Index: src/heap.cc |
diff --git a/src/heap.cc b/src/heap.cc |
deleted file mode 100644 |
index c31339934d7b4a26e128a90eb82bc50a7a21f2c4..0000000000000000000000000000000000000000 |
--- a/src/heap.cc |
+++ /dev/null |
@@ -1,6175 +0,0 @@ |
-// Copyright 2012 the V8 project authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#include "src/v8.h" |
- |
-#include "src/accessors.h" |
-#include "src/api.h" |
-#include "src/base/once.h" |
-#include "src/base/utils/random-number-generator.h" |
-#include "src/bootstrapper.h" |
-#include "src/codegen.h" |
-#include "src/compilation-cache.h" |
-#include "src/conversions.h" |
-#include "src/cpu-profiler.h" |
-#include "src/debug.h" |
-#include "src/deoptimizer.h" |
-#include "src/global-handles.h" |
-#include "src/heap-profiler.h" |
-#include "src/incremental-marking.h" |
-#include "src/isolate-inl.h" |
-#include "src/mark-compact.h" |
-#include "src/natives.h" |
-#include "src/objects-visiting-inl.h" |
-#include "src/objects-visiting.h" |
-#include "src/runtime-profiler.h" |
-#include "src/scopeinfo.h" |
-#include "src/snapshot.h" |
-#include "src/store-buffer.h" |
-#include "src/utils.h" |
-#include "src/v8threads.h" |
-#include "src/vm-state-inl.h" |
- |
-#if V8_TARGET_ARCH_ARM && !V8_INTERPRETED_REGEXP |
-#include "src/regexp-macro-assembler.h" // NOLINT |
-#include "src/arm/regexp-macro-assembler-arm.h" // NOLINT |
-#endif |
-#if V8_TARGET_ARCH_MIPS && !V8_INTERPRETED_REGEXP |
-#include "src/regexp-macro-assembler.h" // NOLINT |
-#include "src/mips/regexp-macro-assembler-mips.h" // NOLINT |
-#endif |
-#if V8_TARGET_ARCH_MIPS64 && !V8_INTERPRETED_REGEXP |
-#include "src/regexp-macro-assembler.h" |
-#include "src/mips64/regexp-macro-assembler-mips64.h" |
-#endif |
- |
-namespace v8 { |
-namespace internal { |
- |
- |
-Heap::Heap() |
- : amount_of_external_allocated_memory_(0), |
- amount_of_external_allocated_memory_at_last_global_gc_(0), |
- isolate_(NULL), |
- code_range_size_(0), |
- // semispace_size_ should be a power of 2 and old_generation_size_ should |
- // be a multiple of Page::kPageSize. |
- reserved_semispace_size_(8 * (kPointerSize / 4) * MB), |
- max_semi_space_size_(8 * (kPointerSize / 4) * MB), |
- initial_semispace_size_(Page::kPageSize), |
- max_old_generation_size_(700ul * (kPointerSize / 4) * MB), |
- max_executable_size_(256ul * (kPointerSize / 4) * MB), |
- // Variables set based on semispace_size_ and old_generation_size_ in |
- // ConfigureHeap. |
- // Will be 4 * reserved_semispace_size_ to ensure that young |
- // generation can be aligned to its size. |
- maximum_committed_(0), |
- survived_since_last_expansion_(0), |
- sweep_generation_(0), |
- always_allocate_scope_depth_(0), |
- contexts_disposed_(0), |
- global_ic_age_(0), |
- flush_monomorphic_ics_(false), |
- scan_on_scavenge_pages_(0), |
- new_space_(this), |
- old_pointer_space_(NULL), |
- old_data_space_(NULL), |
- code_space_(NULL), |
- map_space_(NULL), |
- cell_space_(NULL), |
- property_cell_space_(NULL), |
- lo_space_(NULL), |
- gc_state_(NOT_IN_GC), |
- gc_post_processing_depth_(0), |
- allocations_count_(0), |
- raw_allocations_hash_(0), |
- dump_allocations_hash_countdown_(FLAG_dump_allocations_digest_at_alloc), |
- ms_count_(0), |
- gc_count_(0), |
- remembered_unmapped_pages_index_(0), |
- unflattened_strings_length_(0), |
-#ifdef DEBUG |
- allocation_timeout_(0), |
-#endif // DEBUG |
- old_generation_allocation_limit_(kMinimumOldGenerationAllocationLimit), |
- old_gen_exhausted_(false), |
- inline_allocation_disabled_(false), |
- store_buffer_rebuilder_(store_buffer()), |
- hidden_string_(NULL), |
- gc_safe_size_of_old_object_(NULL), |
- total_regexp_code_generated_(0), |
- tracer_(this), |
- high_survival_rate_period_length_(0), |
- promoted_objects_size_(0), |
- promotion_rate_(0), |
- semi_space_copied_object_size_(0), |
- semi_space_copied_rate_(0), |
- nodes_died_in_new_space_(0), |
- nodes_copied_in_new_space_(0), |
- nodes_promoted_(0), |
- maximum_size_scavenges_(0), |
- max_gc_pause_(0.0), |
- total_gc_time_ms_(0.0), |
- max_alive_after_gc_(0), |
- min_in_mutator_(kMaxInt), |
- marking_time_(0.0), |
- sweeping_time_(0.0), |
- mark_compact_collector_(this), |
- store_buffer_(this), |
- marking_(this), |
- incremental_marking_(this), |
- number_idle_notifications_(0), |
- last_idle_notification_gc_count_(0), |
- last_idle_notification_gc_count_init_(false), |
- mark_sweeps_since_idle_round_started_(0), |
- gc_count_at_last_idle_gc_(0), |
- scavenges_since_last_idle_round_(kIdleScavengeThreshold), |
- full_codegen_bytes_generated_(0), |
- crankshaft_codegen_bytes_generated_(0), |
- gcs_since_last_deopt_(0), |
-#ifdef VERIFY_HEAP |
- no_weak_object_verification_scope_depth_(0), |
-#endif |
- allocation_sites_scratchpad_length_(0), |
- promotion_queue_(this), |
- configured_(false), |
- external_string_table_(this), |
- chunks_queued_for_free_(NULL), |
- gc_callbacks_depth_(0) { |
- // Allow build-time customization of the max semispace size. Building |
- // V8 with snapshots and a non-default max semispace size is much |
- // easier if you can define it as part of the build environment. |
-#if defined(V8_MAX_SEMISPACE_SIZE) |
- max_semi_space_size_ = reserved_semispace_size_ = V8_MAX_SEMISPACE_SIZE; |
-#endif |
- |
- // Ensure old_generation_size_ is a multiple of kPageSize. |
- DCHECK(MB >= Page::kPageSize); |
- |
- memset(roots_, 0, sizeof(roots_[0]) * kRootListLength); |
- set_native_contexts_list(NULL); |
- set_array_buffers_list(Smi::FromInt(0)); |
- set_allocation_sites_list(Smi::FromInt(0)); |
- set_encountered_weak_collections(Smi::FromInt(0)); |
- // Put a dummy entry in the remembered pages so we can find the list the |
- // minidump even if there are no real unmapped pages. |
- RememberUnmappedPage(NULL, false); |
- |
- ClearObjectStats(true); |
-} |
- |
- |
-intptr_t Heap::Capacity() { |
- if (!HasBeenSetUp()) return 0; |
- |
- return new_space_.Capacity() + |
- old_pointer_space_->Capacity() + |
- old_data_space_->Capacity() + |
- code_space_->Capacity() + |
- map_space_->Capacity() + |
- cell_space_->Capacity() + |
- property_cell_space_->Capacity(); |
-} |
- |
- |
-intptr_t Heap::CommittedMemory() { |
- if (!HasBeenSetUp()) return 0; |
- |
- return new_space_.CommittedMemory() + |
- old_pointer_space_->CommittedMemory() + |
- old_data_space_->CommittedMemory() + |
- code_space_->CommittedMemory() + |
- map_space_->CommittedMemory() + |
- cell_space_->CommittedMemory() + |
- property_cell_space_->CommittedMemory() + |
- lo_space_->Size(); |
-} |
- |
- |
-size_t Heap::CommittedPhysicalMemory() { |
- if (!HasBeenSetUp()) return 0; |
- |
- return new_space_.CommittedPhysicalMemory() + |
- old_pointer_space_->CommittedPhysicalMemory() + |
- old_data_space_->CommittedPhysicalMemory() + |
- code_space_->CommittedPhysicalMemory() + |
- map_space_->CommittedPhysicalMemory() + |
- cell_space_->CommittedPhysicalMemory() + |
- property_cell_space_->CommittedPhysicalMemory() + |
- lo_space_->CommittedPhysicalMemory(); |
-} |
- |
- |
-intptr_t Heap::CommittedMemoryExecutable() { |
- if (!HasBeenSetUp()) return 0; |
- |
- return isolate()->memory_allocator()->SizeExecutable(); |
-} |
- |
- |
-void Heap::UpdateMaximumCommitted() { |
- if (!HasBeenSetUp()) return; |
- |
- intptr_t current_committed_memory = CommittedMemory(); |
- if (current_committed_memory > maximum_committed_) { |
- maximum_committed_ = current_committed_memory; |
- } |
-} |
- |
- |
-intptr_t Heap::Available() { |
- if (!HasBeenSetUp()) return 0; |
- |
- return new_space_.Available() + |
- old_pointer_space_->Available() + |
- old_data_space_->Available() + |
- code_space_->Available() + |
- map_space_->Available() + |
- cell_space_->Available() + |
- property_cell_space_->Available(); |
-} |
- |
- |
-bool Heap::HasBeenSetUp() { |
- return old_pointer_space_ != NULL && |
- old_data_space_ != NULL && |
- code_space_ != NULL && |
- map_space_ != NULL && |
- cell_space_ != NULL && |
- property_cell_space_ != NULL && |
- lo_space_ != NULL; |
-} |
- |
- |
-int Heap::GcSafeSizeOfOldObject(HeapObject* object) { |
- if (IntrusiveMarking::IsMarked(object)) { |
- return IntrusiveMarking::SizeOfMarkedObject(object); |
- } |
- return object->SizeFromMap(object->map()); |
-} |
- |
- |
-GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space, |
- const char** reason) { |
- // Is global GC requested? |
- if (space != NEW_SPACE) { |
- isolate_->counters()->gc_compactor_caused_by_request()->Increment(); |
- *reason = "GC in old space requested"; |
- return MARK_COMPACTOR; |
- } |
- |
- if (FLAG_gc_global || (FLAG_stress_compaction && (gc_count_ & 1) != 0)) { |
- *reason = "GC in old space forced by flags"; |
- return MARK_COMPACTOR; |
- } |
- |
- // Is enough data promoted to justify a global GC? |
- if (OldGenerationAllocationLimitReached()) { |
- isolate_->counters()->gc_compactor_caused_by_promoted_data()->Increment(); |
- *reason = "promotion limit reached"; |
- return MARK_COMPACTOR; |
- } |
- |
- // Have allocation in OLD and LO failed? |
- if (old_gen_exhausted_) { |
- isolate_->counters()-> |
- gc_compactor_caused_by_oldspace_exhaustion()->Increment(); |
- *reason = "old generations exhausted"; |
- return MARK_COMPACTOR; |
- } |
- |
- // Is there enough space left in OLD to guarantee that a scavenge can |
- // succeed? |
- // |
- // Note that MemoryAllocator->MaxAvailable() undercounts the memory available |
