if (max_executable_size_ > max_old_generation_size_) {
|
| - max_executable_size_ = max_old_generation_size_;
|
| - }
|
| -
|
| - // The new space size must be a power of two to support single-bit testing
|
| - // for containment.
|
| - max_semi_space_size_ = RoundUpToPowerOf2(max_semi_space_size_);
|
| - reserved_semispace_size_ = RoundUpToPowerOf2(reserved_semispace_size_);
|
| -
|
| - if (FLAG_min_semi_space_size > 0) {
|
| - int initial_semispace_size = FLAG_min_semi_space_size * MB;
|
| - if (initial_semispace_size > max_semi_space_size_) {
|
| - initial_semispace_size_ = max_semi_space_size_;
|
| - if (FLAG_trace_gc) {
|
| - PrintPID("Min semi-space size cannot be more than the maximum"
|
| - "semi-space size of %d MB\n", max_semi_space_size_);
|
| - }
|
| - } else {
|
| - initial_semispace_size_ = initial_semispace_size;
|
| - }
|
| - }
|
| -
|
| - initial_semispace_size_ = Min(initial_semispace_size_, max_semi_space_size_);
|
| -
|
| - // The old generation is paged and needs at least one page for each space.
|
| - int paged_space_count = LAST_PAGED_SPACE - FIRST_PAGED_SPACE + 1;
|
| - max_old_generation_size_ =
|
| - Max(static_cast<intptr_t>(paged_space_count * Page::kPageSize),
|
| - max_old_generation_size_);
|
| -
|
| - // We rely on being able to allocate new arrays in paged spaces.
|
| - DCHECK(Page::kMaxRegularHeapObjectSize >=
|
| - (JSArray::kSize +
|
| - FixedArray::SizeFor(JSObject::kInitialMaxFastElementArray) +
|
| - AllocationMemento::kSize));
|
| -
|
| - code_range_size_ = code_range_size * MB;
|
| -
|
| - configured_ = true;
|
| - return true;
|
| -}
|
| -
|
| -
|
| -bool Heap::ConfigureHeapDefault() {
|
| - return ConfigureHeap(0, 0, 0, 0);
|
| -}
|
| -
|
| -
|
| -void Heap::RecordStats(HeapStats* stats, bool take_snapshot) {
|
| - *stats->start_marker = HeapStats::kStartMarker;
|
| - *stats->end_marker = HeapStats::kEndMarker;
|
| - *stats->new_space_size = new_space_.SizeAsInt();
|
| - *stats->new_space_capacity = static_cast<int>(new_space_.Capacity());
|
| - *stats->old_pointer_space_size = old_pointer_space_->SizeOfObjects();
|
| - *stats->old_pointer_space_capacity = old_pointer_space_->Capacity();
|
| - *stats->old_data_space_size = old_data_space_->SizeOfObjects();
|
| - *stats->old_data_space_capacity = old_data_space_->Capacity();
|
| - *stats->code_space_size = code_space_->SizeOfObjects();
|
| - *stats->code_space_capacity = code_space_->Capacity();
|
| - *stats->map_space_size = map_space_->SizeOfObjects();
|
| - *stats->map_space_capacity = map_space_->Capacity();
|
| - *stats->cell_space_size = cell_space_->SizeOfObjects();
|
| - *stats->cell_space_capacity = cell_space_->Capacity();
|
| - *stats->property_cell_space_size = property_cell_space_->SizeOfObjects();
|
| - *stats->property_cell_space_capacity = property_cell_space_->Capacity();
|
| - *stats->lo_space_size = lo_space_->Size();
|
| - isolate_->global_handles()->RecordStats(stats);
|
| - *stats->memory_allocator_size = isolate()->memory_allocator()->Size();
|
| - *stats->memory_allocator_capacity =
|
| - isolate()->memory_allocator()->Size() +
|
| - isolate()->memory_allocator()->Available();
|
| - *stats->os_error = base::OS::GetLastError();
|
| - isolate()->memory_allocator()->Available();
|
| - if (take_snapshot) {
|
| - HeapIterator iterator(this);
|
| - for (HeapObject* obj = iterator.next();
|
| - obj != NULL;
|
| - obj = iterator.next()) {
|
| - InstanceType type = obj->map()->instance_type();
|
| - DCHECK(0 <= type && type <= LAST_TYPE);
|
| - stats->objects_per_type[type]++;
|
| - stats->size_per_type[type] += obj->Size();
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -intptr_t Heap::PromotedSpaceSizeOfObjects() {
|
| - return old_pointer_space_->SizeOfObjects()
|
| - + old_data_space_->SizeOfObjects()
|
| - + code_space_->SizeOfObjects()
|
| - + map_space_->SizeOfObjects()
|
| - + cell_space_->SizeOfObjects()
|
| - + property_cell_space_->SizeOfObjects()
|
| - + lo_space_->SizeOfObjects();
|
| -}
|
| -
|
| -
|
| -int64_t Heap::PromotedExternalMemorySize() {
|
| - if (amount_of_external_allocated_memory_
|
| - <= amount_of_external_allocated_memory_at_last_global_gc_) return 0;
|
| - return amount_of_external_allocated_memory_
|
| - - amount_of_external_allocated_memory_at_last_global_gc_;
|
| -}
|
| -
|
| -
|
| -intptr_t Heap::OldGenerationAllocationLimit(intptr_t old_gen_size,
|
| - int freed_global_handles) {
|
| - const int kMaxHandles = 1000;
|
| - const int kMinHandles = 100;
|
| - double min_factor = 1.1;
|
| - double max_factor = 4;
|
| - // We set the old generation growing factor to 2 to grow the heap slower on
|
| - // memory-constrained devices.
|
| - if (max_old_generation_size_ <= kMaxOldSpaceSizeMediumMemoryDevice) {
|
| - max_factor = 2;
|
| - }
|
| - // If there are many freed global handles, then the next full GC will
|
| - // likely collect a lot of garbage. Choose the heap growing factor
|
| - // depending on freed global handles.
|
| - // TODO(ulan, hpayer): Take into account mutator utilization.
|
| - double factor;
|
| - if (freed_global_handles <= kMinHandles) {
|
| - factor = max_factor;
|
| - } else if (freed_global_handles >= kMaxHandles) {
|
| - factor = min_factor;
|
| - } else {
|
| - // Compute factor using linear interpolation between points
|
| - // (kMinHandles, max_factor) and (kMaxHandles, min_factor).
|
| - factor = max_factor -
|
| - (freed_global_handles - kMinHandles) * (max_factor - min_factor) /
|
| - (kMaxHandles - kMinHandles);
|
| - }
|
| -
|
| - if (FLAG_stress_compaction ||
|
| - mark_compact_collector()->reduce_memory_footprint_) {
|
| - factor = min_factor;
|
| - }
|
| -
|
| - intptr_t limit = static_cast<intptr_t>(old_gen_size * factor);
|
| - limit = Max(limit, kMinimumOldGenerationAllocationLimit);
|
| - limit += new_space_.Capacity();
|
| - intptr_t halfway_to_the_max = (old_gen_size + max_old_generation_size_) / 2;
|
| - return Min(limit, halfway_to_the_max);
|
| -}
|
| -
|
| -
|
| -void Heap::EnableInlineAllocation() {
|
| - if (!inline_allocation_disabled_) return;
|
| - inline_allocation_disabled_ = false;
|
| -
|
| - // Update inline allocation limit for new space.