- // for object promotion. It counts only the bytes that the memory |
- // allocator has not yet allocated from the OS and assigned to any space, |
- // and does not count available bytes already in the old space or code |
- // space. Undercounting is safe---we may get an unrequested full GC when |
- // a scavenge would have succeeded. |
- if (isolate_->memory_allocator()->MaxAvailable() <= new_space_.Size()) { |
- isolate_->counters()-> |
- gc_compactor_caused_by_oldspace_exhaustion()->Increment(); |
- *reason = "scavenge might not succeed"; |
- return MARK_COMPACTOR; |
- } |
- |
- // Default |
- *reason = NULL; |
- return SCAVENGER; |
-} |
- |
- |
-// TODO(1238405): Combine the infrastructure for --heap-stats and |
-// --log-gc to avoid the complicated preprocessor and flag testing. |
-void Heap::ReportStatisticsBeforeGC() { |
- // Heap::ReportHeapStatistics will also log NewSpace statistics when |
- // compiled --log-gc is set. The following logic is used to avoid |
- // double logging. |
-#ifdef DEBUG |
- if (FLAG_heap_stats || FLAG_log_gc) new_space_.CollectStatistics(); |
- if (FLAG_heap_stats) { |
- ReportHeapStatistics("Before GC"); |
- } else if (FLAG_log_gc) { |
- new_space_.ReportStatistics(); |
- } |
- if (FLAG_heap_stats || FLAG_log_gc) new_space_.ClearHistograms(); |
-#else |
- if (FLAG_log_gc) { |
- new_space_.CollectStatistics(); |
- new_space_.ReportStatistics(); |
- new_space_.ClearHistograms(); |
- } |
-#endif // DEBUG |
-} |
- |
- |
-void Heap::PrintShortHeapStatistics() { |
- if (!FLAG_trace_gc_verbose) return; |
- PrintPID("Memory allocator, used: %6" V8_PTR_PREFIX "d KB" |
- ", available: %6" V8_PTR_PREFIX "d KB\n", |
- isolate_->memory_allocator()->Size() / KB, |
- isolate_->memory_allocator()->Available() / KB); |
- PrintPID("New space, used: %6" V8_PTR_PREFIX "d KB" |
- ", available: %6" V8_PTR_PREFIX "d KB" |
- ", committed: %6" V8_PTR_PREFIX "d KB\n", |
- new_space_.Size() / KB, |
- new_space_.Available() / KB, |
- new_space_.CommittedMemory() / KB); |
- PrintPID("Old pointers, used: %6" V8_PTR_PREFIX "d KB" |
- ", available: %6" V8_PTR_PREFIX "d KB" |
- ", committed: %6" V8_PTR_PREFIX "d KB\n", |
- old_pointer_space_->SizeOfObjects() / KB, |
- old_pointer_space_->Available() / KB, |
- old_pointer_space_->CommittedMemory() / KB); |
- PrintPID("Old data space, used: %6" V8_PTR_PREFIX "d KB" |
- ", available: %6" V8_PTR_PREFIX "d KB" |
- ", committed: %6" V8_PTR_PREFIX "d KB\n", |
- old_data_space_->SizeOfObjects() / KB, |
- old_data_space_->Available() / KB, |
- old_data_space_->CommittedMemory() / KB); |
- PrintPID("Code space, used: %6" V8_PTR_PREFIX "d KB" |
- ", available: %6" V8_PTR_PREFIX "d KB" |
- ", committed: %6" V8_PTR_PREFIX "d KB\n", |
- code_space_->SizeOfObjects() / KB, |
- code_space_->Available() / KB, |
- code_space_->CommittedMemory() / KB); |
- PrintPID("Map space, used: %6" V8_PTR_PREFIX "d KB" |
- ", available: %6" V8_PTR_PREFIX "d KB" |
- ", committed: %6" V8_PTR_PREFIX "d KB\n", |
- map_space_->SizeOfObjects() / KB, |
- map_space_->Available() / KB, |
- map_space_->CommittedMemory() / KB); |
- PrintPID("Cell space, used: %6" V8_PTR_PREFIX "d KB" |
- ", available: %6" V8_PTR_PREFIX "d KB" |
- ", committed: %6" V8_PTR_PREFIX "d KB\n", |
- cell_space_->SizeOfObjects() / KB, |
- cell_space_->Available() / KB, |
- cell_space_->CommittedMemory() / KB); |
- PrintPID("PropertyCell space, used: %6" V8_PTR_PREFIX "d KB" |
- ", available: %6" V8_PTR_PREFIX "d KB" |
- ", committed: %6" V8_PTR_PREFIX "d KB\n", |
- property_cell_space_->SizeOfObjects() / KB, |
- property_cell_space_->Available() / KB, |
- property_cell_space_->CommittedMemory() / KB); |
- PrintPID("Large object space, used: %6" V8_PTR_PREFIX "d KB" |
- ", available: %6" V8_PTR_PREFIX "d KB" |
- ", committed: %6" V8_PTR_PREFIX "d KB\n", |
- lo_space_->SizeOfObjects() / KB, |
- lo_space_->Available() / KB, |
- lo_space_->CommittedMemory() / KB); |
- PrintPID("All spaces, used: %6" V8_PTR_PREFIX "d KB" |
- ", available: %6" V8_PTR_PREFIX "d KB" |
- ", committed: %6" V8_PTR_PREFIX "d KB\n", |
- this->SizeOfObjects() / KB, |
- this->Available() / KB, |
- this->CommittedMemory() / KB); |
- PrintPID("External memory reported: %6" V8_PTR_PREFIX "d KB\n", |
- static_cast<intptr_t>(amount_of_external_allocated_memory_ / KB)); |
- PrintPID("Total time spent in GC : %.1f ms\n", total_gc_time_ms_); |
-} |
- |
- |
-// TODO(1238405): Combine the infrastructure for --heap-stats and |
-// --log-gc to avoid the complicated preprocessor and flag testing. |
-void Heap::ReportStatisticsAfterGC() { |
- // Similar to the before GC, we use some complicated logic to ensure that |
- // NewSpace statistics are logged exactly once when --log-gc is turned on. |
-#if defined(DEBUG) |
- if (FLAG_heap_stats) { |
- new_space_.CollectStatistics(); |
- ReportHeapStatistics("After GC"); |
- } else if (FLAG_log_gc) { |
- new_space_.ReportStatistics(); |
- } |
-#else |
- if (FLAG_log_gc) new_space_.ReportStatistics(); |
-#endif // DEBUG |
-} |
- |
- |
-void Heap::GarbageCollectionPrologue() { |
- { AllowHeapAllocation for_the_first_part_of_prologue; |
- ClearJSFunctionResultCaches(); |
- gc_count_++; |
- unflattened_strings_length_ = 0; |
- |
- if (FLAG_flush_code && FLAG_flush_code_incrementally) { |
- mark_compact_collector()->EnableCodeFlushing(true); |
- } |
- |
-#ifdef VERIFY_HEAP |
- if (FLAG_verify_heap) { |
- Verify(); |
- } |
-#endif |
- } |
- |
- // Reset GC statistics. |
- promoted_objects_size_ = 0; |
- semi_space_copied_object_size_ = 0; |
- nodes_died_in_new_space_ = 0; |
- nodes_copied_in_new_space_ = 0; |
- nodes_promoted_ = 0; |
- |
- UpdateMaximumCommitted(); |
- |
-#ifdef DEBUG |
- DCHECK(!AllowHeapAllocation::IsAllowed() && gc_state_ == NOT_IN_GC); |
- |
- if (FLAG_gc_verbose) Print(); |
- |
- ReportStatisticsBeforeGC(); |
-#endif // DEBUG |
- |
- store_buffer()->GCPrologue(); |
- |
- if (isolate()->concurrent_osr_enabled()) { |
- isolate()->optimizing_compiler_thread()->AgeBufferedOsrJobs(); |
- } |
- |
- if (new_space_.IsAtMaximumCapacity()) { |
- maximum_size_scavenges_++; |
- } else { |
- maximum_size_scavenges_ = 0; |
- } |
- CheckNewSpaceExpansionCriteria(); |
-} |
- |
- |
-intptr_t Heap::SizeOfObjects() { |
- intptr_t total = 0; |
- AllSpaces spaces(this); |
- for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { |
- total += space->SizeOfObjects(); |
- } |
- return total; |
-} |
- |
- |
-void Heap::ClearAllICsByKind(Code::Kind kind) { |
- HeapObjectIterator it(code_space()); |
- |
- for (Object* object = it.Next(); object != NULL; object = it.Next()) { |
- Code* code = Code::cast(object); |
- Code::Kind current_kind = code->kind(); |
- if (current_kind == Code::FUNCTION || |
- current_kind == Code::OPTIMIZED_FUNCTION) { |
- code->ClearInlineCaches(kind); |
- } |
- } |
-} |
- |
- |
-void Heap::RepairFreeListsAfterBoot() { |
- PagedSpaces spaces(this); |
- for (PagedSpace* space = spaces.next(); |
- space != NULL; |
- space = spaces.next()) { |
- space->RepairFreeListsAfterBoot(); |
- } |
-} |
- |
- |
-void Heap::ProcessPretenuringFeedback() { |
- if (FLAG_allocation_site_pretenuring) { |
- int tenure_decisions = 0; |
- int dont_tenure_decisions = 0; |
- int allocation_mementos_found = 0; |
- int allocation_sites = 0; |
- int active_allocation_sites = 0; |
- |
- // If the scratchpad overflowed, we have to iterate over the allocation |
- // sites list. |
- // TODO(hpayer): We iterate over the whole list of allocation sites when |
- // we grew to the maximum semi-space size to deopt maybe tenured |
- // allocation sites. We could hold the maybe tenured allocation sites |
- // in a seperate data structure if this is a performance problem. |
- bool deopt_maybe_tenured = DeoptMaybeTenuredAllocationSites(); |
- bool use_scratchpad = |
- allocation_sites_scratchpad_length_ < kAllocationSiteScratchpadSize && |
- !deopt_maybe_tenured; |
- |
- int i = 0; |
- Object* list_element = allocation_sites_list(); |
- bool trigger_deoptimization = false; |
- bool maximum_size_scavenge = MaximumSizeScavenge(); |
- while (use_scratchpad ? |
- i < allocation_sites_scratchpad_length_ : |
- list_element->IsAllocationSite()) { |
- AllocationSite* site = use_scratchpad ? |
- AllocationSite::cast(allocation_sites_scratchpad()->get(i)) : |
- AllocationSite::cast(list_element); |
- allocation_mementos_found += site->memento_found_count(); |
- if (site->memento_found_count() > 0) { |
- active_allocation_sites++; |
- if (site->DigestPretenuringFeedback(maximum_size_scavenge)) { |
- trigger_deoptimization = true; |
- } |
- if (site->GetPretenureMode() == TENURED) { |
- tenure_decisions++; |
- } else { |
- dont_tenure_decisions++; |
- } |
- allocation_sites++; |
- } |
- |
- if (deopt_maybe_tenured && site->IsMaybeTenure()) { |
- site->set_deopt_dependent_code(true); |
- trigger_deoptimization = true; |
- } |
- |
- if (use_scratchpad) { |
- i++; |
- } else { |
- list_element = site->weak_next(); |
- } |
- } |
- |
- if (trigger_deoptimization) { |
- isolate_->stack_guard()->RequestDeoptMarkedAllocationSites(); |
- } |
- |
- FlushAllocationSitesScratchpad(); |
- |
- if (FLAG_trace_pretenuring_statistics && |
- (allocation_mementos_found > 0 || |
- tenure_decisions > 0 || |
- dont_tenure_decisions > 0)) { |
- PrintF("GC: (mode, #visited allocation sites, #active allocation sites, " |
- "#mementos, #tenure decisions, #donttenure decisions) " |
- "(%s, %d, %d, %d, %d, %d)\n", |
- use_scratchpad ? "use scratchpad" : "use list", |
- allocation_sites, |
- active_allocation_sites, |
- allocation_mementos_found, |
- tenure_decisions, |
- dont_tenure_decisions); |
- } |
- } |
-} |
- |
- |
-void Heap::DeoptMarkedAllocationSites() { |
- // TODO(hpayer): If iterating over the allocation sites list becomes a |
- // performance issue, use a cache heap data structure instead (similar to the |
- // allocation sites scratchpad). |
- Object* list_element = allocation_sites_list(); |
- while (list_element->IsAllocationSite()) { |
- AllocationSite* site = AllocationSite::cast(list_element); |
- if (site->deopt_dependent_code()) { |
- site->dependent_code()->MarkCodeForDeoptimization( |
- isolate_, |
- DependentCode::kAllocationSiteTenuringChangedGroup); |
- site->set_deopt_dependent_code(false); |
- } |
- list_element = site->weak_next(); |
- } |
- Deoptimizer::DeoptimizeMarkedCode(isolate_); |
-} |
- |
- |
-void Heap::GarbageCollectionEpilogue() { |
- store_buffer()->GCEpilogue(); |
- |
- // In release mode, we only zap the from space under heap verification. |
- if (Heap::ShouldZapGarbage()) { |
- ZapFromSpace(); |
- } |
- |
- // Process pretenuring feedback and update allocation sites. |
- ProcessPretenuringFeedback(); |
- |
-#ifdef VERIFY_HEAP |
- if (FLAG_verify_heap) { |
- Verify(); |
- } |
-#endif |
- |
- AllowHeapAllocation for_the_rest_of_the_epilogue; |
- |
-#ifdef DEBUG |
- if (FLAG_print_global_handles) isolate_->global_handles()->Print(); |
- if (FLAG_print_handles) PrintHandles(); |
- if (FLAG_gc_verbose) Print(); |
- if (FLAG_code_stats) ReportCodeStatistics("After GC"); |
-#endif |
- if (FLAG_deopt_every_n_garbage_collections > 0) { |
- // TODO(jkummerow/ulan/jarin): This is not safe! We can't assume that |
- // the topmost optimized frame can be deoptimized safely, because it |
- // might not have a lazy bailout point right after its current PC. |
- if (++gcs_since_last_deopt_ == FLAG_deopt_every_n_garbage_collections) { |
- Deoptimizer::DeoptimizeAll(isolate()); |
- gcs_since_last_deopt_ = 0; |
- } |
- } |
- |
- UpdateMaximumCommitted(); |
- |
- isolate_->counters()->alive_after_last_gc()->Set( |
- static_cast<int>(SizeOfObjects())); |
- |
- isolate_->counters()->string_table_capacity()->Set( |
- string_table()->Capacity()); |
- isolate_->counters()->number_of_symbols()->Set( |
- string_table()->NumberOfElements()); |
- |
- if (full_codegen_bytes_generated_ + crankshaft_codegen_bytes_generated_ > 0) { |
- isolate_->counters()->codegen_fraction_crankshaft()->AddSample( |
- static_cast<int>((crankshaft_codegen_bytes_generated_ * 100.0) / |
- (crankshaft_codegen_bytes_generated_ |
- + full_codegen_bytes_generated_))); |
- } |
- |
- if (CommittedMemory() > 0) { |
- isolate_->counters()->external_fragmentation_total()->AddSample( |
- static_cast<int>(100 - (SizeOfObjects() * 100.0) / CommittedMemory())); |
- |
- isolate_->counters()->heap_fraction_new_space()-> |
- AddSample(static_cast<int>( |
- (new_space()->CommittedMemory() * 100.0) / CommittedMemory())); |
- isolate_->counters()->heap_fraction_old_pointer_space()->AddSample( |
- static_cast<int>( |
- (old_pointer_space()->CommittedMemory() * 100.0) / |
- CommittedMemory())); |
- isolate_->counters()->heap_fraction_old_data_space()->AddSample( |
- static_cast<int>( |
- (old_data_space()->CommittedMemory() * 100.0) / |
- CommittedMemory())); |
- isolate_->counters()->heap_fraction_code_space()-> |
- AddSample(static_cast<int>( |
- (code_space()->CommittedMemory() * 100.0) / CommittedMemory())); |
- isolate_->counters()->heap_fraction_map_space()->AddSample( |
- static_cast<int>( |
- (map_space()->CommittedMemory() * 100.0) / CommittedMemory())); |
- isolate_->counters()->heap_fraction_cell_space()->AddSample( |
- static_cast<int>( |
- (cell_space()->CommittedMemory() * 100.0) / CommittedMemory())); |
- isolate_->counters()->heap_fraction_property_cell_space()-> |
- AddSample(static_cast<int>( |
- (property_cell_space()->CommittedMemory() * 100.0) / |
- CommittedMemory())); |
- isolate_->counters()->heap_fraction_lo_space()-> |
- AddSample(static_cast<int>( |
- (lo_space()->CommittedMemory() * 100.0) / CommittedMemory())); |
- |
- isolate_->counters()->heap_sample_total_committed()->AddSample( |
- static_cast<int>(CommittedMemory() / KB)); |
- isolate_->counters()->heap_sample_total_used()->AddSample( |
- static_cast<int>(SizeOfObjects() / KB)); |
- isolate_->counters()->heap_sample_map_space_committed()->AddSample( |
- static_cast<int>(map_space()->CommittedMemory() / KB)); |
- isolate_->counters()->heap_sample_cell_space_committed()->AddSample( |
- static_cast<int>(cell_space()->CommittedMemory() / KB)); |
- isolate_->counters()-> |
- heap_sample_property_cell_space_committed()-> |
- AddSample(static_cast<int>( |
- property_cell_space()->CommittedMemory() / KB)); |
- isolate_->counters()->heap_sample_code_space_committed()->AddSample( |
- static_cast<int>(code_space()->CommittedMemory() / KB)); |
- |
- isolate_->counters()->heap_sample_maximum_committed()->AddSample( |
- static_cast<int>(MaximumCommittedMemory() / KB)); |
- } |
- |
-#define UPDATE_COUNTERS_FOR_SPACE(space) \ |
- isolate_->counters()->space##_bytes_available()->Set( \ |
- static_cast<int>(space()->Available())); \ |
- isolate_->counters()->space##_bytes_committed()->Set( \ |
- static_cast<int>(space()->CommittedMemory())); \ |
- isolate_->counters()->space##_bytes_used()->Set( \ |
- static_cast<int>(space()->SizeOfObjects())); |
-#define UPDATE_FRAGMENTATION_FOR_SPACE(space) \ |
- if (space()->CommittedMemory() > 0) { \ |
- isolate_->counters()->external_fragmentation_##space()->AddSample( \ |
- static_cast<int>(100 - \ |
- (space()->SizeOfObjects() * 100.0) / space()->CommittedMemory())); \ |
- } |
-#define UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(space) \ |
- UPDATE_COUNTERS_FOR_SPACE(space) \ |
- UPDATE_FRAGMENTATION_FOR_SPACE(space) |
- |
- UPDATE_COUNTERS_FOR_SPACE(new_space) |
- UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(old_pointer_space) |
- UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(old_data_space) |
- UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(code_space) |
- UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(map_space) |
- UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(cell_space) |
- UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(property_cell_space) |
- UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(lo_space) |
-#undef UPDATE_COUNTERS_FOR_SPACE |
-#undef UPDATE_FRAGMENTATION_FOR_SPACE |
-#undef UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE |
- |
-#ifdef DEBUG |
- ReportStatisticsAfterGC(); |
-#endif // DEBUG |
- |
- // Remember the last top pointer so that we can later find out |
- // whether we allocated in new space since the last GC. |
- new_space_top_after_last_gc_ = new_space()->top(); |
-} |
- |
- |
-void Heap::CollectAllGarbage(int flags, |
- const char* gc_reason, |
- const v8::GCCallbackFlags gc_callback_flags) { |
- // Since we are ignoring the return value, the exact choice of space does |
- // not matter, so long as we do not specify NEW_SPACE, which would not |
- // cause a full GC. |
- mark_compact_collector_.SetFlags(flags); |
- CollectGarbage(OLD_POINTER_SPACE, gc_reason, gc_callback_flags); |
- mark_compact_collector_.SetFlags(kNoGCFlags); |
-} |
- |
- |
-void Heap::CollectAllAvailableGarbage(const char* gc_reason) { |
- // Since we are ignoring the return value, the exact choice of space does |
- // not matter, so long as we do not specify NEW_SPACE, which would not |
- // cause a full GC. |
- // Major GC would invoke weak handle callbacks on weakly reachable |
- // handles, but won't collect weakly reachable objects until next |
- // major GC. Therefore if we collect aggressively and weak handle callback |
- // has been invoked, we rerun major GC to release objects which become |
- // garbage. |
- // Note: as weak callbacks can execute arbitrary code, we cannot |
- // hope that eventually there will be no weak callbacks invocations. |
- // Therefore stop recollecting after several attempts. |
- if (isolate()->concurrent_recompilation_enabled()) { |
- // The optimizing compiler may be unnecessarily holding on to memory. |
- DisallowHeapAllocation no_recursive_gc; |
- isolate()->optimizing_compiler_thread()->Flush(); |
- } |
- mark_compact_collector()->SetFlags(kMakeHeapIterableMask | |
- kReduceMemoryFootprintMask); |
- isolate_->compilation_cache()->Clear(); |
- const int kMaxNumberOfAttempts = 7; |
- const int kMinNumberOfAttempts = 2; |
- for (int attempt = 0; attempt < kMaxNumberOfAttempts; attempt++) { |
- if (!CollectGarbage(MARK_COMPACTOR, gc_reason, NULL) && |
- attempt + 1 >= kMinNumberOfAttempts) { |
- break; |
- } |
- } |
- mark_compact_collector()->SetFlags(kNoGCFlags); |
- new_space_.Shrink(); |
- UncommitFromSpace(); |
- incremental_marking()->UncommitMarkingDeque(); |
-} |
- |
- |
-void Heap::EnsureFillerObjectAtTop() { |
- // There may be an allocation memento behind every object in new space. |
- // If we evacuate a not full new space or if we are on the last page of |
- // the new space, then there may be uninitialized memory behind the top |
- // pointer of the new space page. We store a filler object there to |
- // identify the unused space. |
- Address from_top = new_space_.top(); |
- Address from_limit = new_space_.limit(); |
- if (from_top < from_limit) { |