|
| - new_space()->UpdateInlineAllocationLimit(0);
|
| -}
|
| -
|
| -
|
| -void Heap::DisableInlineAllocation() {
|
| - if (inline_allocation_disabled_) return;
|
| - inline_allocation_disabled_ = true;
|
| -
|
| - // Update inline allocation limit for new space.
|
| - new_space()->UpdateInlineAllocationLimit(0);
|
| -
|
| - // Update inline allocation limit for old spaces.
|
| - PagedSpaces spaces(this);
|
| - for (PagedSpace* space = spaces.next();
|
| - space != NULL;
|
| - space = spaces.next()) {
|
| - space->EmptyAllocationInfo();
|
| - }
|
| -}
|
| -
|
| -
|
| -V8_DECLARE_ONCE(initialize_gc_once);
|
| -
|
| -static void InitializeGCOnce() {
|
| - InitializeScavengingVisitorsTables();
|
| - NewSpaceScavenger::Initialize();
|
| - MarkCompactCollector::Initialize();
|
| -}
|
| -
|
| -
|
| -bool Heap::SetUp() {
|
| -#ifdef DEBUG
|
| - allocation_timeout_ = FLAG_gc_interval;
|
| -#endif
|
| -
|
| - // Initialize heap spaces and initial maps and objects. Whenever something
|
| - // goes wrong, just return false. The caller should check the results and
|
| - // call Heap::TearDown() to release allocated memory.
|
| - //
|
| - // If the heap is not yet configured (e.g. through the API), configure it.
|
| - // Configuration is based on the flags new-space-size (really the semispace
|
| - // size) and old-space-size if set or the initial values of semispace_size_
|
| - // and old_generation_size_ otherwise.
|
| - if (!configured_) {
|
| - if (!ConfigureHeapDefault()) return false;
|
| - }
|
| -
|
| - base::CallOnce(&initialize_gc_once, &InitializeGCOnce);
|
| -
|
| - MarkMapPointersAsEncoded(false);
|
| -
|
| - // Set up memory allocator.
|
| - if (!isolate_->memory_allocator()->SetUp(MaxReserved(), MaxExecutableSize()))
|
| - return false;
|
| -
|
| - // Set up new space.
|
| - if (!new_space_.SetUp(reserved_semispace_size_, max_semi_space_size_)) {
|
| - return false;
|
| - }
|
| - new_space_top_after_last_gc_ = new_space()->top();
|
| -
|
| - // Initialize old pointer space.
|
| - old_pointer_space_ =
|
| - new OldSpace(this,
|
| - max_old_generation_size_,
|
| - OLD_POINTER_SPACE,
|
| - NOT_EXECUTABLE);
|
| - if (old_pointer_space_ == NULL) return false;
|
| - if (!old_pointer_space_->SetUp()) return false;
|
| -
|
| - // Initialize old data space.
|
| - old_data_space_ =
|
| - new OldSpace(this,
|
| - max_old_generation_size_,
|
| - OLD_DATA_SPACE,
|
| - NOT_EXECUTABLE);
|
| - if (old_data_space_ == NULL) return false;
|
| - if (!old_data_space_->SetUp()) return false;
|
| -
|
| - if (!isolate_->code_range()->SetUp(code_range_size_)) return false;
|
| -
|
| - // Initialize the code space, set its maximum capacity to the old
|
| - // generation size. It needs executable memory.
|
| - code_space_ =
|
| - new OldSpace(this, max_old_generation_size_, CODE_SPACE, EXECUTABLE);
|
| - if (code_space_ == NULL) return false;
|
| - if (!code_space_->SetUp()) return false;
|
| -
|
| - // Initialize map space.
|
| - map_space_ = new MapSpace(this, max_old_generation_size_, MAP_SPACE);
|
| - if (map_space_ == NULL) return false;
|
| - if (!map_space_->SetUp()) return false;
|
| -
|
| - // Initialize simple cell space.
|
| - cell_space_ = new CellSpace(this, max_old_generation_size_, CELL_SPACE);
|
| - if (cell_space_ == NULL) return false;
|
| - if (!cell_space_->SetUp()) return false;
|
| -
|
| - // Initialize global property cell space.
|
| - property_cell_space_ = new PropertyCellSpace(this, max_old_generation_size_,
|
| - PROPERTY_CELL_SPACE);
|
| - if (property_cell_space_ == NULL) return false;
|
| - if (!property_cell_space_->SetUp()) return false;
|
| -
|
| - // The large object code space may contain code or data. We set the memory
|
| - // to be non-executable here for safety, but this means we need to enable it
|
| - // explicitly when allocating large code objects.
|
| - lo_space_ = new LargeObjectSpace(this, max_old_generation_size_, LO_SPACE);
|
| - if (lo_space_ == NULL) return false;
|
| - if (!lo_space_->SetUp()) return false;
|
| -
|
| - // Set up the seed that is used to randomize the string hash function.
|
| - DCHECK(hash_seed() == 0);
|
| - if (FLAG_randomize_hashes) {
|
| - if (FLAG_hash_seed == 0) {
|
| - int rnd = isolate()->random_number_generator()->NextInt();
|
| - set_hash_seed(Smi::FromInt(rnd & Name::kHashBitMask));
|
| - } else {
|
| - set_hash_seed(Smi::FromInt(FLAG_hash_seed));
|
| - }
|
| - }
|
| -
|
| - LOG(isolate_, IntPtrTEvent("heap-capacity", Capacity()));
|
| - LOG(isolate_, IntPtrTEvent("heap-available", Available()));
|
| -
|
| - store_buffer()->SetUp();
|
| -
|
| - mark_compact_collector()->SetUp();
|
| -
|
| - return true;
|
| -}
|
| -
|
| -
|
| -bool Heap::CreateHeapObjects() {
|
| - // Create initial maps.
|
| - if (!CreateInitialMaps()) return false;
|
| - CreateApiObjects();
|
| -
|
| - // Create initial objects
|
| - CreateInitialObjects();
|
| - CHECK_EQ(0, gc_count_);
|
| -
|
| - set_native_contexts_list(undefined_value());
|
| - set_array_buffers_list(undefined_value());
|
| - set_allocation_sites_list(undefined_value());
|
| - weak_object_to_code_table_ = undefined_value();
|
| - return true;
|
| -}
|
| -
|
| -
|
| -void Heap::SetStackLimits() {
|
| - DCHECK(isolate_ != NULL);
|
| - DCHECK(isolate_ == isolate());
|
| - // On 64 bit machines, pointers are generally out of range of Smis. We write
|
| - // something that looks like an out of range Smi to the GC.
|
| -
|
| - // Set up the special root array entries containing the stack limits.
|
| - // These are actually addresses, but the tag makes the GC ignore it.
|
| - roots_[kStackLimitRootIndex] =
|
| - reinterpret_cast<Object*>(
|
| - (isolate_->stack_guard()->jslimit() & ~kSmiTagMask) | kSmiTag);
|
| - roots_[kRealStackLimitRootIndex] =
|
| - reinterpret_cast<Object*>(
|
| - (isolate_->stack_guard()->real_jslimit() & ~kSmiTagMask) | kSmiTag);
|
| -}
|
| -
|
| -
|
| -void Heap::TearDown() {
|
| -#ifdef VERIFY_HEAP
|
| - if (FLAG_verify_heap) {
|
| - Verify();
|
| - }
|
| -#endif
|
| -
|
| - UpdateMaximumCommitted();
|
| -
|
| - if (FLAG_print_cumulative_gc_stat) {
|
| - PrintF("\n");
|
| - PrintF("gc_count=%d ", gc_count_);
|
| - PrintF("mark_sweep_count=%d ", ms_count_);
|
| - PrintF("max_gc_pause=%.1f ", get_max_gc_pause());
|
| - PrintF("total_gc_time=%.1f ", total_gc_time_ms_);
|
| - PrintF("min_in_mutator=%.1f ", get_min_in_mutator());
|
| - PrintF("max_alive_after_gc=%" V8_PTR_PREFIX "d ",
|
| - get_max_alive_after_gc());
|
| - PrintF("total_marking_time=%.1f ", tracer_.cumulative_sweeping_duration());
|
| - PrintF("total_sweeping_time=%.1f ", tracer_.cumulative_sweeping_duration());
|
| - PrintF("\n\n");
|
| - }
|
| -
|
| - if (FLAG_print_max_heap_committed) {
|
| - PrintF("\n");
|
| - PrintF("maximum_committed_by_heap=%" V8_PTR_PREFIX "d ",
|
| - MaximumCommittedMemory());
|
| - PrintF("maximum_committed_by_new_space=%" V8_PTR_PREFIX "d ",
|
| - new_space_.MaximumCommittedMemory());
|
| - PrintF("maximum_committed_by_old_pointer_space=%" V8_PTR_PREFIX "d ",
|
| - old_data_space_->MaximumCommittedMemory());
|
| - PrintF("maximum_committed_by_old_data_space=%" V8_PTR_PREFIX "d ",
|
| - old_pointer_space_->MaximumCommittedMemory());
|
| - PrintF("maximum_committed_by_old_data_space=%" V8_PTR_PREFIX "d ",
|
| - old_pointer_space_->MaximumCommittedMemory());
|
| - PrintF("maximum_committed_by_code_space=%" V8_PTR_PREFIX "d ",
|
| - code_space_->MaximumCommittedMemory());
|
| - PrintF("maximum_committed_by_map_space=%" V8_PTR_PREFIX "d ",
|
| - map_space_->MaximumCommittedMemory());
|
| - PrintF("maximum_committed_by_cell_space=%" V8_PTR_PREFIX "d ",
|
| - cell_space_->MaximumCommittedMemory());
|
| - PrintF("maximum_committed_by_property_space=%" V8_PTR_PREFIX "d ",
|
| - property_cell_space_->MaximumCommittedMemory());
|
| - PrintF("maximum_committed_by_lo_space=%" V8_PTR_PREFIX "d ",
|
| - lo_space_->MaximumCommittedMemory());
|
| - PrintF("\n\n");
|
| - }
|
| -
|
| - if (FLAG_verify_predictable) {
|
| - PrintAlloctionsHash();
|
| - }
|
| -
|
| - TearDownArrayBuffers();
|
| -
|
| - isolate_->global_handles()->TearDown();
|
| -
|
| - external_string_table_.TearDown();
|
| -
|
| - mark_compact_collector()->TearDown();
|
| -
|
| - new_space_.TearDown();
|
| -
|
| - if (old_pointer_space_ != NULL) {
|
| - old_pointer_space_->TearDown();
|
| - delete old_pointer_space_;
|
| - old_pointer_space_ = NULL;
|
| - }
|
| -
|
| - if (old_data_space_ != NULL) {
|
| - old_data_space_->TearDown();
|
| - delete old_data_space_;
|
| - old_data_space_ = NULL;
|
| - }
|
| -
|
| - if (code_space_ != NULL) {
|
| - code_space_->TearDown();
|
| - delete code_space_;
|
| - code_space_ = NULL;
|
| - }
|
| -
|
| - if (map_space_ != NULL) {
|
| - map_space_->TearDown();
|
| - delete map_space_;
|
| - map_space_ = NULL;
|
| - }
|
| -
|
| - if (cell_space_ != NULL) {
|
| - cell_space_->TearDown();
|
| - delete cell_space_;
|
| - cell_space_ = NULL;
|
| - }
|
| -
|
| - if (property_cell_space_ != NULL) {
|
| - property_cell_space_->TearDown();
|
| - delete property_cell_space_;
|
| - property_cell_space_ = NULL;
|
| - }
|
| -
|
| - if (lo_space_ != NULL) {
|
| - lo_space_->TearDown();
|
| - delete lo_space_;
|
| - lo_space_ = NULL;
|
| - }
|
| -
|
| - store_buffer()->TearDown();
|
| - incremental_marking()->TearDown();
|
| -
|
| - isolate_->memory_allocator()->TearDown();
|
| -}
|
| -
|
| -
|
| -void Heap::AddGCPrologueCallback(v8::Isolate::GCPrologueCallback callback,
|
| - GCType gc_type,
|
| - bool pass_isolate) {
|
| - DCHECK(callback != NULL);
|
| - GCPrologueCallbackPair pair(callback, gc_type, pass_isolate);
|
| - DCHECK(!gc_prologue_callbacks_.Contains(pair));
|
| - return gc_prologue_callbacks_.Add(pair);
|
| -}
|
| -
|
| -
|
| -void Heap::RemoveGCPrologueCallback(v8::Isolate::GCPrologueCallback callback) {
|
| - DCHECK(callback != NULL);
|
| - for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) {
|
| - if (gc_prologue_callbacks_[i].callback == callback) {
|
| - gc_prologue_callbacks_.Remove(i);
|
| - return;
|
| - }
|
| - }
|
| - UNREACHABLE();
|
| -}
|
| -
|
| -
|
| -void Heap::AddGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback,
|
| - GCType gc_type,
|
| - bool pass_isolate) {
|
| - DCHECK(callback != NULL);
|
| - GCEpilogueCallbackPair pair(callback, gc_type, pass_isolate);
|
| - DCHECK(!gc_epilogue_callbacks_.Contains(pair));
|
| - return gc_epilogue_callbacks_.Add(pair);
|
| -}
|
| -
|
| -
|
| -void Heap::RemoveGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback) {
|
| - DCHECK(callback != NULL);
|
| - for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) {
|
| - if (gc_epilogue_callbacks_[i].callback == callback) {
|
| - gc_epilogue_callbacks_.Remove(i);
|
| - return;
|
| - }
|
| - }
|
| - UNREACHABLE();
|
| -}
|
| -
|
| -
|
| -// TODO(ishell): Find a better place for this.