- int remaining_in_page = static_cast<int>(from_limit - from_top); |
- CreateFillerObjectAt(from_top, remaining_in_page); |
- } |
-} |
- |
- |
-bool Heap::CollectGarbage(GarbageCollector collector, |
- const char* gc_reason, |
- const char* collector_reason, |
- const v8::GCCallbackFlags gc_callback_flags) { |
- // The VM is in the GC state until exiting this function. |
- VMState<GC> state(isolate_); |
- |
-#ifdef DEBUG |
- // Reset the allocation timeout to the GC interval, but make sure to |
- // allow at least a few allocations after a collection. The reason |
- // for this is that we have a lot of allocation sequences and we |
- // assume that a garbage collection will allow the subsequent |
- // allocation attempts to go through. |
- allocation_timeout_ = Max(6, FLAG_gc_interval); |
-#endif |
- |
- EnsureFillerObjectAtTop(); |
- |
- if (collector == SCAVENGER && !incremental_marking()->IsStopped()) { |
- if (FLAG_trace_incremental_marking) { |
- PrintF("[IncrementalMarking] Scavenge during marking.\n"); |
- } |
- } |
- |
- if (collector == MARK_COMPACTOR && |
- !mark_compact_collector()->abort_incremental_marking() && |
- !incremental_marking()->IsStopped() && |
- !incremental_marking()->should_hurry() && |
- FLAG_incremental_marking_steps) { |
- // Make progress in incremental marking. |
- const intptr_t kStepSizeWhenDelayedByScavenge = 1 * MB; |
- incremental_marking()->Step(kStepSizeWhenDelayedByScavenge, |
- IncrementalMarking::NO_GC_VIA_STACK_GUARD); |
- if (!incremental_marking()->IsComplete() && !FLAG_gc_global) { |
- if (FLAG_trace_incremental_marking) { |
- PrintF("[IncrementalMarking] Delaying MarkSweep.\n"); |
- } |
- collector = SCAVENGER; |
- collector_reason = "incremental marking delaying mark-sweep"; |
- } |
- } |
- |
- bool next_gc_likely_to_collect_more = false; |
- |
- { |
- tracer()->Start(collector, gc_reason, collector_reason); |
- DCHECK(AllowHeapAllocation::IsAllowed()); |
- DisallowHeapAllocation no_allocation_during_gc; |
- GarbageCollectionPrologue(); |
- |
- { |
- HistogramTimerScope histogram_timer_scope( |
- (collector == SCAVENGER) ? isolate_->counters()->gc_scavenger() |
- : isolate_->counters()->gc_compactor()); |
- next_gc_likely_to_collect_more = |
- PerformGarbageCollection(collector, gc_callback_flags); |
- } |
- |
- GarbageCollectionEpilogue(); |
- tracer()->Stop(); |
- } |
- |
- // Start incremental marking for the next cycle. The heap snapshot |
- // generator needs incremental marking to stay off after it aborted. |
- if (!mark_compact_collector()->abort_incremental_marking() && |
- incremental_marking()->IsStopped() && |
- incremental_marking()->WorthActivating() && |
- NextGCIsLikelyToBeFull()) { |
- incremental_marking()->Start(); |
- } |
- |
- return next_gc_likely_to_collect_more; |
-} |
- |
- |
-int Heap::NotifyContextDisposed() { |
- if (isolate()->concurrent_recompilation_enabled()) { |
- // Flush the queued recompilation tasks. |
- isolate()->optimizing_compiler_thread()->Flush(); |
- } |
- flush_monomorphic_ics_ = true; |
- AgeInlineCaches(); |
- return ++contexts_disposed_; |
-} |
- |
- |
-void Heap::MoveElements(FixedArray* array, |
- int dst_index, |
- int src_index, |
- int len) { |
- if (len == 0) return; |
- |
- DCHECK(array->map() != fixed_cow_array_map()); |
- Object** dst_objects = array->data_start() + dst_index; |
- MemMove(dst_objects, array->data_start() + src_index, len * kPointerSize); |
- if (!InNewSpace(array)) { |
- for (int i = 0; i < len; i++) { |
- // TODO(hpayer): check store buffer for entries |
- if (InNewSpace(dst_objects[i])) { |
- RecordWrite(array->address(), array->OffsetOfElementAt(dst_index + i)); |
- } |
- } |
- } |
- incremental_marking()->RecordWrites(array); |
-} |
- |
- |
-#ifdef VERIFY_HEAP |
-// Helper class for verifying the string table. |
-class StringTableVerifier : public ObjectVisitor { |
- public: |
- void VisitPointers(Object** start, Object** end) { |
- // Visit all HeapObject pointers in [start, end). |
- for (Object** p = start; p < end; p++) { |
- if ((*p)->IsHeapObject()) { |
- // Check that the string is actually internalized. |
- CHECK((*p)->IsTheHole() || (*p)->IsUndefined() || |
- (*p)->IsInternalizedString()); |
- } |
- } |
- } |
-}; |
- |
- |
-static void VerifyStringTable(Heap* heap) { |
- StringTableVerifier verifier; |
- heap->string_table()->IterateElements(&verifier); |
-} |
-#endif // VERIFY_HEAP |
- |
- |
-static bool AbortIncrementalMarkingAndCollectGarbage( |
- Heap* heap, |
- AllocationSpace space, |
- const char* gc_reason = NULL) { |
- heap->mark_compact_collector()->SetFlags(Heap::kAbortIncrementalMarkingMask); |
- bool result = heap->CollectGarbage(space, gc_reason); |
- heap->mark_compact_collector()->SetFlags(Heap::kNoGCFlags); |
- return result; |
-} |
- |
- |
-void Heap::ReserveSpace(int *sizes, Address *locations_out) { |
- bool gc_performed = true; |
- int counter = 0; |
- static const int kThreshold = 20; |
- while (gc_performed && counter++ < kThreshold) { |
- gc_performed = false; |
- DCHECK(NEW_SPACE == FIRST_PAGED_SPACE - 1); |
- for (int space = NEW_SPACE; space <= LAST_PAGED_SPACE; space++) { |
- if (sizes[space] != 0) { |
- AllocationResult allocation; |
- if (space == NEW_SPACE) { |
- allocation = new_space()->AllocateRaw(sizes[space]); |
- } else { |
- allocation = paged_space(space)->AllocateRaw(sizes[space]); |
- } |
- FreeListNode* node; |
- if (!allocation.To(&node)) { |
- if (space == NEW_SPACE) { |
- Heap::CollectGarbage(NEW_SPACE, |
- "failed to reserve space in the new space"); |
- } else { |
- AbortIncrementalMarkingAndCollectGarbage( |
- this, |
- static_cast<AllocationSpace>(space), |
- "failed to reserve space in paged space"); |
- } |
- gc_performed = true; |
- break; |
- } else { |
- // Mark with a free list node, in case we have a GC before |
- // deserializing. |
- node->set_size(this, sizes[space]); |
- locations_out[space] = node->address(); |
- } |
- } |
- } |
- } |
- |
- if (gc_performed) { |
- // Failed to reserve the space after several attempts. |
- V8::FatalProcessOutOfMemory("Heap::ReserveSpace"); |
- } |
-} |
- |
- |
-void Heap::EnsureFromSpaceIsCommitted() { |
- if (new_space_.CommitFromSpaceIfNeeded()) return; |
- |
- // Committing memory to from space failed. |
- // Memory is exhausted and we will die. |
- V8::FatalProcessOutOfMemory("Committing semi space failed."); |
-} |
- |
- |
-void Heap::ClearJSFunctionResultCaches() { |
- if (isolate_->bootstrapper()->IsActive()) return; |
- |
- Object* context = native_contexts_list(); |
- while (!context->IsUndefined()) { |
- // Get the caches for this context. GC can happen when the context |
- // is not fully initialized, so the caches can be undefined. |
- Object* caches_or_undefined = |
- Context::cast(context)->get(Context::JSFUNCTION_RESULT_CACHES_INDEX); |
- if (!caches_or_undefined->IsUndefined()) { |
- FixedArray* caches = FixedArray::cast(caches_or_undefined); |
- // Clear the caches: |
- int length = caches->length(); |
- for (int i = 0; i < length; i++) { |
- JSFunctionResultCache::cast(caches->get(i))->Clear(); |
- } |
- } |
- // Get the next context: |
- context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK); |
- } |
-} |
- |
- |
-void Heap::ClearNormalizedMapCaches() { |
- if (isolate_->bootstrapper()->IsActive() && |
- !incremental_marking()->IsMarking()) { |
- return; |
- } |
- |
- Object* context = native_contexts_list(); |
- while (!context->IsUndefined()) { |
- // GC can happen when the context is not fully initialized, |
- // so the cache can be undefined. |
- Object* cache = |
- Context::cast(context)->get(Context::NORMALIZED_MAP_CACHE_INDEX); |
- if (!cache->IsUndefined()) { |
- NormalizedMapCache::cast(cache)->Clear(); |
- } |
- context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK); |
- } |
-} |
- |
- |
-void Heap::UpdateSurvivalStatistics(int start_new_space_size) { |
- if (start_new_space_size == 0) return; |
- |
- promotion_rate_ = |
- (static_cast<double>(promoted_objects_size_) / |
- static_cast<double>(start_new_space_size) * 100); |
- |
- semi_space_copied_rate_ = |
- (static_cast<double>(semi_space_copied_object_size_) / |
- static_cast<double>(start_new_space_size) * 100); |
- |
- double survival_rate = promotion_rate_ + semi_space_copied_rate_; |
- |
- if (survival_rate > kYoungSurvivalRateHighThreshold) { |
- high_survival_rate_period_length_++; |
- } else { |
- high_survival_rate_period_length_ = 0; |
- } |
-} |
- |
-bool Heap::PerformGarbageCollection( |
- GarbageCollector collector, |
- const v8::GCCallbackFlags gc_callback_flags) { |
- int freed_global_handles = 0; |
- |
- if (collector != SCAVENGER) { |
- PROFILE(isolate_, CodeMovingGCEvent()); |
- } |
- |
-#ifdef VERIFY_HEAP |
- if (FLAG_verify_heap) { |
- VerifyStringTable(this); |
- } |
-#endif |
- |
- GCType gc_type = |
- collector == MARK_COMPACTOR ? kGCTypeMarkSweepCompact : kGCTypeScavenge; |
- |
- { GCCallbacksScope scope(this); |
- if (scope.CheckReenter()) { |
- AllowHeapAllocation allow_allocation; |
- GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL); |
- VMState<EXTERNAL> state(isolate_); |
- HandleScope handle_scope(isolate_); |
- CallGCPrologueCallbacks(gc_type, kNoGCCallbackFlags); |
- } |
- } |
- |
- EnsureFromSpaceIsCommitted(); |
- |
- int start_new_space_size = Heap::new_space()->SizeAsInt(); |
- |
- if (IsHighSurvivalRate()) { |
- // We speed up the incremental marker if it is running so that it |