|
| -void Heap::AddWeakObjectToCodeDependency(Handle<Object> obj,
|
| - Handle<DependentCode> dep) {
|
| - DCHECK(!InNewSpace(*obj));
|
| - DCHECK(!InNewSpace(*dep));
|
| - // This handle scope keeps the table handle local to this function, which
|
| - // allows us to safely skip write barriers in table update operations.
|
| - HandleScope scope(isolate());
|
| - Handle<WeakHashTable> table(WeakHashTable::cast(weak_object_to_code_table_),
|
| - isolate());
|
| - table = WeakHashTable::Put(table, obj, dep);
|
| -
|
| - if (ShouldZapGarbage() && weak_object_to_code_table_ != *table) {
|
| - WeakHashTable::cast(weak_object_to_code_table_)->Zap(the_hole_value());
|
| - }
|
| - set_weak_object_to_code_table(*table);
|
| - DCHECK_EQ(*dep, table->Lookup(obj));
|
| -}
|
| -
|
| -
|
| -DependentCode* Heap::LookupWeakObjectToCodeDependency(Handle<Object> obj) {
|
| - Object* dep = WeakHashTable::cast(weak_object_to_code_table_)->Lookup(obj);
|
| - if (dep->IsDependentCode()) return DependentCode::cast(dep);
|
| - return DependentCode::cast(empty_fixed_array());
|
| -}
|
| -
|
| -
|
| -void Heap::EnsureWeakObjectToCodeTable() {
|
| - if (!weak_object_to_code_table()->IsHashTable()) {
|
| - set_weak_object_to_code_table(*WeakHashTable::New(
|
| - isolate(), 16, USE_DEFAULT_MINIMUM_CAPACITY, TENURED));
|
| - }
|
| -}
|
| -
|
| -
|
| -void Heap::FatalProcessOutOfMemory(const char* location, bool take_snapshot) {
|
| - v8::internal::V8::FatalProcessOutOfMemory(location, take_snapshot);
|
| -}
|
| -
|
| -#ifdef DEBUG
|
| -
|
| -class PrintHandleVisitor: public ObjectVisitor {
|
| - public:
|
| - void VisitPointers(Object** start, Object** end) {
|
| - for (Object** p = start; p < end; p++)
|
| - PrintF(" handle %p to %p\n",
|
| - reinterpret_cast<void*>(p),
|
| - reinterpret_cast<void*>(*p));
|
| - }
|
| -};
|
| -
|
| -
|
| -void Heap::PrintHandles() {
|
| - PrintF("Handles:\n");
|
| - PrintHandleVisitor v;
|
| - isolate_->handle_scope_implementer()->Iterate(&v);
|
| -}
|
| -
|
| -#endif
|
| -
|
| -
|
| -Space* AllSpaces::next() {
|
| - switch (counter_++) {
|
| - case NEW_SPACE:
|
| - return heap_->new_space();
|
| - case OLD_POINTER_SPACE:
|
| - return heap_->old_pointer_space();
|
| - case OLD_DATA_SPACE:
|
| - return heap_->old_data_space();
|
| - case CODE_SPACE:
|
| - return heap_->code_space();
|
| - case MAP_SPACE:
|
| - return heap_->map_space();
|
| - case CELL_SPACE:
|
| - return heap_->cell_space();
|
| - case PROPERTY_CELL_SPACE:
|
| - return heap_->property_cell_space();
|
| - case LO_SPACE:
|
| - return heap_->lo_space();
|
| - default:
|
| - return NULL;
|
| - }
|
| -}
|
| -
|
| -
|
| -PagedSpace* PagedSpaces::next() {
|
| - switch (counter_++) {
|
| - case OLD_POINTER_SPACE:
|
| - return heap_->old_pointer_space();
|
| - case OLD_DATA_SPACE:
|
| - return heap_->old_data_space();
|
| - case CODE_SPACE:
|
| - return heap_->code_space();
|
| - case MAP_SPACE:
|
| - return heap_->map_space();
|
| - case CELL_SPACE:
|
| - return heap_->cell_space();
|
| - case PROPERTY_CELL_SPACE:
|
| - return heap_->property_cell_space();
|
| - default:
|
| - return NULL;
|
| - }
|
| -}
|
| -
|
| -
|
| -
|
| -OldSpace* OldSpaces::next() {
|
| - switch (counter_++) {
|
| - case OLD_POINTER_SPACE:
|
| - return heap_->old_pointer_space();
|
| - case OLD_DATA_SPACE:
|
| - return heap_->old_data_space();
|
| - case CODE_SPACE:
|
| - return heap_->code_space();
|
| - default:
|
| - return NULL;
|
| - }
|
| -}
|
| -
|
| -
|
| -SpaceIterator::SpaceIterator(Heap* heap)
|
| - : heap_(heap),
|
| - current_space_(FIRST_SPACE),
|
| - iterator_(NULL),
|
| - size_func_(NULL) {
|
| -}
|
| -
|
| -
|
| -SpaceIterator::SpaceIterator(Heap* heap, HeapObjectCallback size_func)
|
| - : heap_(heap),
|
| - current_space_(FIRST_SPACE),
|
| - iterator_(NULL),
|
| - size_func_(size_func) {
|
| -}
|
| -
|
| -
|
| -SpaceIterator::~SpaceIterator() {
|
| - // Delete active iterator if any.
|
| - delete iterator_;
|
| -}
|
| -
|
| -
|
| -bool SpaceIterator::has_next() {
|
| - // Iterate until no more spaces.
|
| - return current_space_ != LAST_SPACE;
|
| -}
|
| -
|
| -
|
| -ObjectIterator* SpaceIterator::next() {
|
| - if (iterator_ != NULL) {
|
| - delete iterator_;
|
| - iterator_ = NULL;
|
| - // Move to the next space
|
| - current_space_++;
|
| - if (current_space_ > LAST_SPACE) {
|
| - return NULL;
|
| - }
|
| - }
|
| -
|
| - // Return iterator for the new current space.
|
| - return CreateIterator();
|
| -}
|
| -
|
| -
|
| -// Create an iterator for the space to iterate.