- // does not fall behind the rate of promotion, which would cause a |
- // constantly growing old space. |
- incremental_marking()->NotifyOfHighPromotionRate(); |
- } |
- |
- if (collector == MARK_COMPACTOR) { |
- // Perform mark-sweep with optional compaction. |
- MarkCompact(); |
- sweep_generation_++; |
- // Temporarily set the limit for case when PostGarbageCollectionProcessing |
- // allocates and triggers GC. The real limit is set at after |
- // PostGarbageCollectionProcessing. |
- old_generation_allocation_limit_ = |
- OldGenerationAllocationLimit(PromotedSpaceSizeOfObjects(), 0); |
- old_gen_exhausted_ = false; |
- } else { |
- Scavenge(); |
- } |
- |
- UpdateSurvivalStatistics(start_new_space_size); |
- |
- isolate_->counters()->objs_since_last_young()->Set(0); |
- |
- // Callbacks that fire after this point might trigger nested GCs and |
- // restart incremental marking, the assertion can't be moved down. |
- DCHECK(collector == SCAVENGER || incremental_marking()->IsStopped()); |
- |
- gc_post_processing_depth_++; |
- { AllowHeapAllocation allow_allocation; |
- GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL); |
- freed_global_handles = |
- isolate_->global_handles()->PostGarbageCollectionProcessing(collector); |
- } |
- gc_post_processing_depth_--; |
- |
- isolate_->eternal_handles()->PostGarbageCollectionProcessing(this); |
- |
- // Update relocatables. |
- Relocatable::PostGarbageCollectionProcessing(isolate_); |
- |
- if (collector == MARK_COMPACTOR) { |
- // Register the amount of external allocated memory. |
- amount_of_external_allocated_memory_at_last_global_gc_ = |
- amount_of_external_allocated_memory_; |
- old_generation_allocation_limit_ = |
- OldGenerationAllocationLimit(PromotedSpaceSizeOfObjects(), |
- freed_global_handles); |
- } |
- |
- { GCCallbacksScope scope(this); |
- if (scope.CheckReenter()) { |
- AllowHeapAllocation allow_allocation; |
- GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL); |
- VMState<EXTERNAL> state(isolate_); |
- HandleScope handle_scope(isolate_); |
- CallGCEpilogueCallbacks(gc_type, gc_callback_flags); |
- } |
- } |
- |
-#ifdef VERIFY_HEAP |
- if (FLAG_verify_heap) { |
- VerifyStringTable(this); |
- } |
-#endif |
- |
- return freed_global_handles > 0; |
-} |
- |
- |
-void Heap::CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags) { |
- for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) { |
- if (gc_type & gc_prologue_callbacks_[i].gc_type) { |
- if (!gc_prologue_callbacks_[i].pass_isolate_) { |
- v8::GCPrologueCallback callback = |
- reinterpret_cast<v8::GCPrologueCallback>( |
- gc_prologue_callbacks_[i].callback); |
- callback(gc_type, flags); |
- } else { |
- v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(this->isolate()); |
- gc_prologue_callbacks_[i].callback(isolate, gc_type, flags); |
- } |
- } |
- } |
-} |
- |
- |
-void Heap::CallGCEpilogueCallbacks(GCType gc_type, |
- GCCallbackFlags gc_callback_flags) { |
- for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) { |
- if (gc_type & gc_epilogue_callbacks_[i].gc_type) { |
- if (!gc_epilogue_callbacks_[i].pass_isolate_) { |
- v8::GCPrologueCallback callback = |
- reinterpret_cast<v8::GCPrologueCallback>( |
- gc_epilogue_callbacks_[i].callback); |
- callback(gc_type, gc_callback_flags); |
- } else { |
- v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(this->isolate()); |
- gc_epilogue_callbacks_[i].callback( |
- isolate, gc_type, gc_callback_flags); |
- } |
- } |
- } |
-} |
- |
- |
-void Heap::MarkCompact() { |
- gc_state_ = MARK_COMPACT; |
- LOG(isolate_, ResourceEvent("markcompact", "begin")); |
- |
- uint64_t size_of_objects_before_gc = SizeOfObjects(); |
- |
- mark_compact_collector_.Prepare(); |
- |
- ms_count_++; |
- |
- MarkCompactPrologue(); |
- |
- mark_compact_collector_.CollectGarbage(); |
- |
- LOG(isolate_, ResourceEvent("markcompact", "end")); |
- |
- gc_state_ = NOT_IN_GC; |
- |
- isolate_->counters()->objs_since_last_full()->Set(0); |
- |
- flush_monomorphic_ics_ = false; |
- |
- if (FLAG_allocation_site_pretenuring) { |
- EvaluateOldSpaceLocalPretenuring(size_of_objects_before_gc); |
- } |
-} |
- |
- |
-void Heap::MarkCompactPrologue() { |
- // At any old GC clear the keyed lookup cache to enable collection of unused |
- // maps. |
- isolate_->keyed_lookup_cache()->Clear(); |
- isolate_->context_slot_cache()->Clear(); |
- isolate_->descriptor_lookup_cache()->Clear(); |
- RegExpResultsCache::Clear(string_split_cache()); |
- RegExpResultsCache::Clear(regexp_multiple_cache()); |
- |
- isolate_->compilation_cache()->MarkCompactPrologue(); |
- |
- CompletelyClearInstanceofCache(); |
- |
- FlushNumberStringCache(); |
- if (FLAG_cleanup_code_caches_at_gc) { |
- polymorphic_code_cache()->set_cache(undefined_value()); |
- } |
- |
- ClearNormalizedMapCaches(); |
-} |
- |
- |
-// Helper class for copying HeapObjects |
-class ScavengeVisitor: public ObjectVisitor { |
- public: |
- explicit ScavengeVisitor(Heap* heap) : heap_(heap) {} |
- |
- void VisitPointer(Object** p) { ScavengePointer(p); } |
- |
- void VisitPointers(Object** start, Object** end) { |
- // Copy all HeapObject pointers in [start, end) |
- for (Object** p = start; p < end; p++) ScavengePointer(p); |
- } |
- |
- private: |
- void ScavengePointer(Object** p) { |
- Object* object = *p; |
- if (!heap_->InNewSpace(object)) return; |
- Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p), |
- reinterpret_cast<HeapObject*>(object)); |
- } |
- |
- Heap* heap_; |
-}; |
- |
- |
-#ifdef VERIFY_HEAP |
-// Visitor class to verify pointers in code or data space do not point into |
-// new space. |
-class VerifyNonPointerSpacePointersVisitor: public ObjectVisitor { |
- public: |
- explicit VerifyNonPointerSpacePointersVisitor(Heap* heap) : heap_(heap) {} |
- void VisitPointers(Object** start, Object**end) { |
- for (Object** current = start; current < end; current++) { |
- if ((*current)->IsHeapObject()) { |
- CHECK(!heap_->InNewSpace(HeapObject::cast(*current))); |
- } |
- } |
- } |
- |
- private: |
- Heap* heap_; |
-}; |
- |
- |
-static void VerifyNonPointerSpacePointers(Heap* heap) { |
- // Verify that there are no pointers to new space in spaces where we |
- // do not expect them. |
- VerifyNonPointerSpacePointersVisitor v(heap); |
- HeapObjectIterator code_it(heap->code_space()); |
- for (HeapObject* object = code_it.Next(); |
- object != NULL; object = code_it.Next()) |
- object->Iterate(&v); |
- |
- // The old data space was normally swept conservatively so that the iterator |
- // doesn't work, so we normally skip the next bit. |
- if (heap->old_data_space()->swept_precisely()) { |
- HeapObjectIterator data_it(heap->old_data_space()); |
- for (HeapObject* object = data_it.Next(); |
- object != NULL; object = data_it.Next()) |
- object->Iterate(&v); |
- } |
-} |
-#endif // VERIFY_HEAP |
- |
- |
-void Heap::CheckNewSpaceExpansionCriteria() { |
- if (new_space_.Capacity() < new_space_.MaximumCapacity() && |
- survived_since_last_expansion_ > new_space_.Capacity()) { |
- // Grow the size of new space if there is room to grow, enough data |
- // has survived scavenge since the last expansion and we are not in |
- // high promotion mode. |
- new_space_.Grow(); |
- survived_since_last_expansion_ = 0; |
- } |
-} |
- |
- |
-static bool IsUnscavengedHeapObject(Heap* heap, Object** p) { |
- return heap->InNewSpace(*p) && |
- !HeapObject::cast(*p)->map_word().IsForwardingAddress(); |
-} |
- |
- |
-void Heap::ScavengeStoreBufferCallback( |
- Heap* heap, |
- MemoryChunk* page, |
- StoreBufferEvent event) { |
- heap->store_buffer_rebuilder_.Callback(page, event); |
-} |
- |
- |
-void StoreBufferRebuilder::Callback(MemoryChunk* page, StoreBufferEvent event) { |
- if (event == kStoreBufferStartScanningPagesEvent) { |
- start_of_current_page_ = NULL; |
- current_page_ = NULL; |
- } else if (event == kStoreBufferScanningPageEvent) { |
- if (current_page_ != NULL) { |
- // If this page already overflowed the store buffer during this iteration. |
- if (current_page_->scan_on_scavenge()) { |
- // Then we should wipe out the entries that have been added for it. |
- store_buffer_->SetTop(start_of_current_page_); |
- } else if (store_buffer_->Top() - start_of_current_page_ >= |
- (store_buffer_->Limit() - store_buffer_->Top()) >> 2) { |
- // Did we find too many pointers in the previous page? The heuristic is |
- // that no page can take more then 1/5 the remaining slots in the store |
- // buffer. |
- current_page_->set_scan_on_scavenge(true); |
- store_buffer_->SetTop(start_of_current_page_); |
- } else { |
- // In this case the page we scanned took a reasonable number of slots in |
- // the store buffer. It has now been rehabilitated and is no longer |
- // marked scan_on_scavenge. |
- DCHECK(!current_page_->scan_on_scavenge()); |
- } |
- } |
- start_of_current_page_ = store_buffer_->Top(); |
- current_page_ = page; |
- } else if (event == kStoreBufferFullEvent) { |
- // The current page overflowed the store buffer again. Wipe out its entries |
- // in the store buffer and mark it scan-on-scavenge again. This may happen |
- // several times while scanning. |
- if (current_page_ == NULL) { |
- // Store Buffer overflowed while scanning promoted objects. These are not |
- // in any particular page, though they are likely to be clustered by the |
- // allocation routines. |
- store_buffer_->EnsureSpace(StoreBuffer::kStoreBufferSize / 2); |
- } else { |