|
| -ObjectIterator* SpaceIterator::CreateIterator() {
|
| - DCHECK(iterator_ == NULL);
|
| -
|
| - switch (current_space_) {
|
| - case NEW_SPACE:
|
| - iterator_ = new SemiSpaceIterator(heap_->new_space(), size_func_);
|
| - break;
|
| - case OLD_POINTER_SPACE:
|
| - iterator_ =
|
| - new HeapObjectIterator(heap_->old_pointer_space(), size_func_);
|
| - break;
|
| - case OLD_DATA_SPACE:
|
| - iterator_ = new HeapObjectIterator(heap_->old_data_space(), size_func_);
|
| - break;
|
| - case CODE_SPACE:
|
| - iterator_ = new HeapObjectIterator(heap_->code_space(), size_func_);
|
| - break;
|
| - case MAP_SPACE:
|
| - iterator_ = new HeapObjectIterator(heap_->map_space(), size_func_);
|
| - break;
|
| - case CELL_SPACE:
|
| - iterator_ = new HeapObjectIterator(heap_->cell_space(), size_func_);
|
| - break;
|
| - case PROPERTY_CELL_SPACE:
|
| - iterator_ = new HeapObjectIterator(heap_->property_cell_space(),
|
| - size_func_);
|
| - break;
|
| - case LO_SPACE:
|
| - iterator_ = new LargeObjectIterator(heap_->lo_space(), size_func_);
|
| - break;
|
| - }
|
| -
|
| - // Return the newly allocated iterator;
|
| - DCHECK(iterator_ != NULL);
|
| - return iterator_;
|
| -}
|
| -
|
| -
|
| -class HeapObjectsFilter {
|
| - public:
|
| - virtual ~HeapObjectsFilter() {}
|
| - virtual bool SkipObject(HeapObject* object) = 0;
|
| -};
|
| -
|
| -
|
| -class UnreachableObjectsFilter : public HeapObjectsFilter {
|
| - public:
|
| - explicit UnreachableObjectsFilter(Heap* heap) : heap_(heap) {
|
| - MarkReachableObjects();
|
| - }
|
| -
|
| - ~UnreachableObjectsFilter() {
|
| - heap_->mark_compact_collector()->ClearMarkbits();
|
| - }
|
| -
|
| - bool SkipObject(HeapObject* object) {
|
| - MarkBit mark_bit = Marking::MarkBitFrom(object);
|
| - return !mark_bit.Get();
|
| - }
|
| -
|
| - private:
|
| - class MarkingVisitor : public ObjectVisitor {
|
| - public:
|
| - MarkingVisitor() : marking_stack_(10) {}
|
| -
|
| - void VisitPointers(Object** start, Object** end) {
|
| - for (Object** p = start; p < end; p++) {
|
| - if (!(*p)->IsHeapObject()) continue;
|
| - HeapObject* obj = HeapObject::cast(*p);
|
| - MarkBit mark_bit = Marking::MarkBitFrom(obj);
|
| - if (!mark_bit.Get()) {
|
| - mark_bit.Set();
|
| - marking_stack_.Add(obj);
|
| - }
|
| - }
|
| - }
|
| -
|
| - void TransitiveClosure() {
|
| - while (!marking_stack_.is_empty()) {
|
| - HeapObject* obj = marking_stack_.RemoveLast();
|
| - obj->Iterate(this);
|
| - }
|
| - }
|
| -
|
| - private:
|
| - List<HeapObject*> marking_stack_;
|
| - };
|
| -
|
| - void MarkReachableObjects() {
|
| - MarkingVisitor visitor;
|
| - heap_->IterateRoots(&visitor, VISIT_ALL);
|
| - visitor.TransitiveClosure();
|
| - }
|
| -
|
| - Heap* heap_;
|
| - DisallowHeapAllocation no_allocation_;
|
| -};
|
| -
|
| -
|
| -HeapIterator::HeapIterator(Heap* heap)
|
| - : make_heap_iterable_helper_(heap),
|
| - no_heap_allocation_(),
|
| - heap_(heap),
|
| - filtering_(HeapIterator::kNoFiltering),
|
| - filter_(NULL) {
|
| - Init();
|
| -}
|
| -
|
| -
|
| -HeapIterator::HeapIterator(Heap* heap,
|
| - HeapIterator::HeapObjectsFiltering filtering)
|
| - : make_heap_iterable_helper_(heap),
|
| - no_heap_allocation_(),
|
| - heap_(heap),
|
| - filtering_(filtering),
|
| - filter_(NULL) {
|
| - Init();
|
| -}
|
| -
|
| -
|
| -HeapIterator::~HeapIterator() {
|
| - Shutdown();
|
| -}
|
| -
|
| -
|
| -void HeapIterator::Init() {
|
| - // Start the iteration.
|
| - space_iterator_ = new SpaceIterator(heap_);
|
| - switch (filtering_) {
|
| - case kFilterUnreachable:
|
| - filter_ = new UnreachableObjectsFilter(heap_);
|
| - break;
|
| - default:
|
| - break;
|
| - }
|
| - object_iterator_ = space_iterator_->next();
|
| -}
|
| -
|
| -
|
| -void HeapIterator::Shutdown() {
|
| -#ifdef DEBUG
|
| - // Assert that in filtering mode we have iterated through all
|
| - // objects. Otherwise, heap will be left in an inconsistent state.
|
| - if (filtering_ != kNoFiltering) {
|
| - DCHECK(object_iterator_ == NULL);
|
| - }
|
| -#endif
|
| - // Make sure the last iterator is deallocated.
|
| - delete space_iterator_;
|
| - space_iterator_ = NULL;
|
| - object_iterator_ = NULL;
|
| - delete filter_;
|
| - filter_ = NULL;
|
| -}
|
| -
|
| -
|
| -HeapObject* HeapIterator::next() {
|
| - if (filter_ == NULL) return NextObject();
|
| -
|
| - HeapObject* obj = NextObject();
|
| - while (obj != NULL && filter_->SkipObject(obj)) obj = NextObject();
|
| - return obj;
|
| -}
|
| -
|
| -
|
| -HeapObject* HeapIterator::NextObject() {
|
| - // No iterator means we are done.
|
| - if (object_iterator_ == NULL) return NULL;
|
| -
|
| - if (HeapObject* obj = object_iterator_->next_object()) {
|
| - // If the current iterator has more objects we are fine.
|
| - return obj;
|
| - } else {
|
| - // Go though the spaces looking for one that has objects.
|
| - while (space_iterator_->has_next()) {
|
| - object_iterator_ = space_iterator_->next();
|
| - if (HeapObject* obj = object_iterator_->next_object()) {
|
| - return obj;
|
| - }
|
| - }
|
| - }
|
| - // Done with the last space.
|
| - object_iterator_ = NULL;
|
| - return NULL;
|
| -}
|
| -
|
| -
|
| -void HeapIterator::reset() {
|
| - // Restart the iterator.
|
| - Shutdown();
|
| - Init();
|
| -}
|
| -
|
| -
|
| -#ifdef DEBUG
|
| -
|
| -Object* const PathTracer::kAnyGlobalObject = NULL;
|
| -
|
| -class PathTracer::MarkVisitor: public ObjectVisitor {
|
| - public:
|
| - explicit MarkVisitor(PathTracer* tracer) : tracer_(tracer) {}
|
| - void VisitPointers(Object** start, Object** end) {
|
| - // Scan all HeapObject pointers in [start, end)
|
| - for (Object** p = start; !tracer_->found() && (p < end); p++) {
|
| - if ((*p)->IsHeapObject())
|
| - tracer_->MarkRecursively(p, this);
|
| - }
|
| - }
|
| -
|
| - private:
|
| - PathTracer* tracer_;
|
| -};
|
| -
|
| -
|
| -class PathTracer::UnmarkVisitor: public ObjectVisitor {
|
| - public:
|
| - explicit UnmarkVisitor(PathTracer* tracer) : tracer_(tracer) {}
|
| - void VisitPointers(Object** start, Object** end) {
|
| - // Scan all HeapObject pointers in [start, end)
|
| - for (Object** p = start; p < end; p++) {
|
| - if ((*p)->IsHeapObject())
|
| - tracer_->UnmarkRecursively(p, this);
|
| - }
|
| - }
|
| -
|
| - private:
|
| - PathTracer* tracer_;
|
| -};
|
| -
|
| -
|
| -void PathTracer::VisitPointers(Object** start, Object** end) {
|
| - bool done = ((what_to_find_ == FIND_FIRST) && found_target_);
|
| - // Visit all HeapObject pointers in [start, end)
|
| - for (Object** p = start; !done && (p < end); p++) {
|
| - if ((*p)->IsHeapObject()) {
|
| - TracePathFrom(p);
|
| - done = ((what_to_find_ == FIND_FIRST) && found_target_);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void PathTracer::Reset() {
|
| - found_target_ = false;
|
| - object_stack_.Clear();
|
| -}
|
| -
|
| -
|
| -void PathTracer::TracePathFrom(Object** root) {
|
| - DCHECK((search_target_ == kAnyGlobalObject) ||
|
| - search_target_->IsHeapObject());
|
| - found_target_in_trace_ = false;
|
| - Reset();
|
| -
|
| - MarkVisitor mark_visitor(this);
|
| - MarkRecursively(root, &mark_visitor);
|
| -
|
| - UnmarkVisitor unmark_visitor(this);
|
| - UnmarkRecursively(root, &unmark_visitor);
|
| -
|
| - ProcessResults();
|
| -}
|
| -
|
| -
|
| -static bool SafeIsNativeContext(HeapObject* obj) {
|
| - return obj->map() == obj->GetHeap()->raw_unchecked_native_context_map();
|
| -}
|
| -
|
| -
|
| -void PathTracer::MarkRecursively(Object** p, MarkVisitor* mark_visitor) {
|
| - if (!(*p)->IsHeapObject()) return;
|
| -
|
| - HeapObject* obj = HeapObject::cast(*p);
|
| -
|
| - MapWord map_word = obj->map_word();
|
| - if (!map_word.ToMap()->IsHeapObject()) return; // visited before
|
| -
|
| - if (found_target_in_trace_) return; // stop if target found
|
| - object_stack_.Add(obj);
|
| - if (((search_target_ == kAnyGlobalObject) && obj->IsJSGlobalObject()) ||
|
| - (obj == search_target_)) {
|
| - found_target_in_trace_ = true;
|
| - found_target_ = true;
|
| - return;
|
| - }
|
| -
|
| - bool is_native_context = SafeIsNativeContext(obj);
|
| -
|
| - // not visited yet
|
| - Map* map = Map::cast(map_word.ToMap());
|
| -
|
| - MapWord marked_map_word =
|
| - MapWord::FromRawValue(obj->map_word().ToRawValue() + kMarkTag);
|
| - obj->set_map_word(marked_map_word);
|
| -
|
| - // Scan the object body.
|
| - if (is_native_context && (visit_mode_ == VISIT_ONLY_STRONG)) {
|
| - // This is specialized to scan Context's properly.
|
| - Object** start = reinterpret_cast<Object**>(obj->address() +
|
| - Context::kHeaderSize);
|
| - Object** end = reinterpret_cast<Object**>(obj->address() +
|
| - Context::kHeaderSize + Context::FIRST_WEAK_SLOT * kPointerSize);
|
| - mark_visitor->VisitPointers(start, end);
|
| - } else {
|
| - obj->IterateBody(map->instance_type(), obj->SizeFromMap(map), mark_visitor);
|
| - }
|
| -
|
| - // Scan the map after the body because the body is a lot more interesting
|
| - // when doing leak detection.
|
| - MarkRecursively(reinterpret_cast<Object**>(&map), mark_visitor);
|
| -
|
| - if (!found_target_in_trace_) { // don't pop if found the target
|
| - object_stack_.RemoveLast();
|
| - }
|
| -}
|
| -
|
| -
|
| -void PathTracer::UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor) {
|
| - if (!(*p)->IsHeapObject()) return;
|
| -
|
| - HeapObject* obj = HeapObject::cast(*p);
|
| -
|
| - MapWord map_word = obj->map_word();
|
| - if (map_word.ToMap()->IsHeapObject()) return; // unmarked already
|
| -
|
| - MapWord unmarked_map_word =
|
| - MapWord::FromRawValue(map_word.ToRawValue() - kMarkTag);
|
| - obj->set_map_word(unmarked_map_word);
|
| -
|
| - Map* map = Map::cast(unmarked_map_word.ToMap());
|
| -
|
| - UnmarkRecursively(reinterpret_cast<Object**>(&map), unmark_visitor);
|
| -
|
| - obj->IterateBody(map->instance_type(), obj->SizeFromMap(map), unmark_visitor);
|
| -}
|
| -
|
| -
|
| -void PathTracer::ProcessResults() {
|
| - if (found_target_) {
|
| - OFStream os(stdout);
|
| - os << "=====================================\n"
|
| - << "==== Path to object ====\n"
|
| - << "=====================================\n\n";
|
| -
|
| - DCHECK(!object_stack_.is_empty());
|
| - for (int i = 0; i < object_stack_.length(); i++) {
|
| - if (i > 0) os << "\n |\n |\n V\n\n";
|
| - object_stack_[i]->Print(os);
|
| - }
|
| - os << "=====================================\n";
|
| - }
|
| -}
|
| -
|
| -
|
| -// Triggers a depth-first traversal of reachable objects from one
|
| -// given root object and finds a path to a specific heap object and
|
| -// prints it.
|
| -void Heap::TracePathToObjectFrom(Object* target, Object* root) {
|
| - PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL);
|
| - tracer.VisitPointer(&root);
|
| -}
|
| -
|
| -
|
| -// Triggers a depth-first traversal of reachable objects from roots
|
| -// and finds a path to a specific heap object and prints it.
|
| -void Heap::TracePathToObject(Object* target) {
|
| - PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL);
|
| - IterateRoots(&tracer, VISIT_ONLY_STRONG);
|
| -}
|
| -
|
| -
|
| -// Triggers a depth-first traversal of reachable objects from roots
|
| -// and finds a path to any global object and prints it. Useful for
|
| -// determining the source for leaks of global objects.