- // Store Buffer overflowed while scanning a particular old space page for |
- // pointers to new space. |
- DCHECK(current_page_ == page); |
- DCHECK(page != NULL); |
- current_page_->set_scan_on_scavenge(true); |
- DCHECK(start_of_current_page_ != store_buffer_->Top()); |
- store_buffer_->SetTop(start_of_current_page_); |
- } |
- } else { |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-void PromotionQueue::Initialize() { |
- // Assumes that a NewSpacePage exactly fits a number of promotion queue |
- // entries (where each is a pair of intptr_t). This allows us to simplify |
- // the test fpr when to switch pages. |
- DCHECK((Page::kPageSize - MemoryChunk::kBodyOffset) % (2 * kPointerSize) |
- == 0); |
- limit_ = reinterpret_cast<intptr_t*>(heap_->new_space()->ToSpaceStart()); |
- front_ = rear_ = |
- reinterpret_cast<intptr_t*>(heap_->new_space()->ToSpaceEnd()); |
- emergency_stack_ = NULL; |
- guard_ = false; |
-} |
- |
- |
-void PromotionQueue::RelocateQueueHead() { |
- DCHECK(emergency_stack_ == NULL); |
- |
- Page* p = Page::FromAllocationTop(reinterpret_cast<Address>(rear_)); |
- intptr_t* head_start = rear_; |
- intptr_t* head_end = |
- Min(front_, reinterpret_cast<intptr_t*>(p->area_end())); |
- |
- int entries_count = |
- static_cast<int>(head_end - head_start) / kEntrySizeInWords; |
- |
- emergency_stack_ = new List<Entry>(2 * entries_count); |
- |
- while (head_start != head_end) { |
- int size = static_cast<int>(*(head_start++)); |
- HeapObject* obj = reinterpret_cast<HeapObject*>(*(head_start++)); |
- emergency_stack_->Add(Entry(obj, size)); |
- } |
- rear_ = head_end; |
-} |
- |
- |
-class ScavengeWeakObjectRetainer : public WeakObjectRetainer { |
- public: |
- explicit ScavengeWeakObjectRetainer(Heap* heap) : heap_(heap) { } |
- |
- virtual Object* RetainAs(Object* object) { |
- if (!heap_->InFromSpace(object)) { |
- return object; |
- } |
- |
- MapWord map_word = HeapObject::cast(object)->map_word(); |
- if (map_word.IsForwardingAddress()) { |
- return map_word.ToForwardingAddress(); |
- } |
- return NULL; |
- } |
- |
- private: |
- Heap* heap_; |
-}; |
- |
- |
-void Heap::Scavenge() { |
- RelocationLock relocation_lock(this); |
- |
-#ifdef VERIFY_HEAP |
- if (FLAG_verify_heap) VerifyNonPointerSpacePointers(this); |
-#endif |
- |
- gc_state_ = SCAVENGE; |
- |
- // Implements Cheney's copying algorithm |
- LOG(isolate_, ResourceEvent("scavenge", "begin")); |
- |
- // Clear descriptor cache. |
- isolate_->descriptor_lookup_cache()->Clear(); |
- |
- // Used for updating survived_since_last_expansion_ at function end. |
- intptr_t survived_watermark = PromotedSpaceSizeOfObjects(); |
- |
- SelectScavengingVisitorsTable(); |
- |
- incremental_marking()->PrepareForScavenge(); |
- |
- // Flip the semispaces. After flipping, to space is empty, from space has |
- // live objects. |
- new_space_.Flip(); |
- new_space_.ResetAllocationInfo(); |
- |
- // We need to sweep newly copied objects which can be either in the |
- // to space or promoted to the old generation. For to-space |
- // objects, we treat the bottom of the to space as a queue. Newly |
- // copied and unswept objects lie between a 'front' mark and the |
- // allocation pointer. |
- // |
- // Promoted objects can go into various old-generation spaces, and |
- // can be allocated internally in the spaces (from the free list). |
- // We treat the top of the to space as a queue of addresses of |
- // promoted objects. The addresses of newly promoted and unswept |
- // objects lie between a 'front' mark and a 'rear' mark that is |
- // updated as a side effect of promoting an object. |
- // |
- // There is guaranteed to be enough room at the top of the to space |
- // for the addresses of promoted objects: every object promoted |
- // frees up its size in bytes from the top of the new space, and |
- // objects are at least one pointer in size. |
- Address new_space_front = new_space_.ToSpaceStart(); |
- promotion_queue_.Initialize(); |
- |
-#ifdef DEBUG |
- store_buffer()->Clean(); |
-#endif |
- |
- ScavengeVisitor scavenge_visitor(this); |
- // Copy roots. |
- IterateRoots(&scavenge_visitor, VISIT_ALL_IN_SCAVENGE); |
- |
- // Copy objects reachable from the old generation. |
- { |
- StoreBufferRebuildScope scope(this, |
- store_buffer(), |
- &ScavengeStoreBufferCallback); |
- store_buffer()->IteratePointersToNewSpace(&ScavengeObject); |
- } |
- |
- // Copy objects reachable from simple cells by scavenging cell values |
- // directly. |
- HeapObjectIterator cell_iterator(cell_space_); |
- for (HeapObject* heap_object = cell_iterator.Next(); |
- heap_object != NULL; |
- heap_object = cell_iterator.Next()) { |
- if (heap_object->IsCell()) { |
- Cell* cell = Cell::cast(heap_object); |
- Address value_address = cell->ValueAddress(); |
- scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(value_address)); |
- } |
- } |
- |
- // Copy objects reachable from global property cells by scavenging global |
- // property cell values directly. |
- HeapObjectIterator js_global_property_cell_iterator(property_cell_space_); |
- for (HeapObject* heap_object = js_global_property_cell_iterator.Next(); |
- heap_object != NULL; |
- heap_object = js_global_property_cell_iterator.Next()) { |
- if (heap_object->IsPropertyCell()) { |
- PropertyCell* cell = PropertyCell::cast(heap_object); |
- Address value_address = cell->ValueAddress(); |
- scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(value_address)); |
- Address type_address = cell->TypeAddress(); |
- scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(type_address)); |
- } |
- } |
- |
- // Copy objects reachable from the encountered weak collections list. |
- scavenge_visitor.VisitPointer(&encountered_weak_collections_); |
- |
- // Copy objects reachable from the code flushing candidates list. |
- MarkCompactCollector* collector = mark_compact_collector(); |
- if (collector->is_code_flushing_enabled()) { |
- collector->code_flusher()->IteratePointersToFromSpace(&scavenge_visitor); |
- } |
- |
- new_space_front = DoScavenge(&scavenge_visitor, new_space_front); |
- |
- while (isolate()->global_handles()->IterateObjectGroups( |
- &scavenge_visitor, &IsUnscavengedHeapObject)) { |
- new_space_front = DoScavenge(&scavenge_visitor, new_space_front); |
- } |
- isolate()->global_handles()->RemoveObjectGroups(); |
- isolate()->global_handles()->RemoveImplicitRefGroups(); |
- |
- isolate_->global_handles()->IdentifyNewSpaceWeakIndependentHandles( |
- &IsUnscavengedHeapObject); |
- isolate_->global_handles()->IterateNewSpaceWeakIndependentRoots( |
- &scavenge_visitor); |
- new_space_front = DoScavenge(&scavenge_visitor, new_space_front); |
- |
- UpdateNewSpaceReferencesInExternalStringTable( |
- &UpdateNewSpaceReferenceInExternalStringTableEntry); |
- |
- promotion_queue_.Destroy(); |
- |
- incremental_marking()->UpdateMarkingDequeAfterScavenge(); |
- |
- ScavengeWeakObjectRetainer weak_object_retainer(this); |
- ProcessWeakReferences(&weak_object_retainer); |
- |
- DCHECK(new_space_front == new_space_.top()); |
- |
- // Set age mark. |
- new_space_.set_age_mark(new_space_.top()); |
- |
- new_space_.LowerInlineAllocationLimit( |
- new_space_.inline_allocation_limit_step()); |
- |
- // Update how much has survived scavenge. |
- IncrementYoungSurvivorsCounter(static_cast<int>( |
- (PromotedSpaceSizeOfObjects() - survived_watermark) + new_space_.Size())); |
- |
- LOG(isolate_, ResourceEvent("scavenge", "end")); |
- |
- gc_state_ = NOT_IN_GC; |
- |
- scavenges_since_last_idle_round_++; |
-} |
- |
- |
-String* Heap::UpdateNewSpaceReferenceInExternalStringTableEntry(Heap* heap, |
- Object** p) { |
- MapWord first_word = HeapObject::cast(*p)->map_word(); |
- |
- if (!first_word.IsForwardingAddress()) { |
- // Unreachable external string can be finalized. |
- heap->FinalizeExternalString(String::cast(*p)); |
- return NULL; |
- } |
- |
- // String is still reachable. |
- return String::cast(first_word.ToForwardingAddress()); |
-} |
- |
- |
-void Heap::UpdateNewSpaceReferencesInExternalStringTable( |
- ExternalStringTableUpdaterCallback updater_func) { |
-#ifdef VERIFY_HEAP |
- if (FLAG_verify_heap) { |
- external_string_table_.Verify(); |
- } |
-#endif |
- |
- if (external_string_table_.new_space_strings_.is_empty()) return; |
- |
- Object** start = &external_string_table_.new_space_strings_[0]; |
- Object** end = start + external_string_table_.new_space_strings_.length(); |
- Object** last = start; |
- |
- for (Object** p = start; p < end; ++p) { |
- DCHECK(InFromSpace(*p)); |
- String* target = updater_func(this, p); |
- |
- if (target == NULL) continue; |
- |
- DCHECK(target->IsExternalString()); |
- |
- if (InNewSpace(target)) { |
- // String is still in new space. Update the table entry. |
- *last = target; |
- ++last; |
- } else { |
- // String got promoted. Move it to the old string list. |
- external_string_table_.AddOldString(target); |
- } |
- } |
- |
- DCHECK(last <= end); |
- external_string_table_.ShrinkNewStrings(static_cast<int>(last - start)); |
-} |
- |
- |
-void Heap::UpdateReferencesInExternalStringTable( |
- ExternalStringTableUpdaterCallback updater_func) { |
- |
- // Update old space string references. |
- if (external_string_table_.old_space_strings_.length() > 0) { |
- Object** start = &external_string_table_.old_space_strings_[0]; |
- Object** end = start + external_string_table_.old_space_strings_.length(); |
- for (Object** p = start; p < end; ++p) *p = updater_func(this, p); |