|
| -void Heap::TracePathToGlobal() {
|
| - PathTracer tracer(PathTracer::kAnyGlobalObject,
|
| - PathTracer::FIND_ALL,
|
| - VISIT_ALL);
|
| - IterateRoots(&tracer, VISIT_ONLY_STRONG);
|
| -}
|
| -#endif
|
| -
|
| -
|
| -void Heap::UpdateCumulativeGCStatistics(double duration,
|
| - double spent_in_mutator,
|
| - double marking_time) {
|
| - if (FLAG_print_cumulative_gc_stat) {
|
| - total_gc_time_ms_ += duration;
|
| - max_gc_pause_ = Max(max_gc_pause_, duration);
|
| - max_alive_after_gc_ = Max(max_alive_after_gc_, SizeOfObjects());
|
| - min_in_mutator_ = Min(min_in_mutator_, spent_in_mutator);
|
| - } else if (FLAG_trace_gc_verbose) {
|
| - total_gc_time_ms_ += duration;
|
| - }
|
| -
|
| - marking_time_ += marking_time;
|
| -}
|
| -
|
| -
|
| -int KeyedLookupCache::Hash(Handle<Map> map, Handle<Name> name) {
|
| - DisallowHeapAllocation no_gc;
|
| - // Uses only lower 32 bits if pointers are larger.
|
| - uintptr_t addr_hash =
|
| - static_cast<uint32_t>(reinterpret_cast<uintptr_t>(*map)) >> kMapHashShift;
|
| - return static_cast<uint32_t>((addr_hash ^ name->Hash()) & kCapacityMask);
|
| -}
|
| -
|
| -
|
| -int KeyedLookupCache::Lookup(Handle<Map> map, Handle<Name> name) {
|
| - DisallowHeapAllocation no_gc;
|
| - int index = (Hash(map, name) & kHashMask);
|
| - for (int i = 0; i < kEntriesPerBucket; i++) {
|
| - Key& key = keys_[index + i];
|
| - if ((key.map == *map) && key.name->Equals(*name)) {
|
| - return field_offsets_[index + i];
|
| - }
|
| - }
|
| - return kNotFound;
|
| -}
|
| -
|
| -
|
| -void KeyedLookupCache::Update(Handle<Map> map,
|
| - Handle<Name> name,
|
| - int field_offset) {
|
| - DisallowHeapAllocation no_gc;
|
| - if (!name->IsUniqueName()) {
|
| - if (!StringTable::InternalizeStringIfExists(name->GetIsolate(),
|
| - Handle<String>::cast(name)).
|
| - ToHandle(&name)) {
|
| - return;
|
| - }
|
| - }
|
| - // This cache is cleared only between mark compact passes, so we expect the
|
| - // cache to only contain old space names.
|
| - DCHECK(!map->GetIsolate()->heap()->InNewSpace(*name));
|
| -
|
| - int index = (Hash(map, name) & kHashMask);
|
| - // After a GC there will be free slots, so we use them in order (this may
|
| - // help to get the most frequently used one in position 0).
|
| - for (int i = 0; i< kEntriesPerBucket; i++) {
|
| - Key& key = keys_[index];
|
| - Object* free_entry_indicator = NULL;
|
| - if (key.map == free_entry_indicator) {
|
| - key.map = *map;
|
| - key.name = *name;
|
| - field_offsets_[index + i] = field_offset;
|
| - return;
|
| - }
|
| - }
|
| - // No free entry found in this bucket, so we move them all down one and
|
| - // put the new entry at position zero.
|
| - for (int i = kEntriesPerBucket - 1; i > 0; i--) {
|
| - Key& key = keys_[index + i];
|
| - Key& key2 = keys_[index + i - 1];
|
| - key = key2;
|
| - field_offsets_[index + i] = field_offsets_[index + i - 1];
|
| - }
|
| -
|
| - // Write the new first entry.
|
| - Key& key = keys_[index];
|
| - key.map = *map;
|
| - key.name = *name;
|
| - field_offsets_[index] = field_offset;
|
| -}
|
| -
|
| -
|
| -void KeyedLookupCache::Clear() {
|
| - for (int index = 0; index < kLength; index++) keys_[index].map = NULL;
|
| -}
|
| -
|
| -
|
| -void DescriptorLookupCache::Clear() {
|
| - for (int index = 0; index < kLength; index++) keys_[index].source = NULL;
|
| -}
|
| -
|
| -
|
| -void ExternalStringTable::CleanUp() {
|
| - int last = 0;
|
| - for (int i = 0; i < new_space_strings_.length(); ++i) {
|
| - if (new_space_strings_[i] == heap_->the_hole_value()) {
|
| - continue;
|
| - }
|
| - DCHECK(new_space_strings_[i]->IsExternalString());
|
| - if (heap_->InNewSpace(new_space_strings_[i])) {
|
| - new_space_strings_[last++] = new_space_strings_[i];
|
| - } else {
|
| - old_space_strings_.Add(new_space_strings_[i]);
|
| - }
|
| - }
|
| - new_space_strings_.Rewind(last);
|
| - new_space_strings_.Trim();
|
| -
|
| - last = 0;
|
| - for (int i = 0; i < old_space_strings_.length(); ++i) {
|
| - if (old_space_strings_[i] == heap_->the_hole_value()) {
|
| - continue;
|
| - }
|
| - DCHECK(old_space_strings_[i]->IsExternalString());
|
| - DCHECK(!heap_->InNewSpace(old_space_strings_[i]));
|
| - old_space_strings_[last++] = old_space_strings_[i];
|
| - }
|
| - old_space_strings_.Rewind(last);
|
| - old_space_strings_.Trim();
|
| -#ifdef VERIFY_HEAP
|
| - if (FLAG_verify_heap) {
|
| - Verify();
|
| - }
|
| -#endif
|
| -}
|
| -
|
| -
|
| -void ExternalStringTable::TearDown() {
|
| - for (int i = 0; i < new_space_strings_.length(); ++i) {
|
| - heap_->FinalizeExternalString(ExternalString::cast(new_space_strings_[i]));
|
| - }
|
| - new_space_strings_.Free();
|
| - for (int i = 0; i < old_space_strings_.length(); ++i) {
|
| - heap_->FinalizeExternalString(ExternalString::cast(old_space_strings_[i]));
|
| - }
|
| - old_space_strings_.Free();
|
| -}
|
| -
|
| -
|
| -void Heap::QueueMemoryChunkForFree(MemoryChunk* chunk) {
|
| - chunk->set_next_chunk(chunks_queued_for_free_);
|
| - chunks_queued_for_free_ = chunk;
|
| -}
|
| -
|
| -
|
| -void Heap::FreeQueuedChunks() {
|
| - if (chunks_queued_for_free_ == NULL) return;
|
| - MemoryChunk* next;
|
| - MemoryChunk* chunk;
|
| - for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) {
|
| - next = chunk->next_chunk();
|
| - chunk->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED);
|
| -
|
| - if (chunk->owner()->identity() == LO_SPACE) {
|
| - // StoreBuffer::Filter relies on MemoryChunk::FromAnyPointerAddress.
|
| - // If FromAnyPointerAddress encounters a slot that belongs to a large
|
| - // chunk queued for deletion it will fail to find the chunk because
|
| - // it try to perform a search in the list of pages owned by of the large
|
| - // object space and queued chunks were detached from that list.
|
| - // To work around this we split large chunk into normal kPageSize aligned
|
| - // pieces and initialize size, owner and flags field of every piece.
|
| - // If FromAnyPointerAddress encounters a slot that belongs to one of
|
| - // these smaller pieces it will treat it as a slot on a normal Page.
|
| - Address chunk_end = chunk->address() + chunk->size();
|
| - MemoryChunk* inner = MemoryChunk::FromAddress(
|
| - chunk->address() + Page::kPageSize);
|
| - MemoryChunk* inner_last = MemoryChunk::FromAddress(chunk_end - 1);
|
| - while (inner <= inner_last) {
|
| - // Size of a large chunk is always a multiple of
|
| - // OS::AllocateAlignment() so there is always
|
| - // enough space for a fake MemoryChunk header.
|
| - Address area_end = Min(inner->address() + Page::kPageSize, chunk_end);
|
| - // Guard against overflow.
|
| - if (area_end < inner->address()) area_end = chunk_end;
|
| - inner->SetArea(inner->address(), area_end);
|
| - inner->set_size(Page::kPageSize);
|
| - inner->set_owner(lo_space());
|
| - inner->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED);
|
| - inner = MemoryChunk::FromAddress(
|
| - inner->address() + Page::kPageSize);
|
| - }
|
| - }
|
| - }
|
| - isolate_->heap()->store_buffer()->Compact();
|
| - isolate_->heap()->store_buffer()->Filter(MemoryChunk::ABOUT_TO_BE_FREED);
|
| - for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) {
|
| - next = chunk->next_chunk();
|
| - isolate_->memory_allocator()->Free(chunk);
|
| - }
|
| - chunks_queued_for_free_ = NULL;
|
| -}
|
| -
|
| -
|
| -void Heap::RememberUnmappedPage(Address page, bool compacted) {
|
| - uintptr_t p = reinterpret_cast<uintptr_t>(page);
|
| - // Tag the page pointer to make it findable in the dump file.
|
| - if (compacted) {
|
| - p ^= 0xc1ead & (Page::kPageSize - 1); // Cleared.
|
| - } else {
|
| - p ^= 0x1d1ed & (Page::kPageSize - 1); // I died.
|
| - }
|
| - remembered_unmapped_pages_[remembered_unmapped_pages_index_] =
|
| - reinterpret_cast<Address>(p);
|
| - remembered_unmapped_pages_index_++;
|
| - remembered_unmapped_pages_index_ %= kRememberedUnmappedPages;
|
| -}
|
| -
|
| -
|
| -void Heap::ClearObjectStats(bool clear_last_time_stats) {
|
| - memset(object_counts_, 0, sizeof(object_counts_));
|
| - memset(object_sizes_, 0, sizeof(object_sizes_));
|
| - if (clear_last_time_stats) {
|
| - memset(object_counts_last_time_, 0, sizeof(object_counts_last_time_));
|
| - memset(object_sizes_last_time_, 0, sizeof(object_sizes_last_time_));
|
| - }
|
| -}
|
| -
|
| -
|
| -static base::LazyMutex checkpoint_object_stats_mutex = LAZY_MUTEX_INITIALIZER;
|
| -
|
| -
|
| -void Heap::CheckpointObjectStats() {
|
| - base::LockGuard<base::Mutex> lock_guard(
|
| - checkpoint_object_stats_mutex.Pointer());
|
| - Counters* counters = isolate()->counters();
|
| -#define ADJUST_LAST_TIME_OBJECT_COUNT(name) \
|
| - counters->count_of_##name()->Increment( \
|
| - static_cast<int>(object_counts_[name])); \
|
| - counters->count_of_##name()->Decrement( \
|
| - static_cast<int>(object_counts_last_time_[name])); \
|
| - counters->size_of_##name()->Increment( \
|
| - static_cast<int>(object_sizes_[name])); \
|
| - counters->size_of_##name()->Decrement( \
|
| - static_cast<int>(object_sizes_last_time_[name]));
|
| - INSTANCE_TYPE_LIST(ADJUST_LAST_TIME_OBJECT_COUNT)
|
| -#undef ADJUST_LAST_TIME_OBJECT_COUNT
|
| - int index;
|
| -#define ADJUST_LAST_TIME_OBJECT_COUNT(name) \
|
| - index = FIRST_CODE_KIND_SUB_TYPE + Code::name; \
|
| - counters->count_of_CODE_TYPE_##name()->Increment( \
|
| - static_cast<int>(object_counts_[index])); \
|
| - counters->count_of_CODE_TYPE_##name()->Decrement( \
|
| - static_cast<int>(object_counts_last_time_[index])); \
|
| - counters->size_of_CODE_TYPE_##name()->Increment( \
|
| - static_cast<int>(object_sizes_[index])); \
|
| - counters->size_of_CODE_TYPE_##name()->Decrement( \
|
| - static_cast<int>(object_sizes_last_time_[index]));
|
| - CODE_KIND_LIST(ADJUST_LAST_TIME_OBJECT_COUNT)
|
| -#undef ADJUST_LAST_TIME_OBJECT_COUNT
|
| -#define ADJUST_LAST_TIME_OBJECT_COUNT(name) \
|
| - index = FIRST_FIXED_ARRAY_SUB_TYPE + name; \
|
| - counters->count_of_FIXED_ARRAY_##name()->Increment( \
|
| - static_cast<int>(object_counts_[index])); \
|
| - counters->count_of_FIXED_ARRAY_##name()->Decrement( \
|
| - static_cast<int>(object_counts_last_time_[index])); \
|
| - counters->size_of_FIXED_ARRAY_##name()->Increment( \
|
| - static_cast<int>(object_sizes_[index])); \
|
| - counters->size_of_FIXED_ARRAY_##name()->Decrement( \
|
| - static_cast<int>(object_sizes_last_time_[index]));
|
| - FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(ADJUST_LAST_TIME_OBJECT_COUNT)
|
| -#undef ADJUST_LAST_TIME_OBJECT_COUNT
|
| -#define ADJUST_LAST_TIME_OBJECT_COUNT(name) \
|
| - index = \
|
| - FIRST_CODE_AGE_SUB_TYPE + Code::k##name##CodeAge - Code::kFirstCodeAge; \
|
| - counters->count_of_CODE_AGE_##name()->Increment( \
|
| - static_cast<int>(object_counts_[index])); \
|
| - counters->count_of_CODE_AGE_##name()->Decrement( \
|
| - static_cast<int>(object_counts_last_time_[index])); \
|
| - counters->size_of_CODE_AGE_##name()->Increment( \
|
| - static_cast<int>(object_sizes_[index])); \
|
| - counters->size_of_CODE_AGE_##name()->Decrement( \
|
| - static_cast<int>(object_sizes_last_time_[index]));
|
| - CODE_AGE_LIST_COMPLETE(ADJUST_LAST_TIME_OBJECT_COUNT)
|
| -#undef ADJUST_LAST_TIME_OBJECT_COUNT
|
| -
|
| - MemCopy(object_counts_last_time_, object_counts_, sizeof(object_counts_));
|
| - MemCopy(object_sizes_last_time_, object_sizes_, sizeof(object_sizes_));
|
| - ClearObjectStats();
|
| -}
|
| -
|
| -} } // namespace v8::internal
|
|
|