- } |
- |
- UpdateNewSpaceReferencesInExternalStringTable(updater_func); |
-} |
- |
- |
-void Heap::ProcessWeakReferences(WeakObjectRetainer* retainer) { |
- ProcessArrayBuffers(retainer); |
- ProcessNativeContexts(retainer); |
- // TODO(mvstanton): AllocationSites only need to be processed during |
- // MARK_COMPACT, as they live in old space. Verify and address. |
- ProcessAllocationSites(retainer); |
-} |
- |
- |
-void Heap::ProcessNativeContexts(WeakObjectRetainer* retainer) { |
- Object* head = VisitWeakList<Context>(this, native_contexts_list(), retainer); |
- // Update the head of the list of contexts. |
- set_native_contexts_list(head); |
-} |
- |
- |
-void Heap::ProcessArrayBuffers(WeakObjectRetainer* retainer) { |
- Object* array_buffer_obj = |
- VisitWeakList<JSArrayBuffer>(this, array_buffers_list(), retainer); |
- set_array_buffers_list(array_buffer_obj); |
-} |
- |
- |
-void Heap::TearDownArrayBuffers() { |
- Object* undefined = undefined_value(); |
- for (Object* o = array_buffers_list(); o != undefined;) { |
- JSArrayBuffer* buffer = JSArrayBuffer::cast(o); |
- Runtime::FreeArrayBuffer(isolate(), buffer); |
- o = buffer->weak_next(); |
- } |
- set_array_buffers_list(undefined); |
-} |
- |
- |
-void Heap::ProcessAllocationSites(WeakObjectRetainer* retainer) { |
- Object* allocation_site_obj = |
- VisitWeakList<AllocationSite>(this, allocation_sites_list(), retainer); |
- set_allocation_sites_list(allocation_site_obj); |
-} |
- |
- |
-void Heap::ResetAllAllocationSitesDependentCode(PretenureFlag flag) { |
- DisallowHeapAllocation no_allocation_scope; |
- Object* cur = allocation_sites_list(); |
- bool marked = false; |
- while (cur->IsAllocationSite()) { |
- AllocationSite* casted = AllocationSite::cast(cur); |
- if (casted->GetPretenureMode() == flag) { |
- casted->ResetPretenureDecision(); |
- casted->set_deopt_dependent_code(true); |
- marked = true; |
- } |
- cur = casted->weak_next(); |
- } |
- if (marked) isolate_->stack_guard()->RequestDeoptMarkedAllocationSites(); |
-} |
- |
- |
-void Heap::EvaluateOldSpaceLocalPretenuring( |
- uint64_t size_of_objects_before_gc) { |
- uint64_t size_of_objects_after_gc = SizeOfObjects(); |
- double old_generation_survival_rate = |
- (static_cast<double>(size_of_objects_after_gc) * 100) / |
- static_cast<double>(size_of_objects_before_gc); |
- |
- if (old_generation_survival_rate < kOldSurvivalRateLowThreshold) { |
- // Too many objects died in the old generation, pretenuring of wrong |
- // allocation sites may be the cause for that. We have to deopt all |
- // dependent code registered in the allocation sites to re-evaluate |
- // our pretenuring decisions. |
- ResetAllAllocationSitesDependentCode(TENURED); |
- if (FLAG_trace_pretenuring) { |
- PrintF("Deopt all allocation sites dependent code due to low survival " |
- "rate in the old generation %f\n", old_generation_survival_rate); |
- } |
- } |
-} |
- |
- |
-void Heap::VisitExternalResources(v8::ExternalResourceVisitor* visitor) { |
- DisallowHeapAllocation no_allocation; |
- // All external strings are listed in the external string table. |
- |
- class ExternalStringTableVisitorAdapter : public ObjectVisitor { |
- public: |
- explicit ExternalStringTableVisitorAdapter( |
- v8::ExternalResourceVisitor* visitor) : visitor_(visitor) {} |
- virtual void VisitPointers(Object** start, Object** end) { |
- for (Object** p = start; p < end; p++) { |
- DCHECK((*p)->IsExternalString()); |
- visitor_->VisitExternalString(Utils::ToLocal( |
- Handle<String>(String::cast(*p)))); |
- } |
- } |
- private: |
- v8::ExternalResourceVisitor* visitor_; |
- } external_string_table_visitor(visitor); |
- |
- external_string_table_.Iterate(&external_string_table_visitor); |
-} |
- |
- |
-class NewSpaceScavenger : public StaticNewSpaceVisitor<NewSpaceScavenger> { |
- public: |
- static inline void VisitPointer(Heap* heap, Object** p) { |
- Object* object = *p; |
- if (!heap->InNewSpace(object)) return; |
- Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p), |
- reinterpret_cast<HeapObject*>(object)); |
- } |
-}; |
- |
- |
-Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor, |
- Address new_space_front) { |
- do { |
- SemiSpace::AssertValidRange(new_space_front, new_space_.top()); |
- // The addresses new_space_front and new_space_.top() define a |
- // queue of unprocessed copied objects. Process them until the |
- // queue is empty. |
- while (new_space_front != new_space_.top()) { |
- if (!NewSpacePage::IsAtEnd(new_space_front)) { |
- HeapObject* object = HeapObject::FromAddress(new_space_front); |
- new_space_front += |
- NewSpaceScavenger::IterateBody(object->map(), object); |
- } else { |
- new_space_front = |
- NewSpacePage::FromLimit(new_space_front)->next_page()->area_start(); |
- } |
- } |
- |
- // Promote and process all the to-be-promoted objects. |
- { |
- StoreBufferRebuildScope scope(this, |
- store_buffer(), |
- &ScavengeStoreBufferCallback); |
- while (!promotion_queue()->is_empty()) { |
- HeapObject* target; |
- int size; |
- promotion_queue()->remove(&target, &size); |
- |
- // Promoted object might be already partially visited |
- // during old space pointer iteration. Thus we search specificly |
- // for pointers to from semispace instead of looking for pointers |
- // to new space. |
- DCHECK(!target->IsMap()); |
- IterateAndMarkPointersToFromSpace(target->address(), |
- target->address() + size, |
- &ScavengeObject); |
- } |
- } |
- |
- // Take another spin if there are now unswept objects in new space |
- // (there are currently no more unswept promoted objects). |
- } while (new_space_front != new_space_.top()); |
- |
- return new_space_front; |
-} |
- |
- |
-STATIC_ASSERT((FixedDoubleArray::kHeaderSize & |
- kDoubleAlignmentMask) == 0); // NOLINT |
-STATIC_ASSERT((ConstantPoolArray::kFirstEntryOffset & |
- kDoubleAlignmentMask) == 0); // NOLINT |
-STATIC_ASSERT((ConstantPoolArray::kExtendedFirstOffset & |
- kDoubleAlignmentMask) == 0); // NOLINT |
- |
- |
-INLINE(static HeapObject* EnsureDoubleAligned(Heap* heap, |
- HeapObject* object, |
- int size)); |
- |
-static HeapObject* EnsureDoubleAligned(Heap* heap, |
- HeapObject* object, |
- int size) { |
- if ((OffsetFrom(object->address()) & kDoubleAlignmentMask) != 0) { |
- heap->CreateFillerObjectAt(object->address(), kPointerSize); |
- return HeapObject::FromAddress(object->address() + kPointerSize); |
- } else { |
- heap->CreateFillerObjectAt(object->address() + size - kPointerSize, |
- kPointerSize); |
- return object; |
- } |
-} |
- |
- |
-enum LoggingAndProfiling { |
- LOGGING_AND_PROFILING_ENABLED, |
- LOGGING_AND_PROFILING_DISABLED |
-}; |
- |
- |
-enum MarksHandling { TRANSFER_MARKS, IGNORE_MARKS }; |
- |
- |
-template<MarksHandling marks_handling, |
- LoggingAndProfiling logging_and_profiling_mode> |
-class ScavengingVisitor : public StaticVisitorBase { |
- public: |
- static void Initialize() { |
- table_.Register(kVisitSeqOneByteString, &EvacuateSeqOneByteString); |
- table_.Register(kVisitSeqTwoByteString, &EvacuateSeqTwoByteString); |
- table_.Register(kVisitShortcutCandidate, &EvacuateShortcutCandidate); |
- table_.Register(kVisitByteArray, &EvacuateByteArray); |
- table_.Register(kVisitFixedArray, &EvacuateFixedArray); |
- table_.Register(kVisitFixedDoubleArray, &EvacuateFixedDoubleArray); |
- table_.Register(kVisitFixedTypedArray, &EvacuateFixedTypedArray); |
- table_.Register(kVisitFixedFloat64Array, &EvacuateFixedFloat64Array); |
- |
- table_.Register(kVisitNativeContext, |
- &ObjectEvacuationStrategy<POINTER_OBJECT>:: |
- template VisitSpecialized<Context::kSize>); |
- |
- table_.Register(kVisitConsString, |
- &ObjectEvacuationStrategy<POINTER_OBJECT>:: |
- template VisitSpecialized<ConsString::kSize>); |
- |
- table_.Register(kVisitSlicedString, |
- &ObjectEvacuationStrategy<POINTER_OBJECT>:: |
- template VisitSpecialized<SlicedString::kSize>); |
- |
- table_.Register(kVisitSymbol, |
- &ObjectEvacuationStrategy<POINTER_OBJECT>:: |
- template VisitSpecialized<Symbol::kSize>); |
- |
- table_.Register(kVisitSharedFunctionInfo, |
- &ObjectEvacuationStrategy<POINTER_OBJECT>:: |
- template VisitSpecialized<SharedFunctionInfo::kSize>); |
- |
- table_.Register(kVisitJSWeakCollection, |
- &ObjectEvacuationStrategy<POINTER_OBJECT>:: |
- Visit); |
- |
- table_.Register(kVisitJSArrayBuffer, |
- &ObjectEvacuationStrategy<POINTER_OBJECT>:: |
- Visit); |
- |
- table_.Register(kVisitJSTypedArray, |
- &ObjectEvacuationStrategy<POINTER_OBJECT>:: |
- Visit); |
- |
- table_.Register(kVisitJSDataView, |
- &ObjectEvacuationStrategy<POINTER_OBJECT>:: |
- Visit); |
- |
- table_.Register(kVisitJSRegExp, |
- &ObjectEvacuationStrategy<POINTER_OBJECT>:: |
- Visit); |
- |
- if (marks_handling == IGNORE_MARKS) { |
- table_.Register(kVisitJSFunction, |
- &ObjectEvacuationStrategy<POINTER_OBJECT>:: |
- template VisitSpecialized<JSFunction::kSize>); |
- } else { |
- table_.Register(kVisitJSFunction, &EvacuateJSFunction); |
- } |
- |
- table_.RegisterSpecializations<ObjectEvacuationStrategy<DATA_OBJECT>, |
- kVisitDataObject, |
- kVisitDataObjectGeneric>(); |
- |
- table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>, |
- kVisitJSObject, |
- kVisitJSObjectGeneric>(); |
- |
- table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>, |
- kVisitStruct, |
- kVisitStructGeneric>(); |
- } |
- |
- static VisitorDispatchTable<ScavengingCallback>* GetTable() { |
- return &table_; |
- } |
- |
- private: |
- enum ObjectContents { DATA_OBJECT, POINTER_OBJECT }; |
- |
- static void RecordCopiedObject(Heap* heap, HeapObject* obj) { |
- bool should_record = false; |
-#ifdef DEBUG |
- should_record = FLAG_heap_stats; |
-#endif |
- should_record = should_record || FLAG_log_gc; |
- if (should_record) { |
- if (heap->new_space()->Contains(obj)) { |
- heap->new_space()->RecordAllocation(obj); |
- } else { |
- heap->new_space()->RecordPromotion(obj); |
- } |
- } |
- } |
- |
- // Helper function used by CopyObject to copy a source object to an |
- // allocated target object and update the forwarding pointer in the source |
- // object. Returns the target object. |
- INLINE(static void MigrateObject(Heap* heap, |
- HeapObject* source, |
- HeapObject* target, |
- int size)) { |
- // If we migrate into to-space, then the to-space top pointer should be |
- // right after the target object. Incorporate double alignment |
- // over-allocation. |
- DCHECK(!heap->InToSpace(target) || |
- target->address() + size == heap->new_space()->top() || |
- target->address() + size + kPointerSize == heap->new_space()->top()); |
- |
- // Make sure that we do not overwrite the promotion queue which is at |
- // the end of to-space. |
- DCHECK(!heap->InToSpace(target) || |
- heap->promotion_queue()->IsBelowPromotionQueue( |
- heap->new_space()->top())); |
- |
- // Copy the content of source to target. |
- heap->CopyBlock(target->address(), source->address(), size); |
- |
- // Set the forwarding address. |
- source->set_map_word(MapWord::FromForwardingAddress(target)); |
- |
- if (logging_and_profiling_mode == LOGGING_AND_PROFILING_ENABLED) { |
- // Update NewSpace stats if necessary. |
- RecordCopiedObject(heap, target); |
- heap->OnMoveEvent(target, source, size); |
- } |
- |
- if (marks_handling == TRANSFER_MARKS) { |
- if (Marking::TransferColor(source, target)) { |
- MemoryChunk::IncrementLiveBytesFromGC(target->address(), size); |
- } |
- } |
- } |
- |
- template<int alignment> |
- static inline bool SemiSpaceCopyObject(Map* map, |
- HeapObject** slot, |
- HeapObject* object, |
- int object_size) { |
- Heap* heap = map->GetHeap(); |
- |
- int allocation_size = object_size; |
- if (alignment != kObjectAlignment) { |
- DCHECK(alignment == kDoubleAlignment); |
- allocation_size += kPointerSize; |
- } |
- |
- DCHECK(heap->AllowedToBeMigrated(object, NEW_SPACE)); |
- AllocationResult allocation = |
- heap->new_space()->AllocateRaw(allocation_size); |
- |
- HeapObject* target = NULL; // Initialization to please compiler. |
- if (allocation.To(&target)) { |
- if (alignment != kObjectAlignment) { |
- target = EnsureDoubleAligned(heap, target, allocation_size); |
- } |
- |
- // Order is important here: Set the promotion limit before migrating |
- // the object. Otherwise we may end up overwriting promotion queue |
- // entries when we migrate the object. |
- heap->promotion_queue()->SetNewLimit(heap->new_space()->top()); |
- |
- // Order is important: slot might be inside of the target if target |
- // was allocated over a dead object and slot comes from the store |
- // buffer. |
- *slot = target; |
- MigrateObject(heap, object, target, object_size); |
- |
- heap->IncrementSemiSpaceCopiedObjectSize(object_size); |
- return true; |
- } |
- return false; |
- } |
- |
- |
- template<ObjectContents object_contents, int alignment> |
- static inline bool PromoteObject(Map* map, |
- HeapObject** slot, |
- HeapObject* object, |
- int object_size) { |
- Heap* heap = map->GetHeap(); |
- |
- int allocation_size = object_size; |
- if (alignment != kObjectAlignment) { |
- DCHECK(alignment == kDoubleAlignment); |
- allocation_size += kPointerSize; |
- } |
- |
- AllocationResult allocation; |
- if (object_contents == DATA_OBJECT) { |
- DCHECK(heap->AllowedToBeMigrated(object, OLD_DATA_SPACE)); |
- allocation = heap->old_data_space()->AllocateRaw(allocation_size); |
- } else { |
- DCHECK(heap->AllowedToBeMigrated(object, OLD_POINTER_SPACE)); |
- allocation = heap->old_pointer_space()->AllocateRaw(allocation_size); |
- } |
- |
- HeapObject* target = NULL; // Initialization to please compiler. |
- if (allocation.To(&target)) { |
- if (alignment != kObjectAlignment) { |
- target = EnsureDoubleAligned(heap, target, allocation_size); |
- } |
- |
- // Order is important: slot might be inside of the target if target |
- // was allocated over a dead object and slot comes from the store |
- // buffer. |
- *slot = target; |
- MigrateObject(heap, object, target, object_size); |
- |
- if (object_contents == POINTER_OBJECT) { |
- if (map->instance_type() == JS_FUNCTION_TYPE) { |
- heap->promotion_queue()->insert( |
- target, JSFunction::kNonWeakFieldsEndOffset); |
- } else { |
- heap->promotion_queue()->insert(target, object_size); |
- } |
- } |
- heap->IncrementPromotedObjectsSize(object_size); |
- return true; |
- } |
- return false; |
- } |
- |
- |
- template<ObjectContents object_contents, int alignment> |
- static inline void EvacuateObject(Map* map, |
- HeapObject** slot, |
- HeapObject* object, |
- int object_size) { |
- SLOW_DCHECK(object_size <= Page::kMaxRegularHeapObjectSize); |
- SLOW_DCHECK(object->Size() == object_size); |
- Heap* heap = map->GetHeap(); |
- |
- if (!heap->ShouldBePromoted(object->address(), object_size)) { |
- // A semi-space copy may fail due to fragmentation. In that case, we |
- // try to promote the object. |
- if (SemiSpaceCopyObject<alignment>(map, slot, object, object_size)) { |
- return; |
- } |
- } |
- |
- if (PromoteObject<object_contents, alignment>( |
- map, slot, object, object_size)) { |
- return; |
- } |
- |
- // If promotion failed, we try to copy the object to the other semi-space |
- if (SemiSpaceCopyObject<alignment>(map, slot, object, object_size)) return; |
- |
- UNREACHABLE(); |
- } |
- |
- |
- static inline void EvacuateJSFunction(Map* map, |
- HeapObject** slot, |
- HeapObject* object) { |
- ObjectEvacuationStrategy<POINTER_OBJECT>:: |
- template VisitSpecialized<JSFunction::kSize>(map, slot, object); |
- |
- HeapObject* target = *slot; |
- MarkBit mark_bit = Marking::MarkBitFrom(target); |
- if (Marking::IsBlack(mark_bit)) { |
- // This object is black and it might not be rescanned by marker. |
- // We should explicitly record code entry slot for compaction because |
- // promotion queue processing (IterateAndMarkPointersToFromSpace) will |
- // miss it as it is not HeapObject-tagged. |
- Address code_entry_slot = |
- target->address() + JSFunction::kCodeEntryOffset; |
- Code* code = Code::cast(Code::GetObjectFromEntryAddress(code_entry_slot)); |
- map->GetHeap()->mark_compact_collector()-> |
- RecordCodeEntrySlot(code_entry_slot, code); |
- } |
- } |
- |
- |
- static inline void EvacuateFixedArray(Map* map, |
- HeapObject** slot, |
- HeapObject* object) { |
- int object_size = FixedArray::BodyDescriptor::SizeOf(map, object); |
- EvacuateObject<POINTER_OBJECT, kObjectAlignment>( |
- map, slot, object, object_size); |
- } |
- |
- |
- static inline void EvacuateFixedDoubleArray(Map* map, |
- HeapObject** slot, |
- HeapObject* object) { |
- int length = reinterpret_cast<FixedDoubleArray*>(object)->length(); |
- int object_size = FixedDoubleArray::SizeFor(length); |
- EvacuateObject<DATA_OBJECT, kDoubleAlignment>( |
- map, slot, object, object_size); |
- } |
- |
- |
- static inline void EvacuateFixedTypedArray(Map* map, |
- HeapObject** slot, |
- HeapObject* object) { |
- int object_size = reinterpret_cast<FixedTypedArrayBase*>(object)->size(); |
- EvacuateObject<DATA_OBJECT, kObjectAlignment>( |
- map, slot, object, object_size); |
- } |
- |
- |
- static inline void EvacuateFixedFloat64Array(Map* map, |
- HeapObject** slot, |
- HeapObject* object) { |
- int object_size = reinterpret_cast<FixedFloat64Array*>(object)->size(); |
- EvacuateObject<DATA_OBJECT, kDoubleAlignment>( |
- map, slot, object, object_size); |
- } |
- |
- |
- static inline void EvacuateByteArray(Map* map, |
- HeapObject** slot, |
- HeapObject* object) { |
- int object_size = reinterpret_cast<ByteArray*>(object)->ByteArraySize(); |
- EvacuateObject<DATA_OBJECT, kObjectAlignment>( |
- map, slot, object, object_size); |
- } |
- |
- |
- static inline void EvacuateSeqOneByteString(Map* map, |
- HeapObject** slot, |
- HeapObject* object) { |
- int object_size = SeqOneByteString::cast(object)-> |
- SeqOneByteStringSize(map->instance_type()); |
- EvacuateObject<DATA_OBJECT, kObjectAlignment>( |
- map, slot, object, object_size); |
- } |
- |
- |
- static inline void EvacuateSeqTwoByteString(Map* map, |
- HeapObject** slot, |
- HeapObject* object) { |
- int object_size = SeqTwoByteString::cast(object)-> |
- SeqTwoByteStringSize(map->instance_type()); |
- EvacuateObject<DATA_OBJECT, kObjectAlignment>( |
- map, slot, object, object_size); |
- } |
- |
- |
- static inline void EvacuateShortcutCandidate(Map* map, |
- HeapObject** slot, |
- HeapObject* object) { |
- DCHECK(IsShortcutCandidate(map->instance_type())); |
- |
- Heap* heap = map->GetHeap(); |
- |
- if (marks_handling == IGNORE_MARKS && |
- ConsString::cast(object)->unchecked_second() == |
- heap->empty_string()) { |
- HeapObject* first = |
- HeapObject::cast(ConsString::cast(object)->unchecked_first()); |
- |
- *slot = first; |
- |
- if (!heap->InNewSpace(first)) { |
- object->set_map_word(MapWord::FromForwardingAddress(first)); |
- return; |
- } |
- |
- MapWord first_word = first->map_word(); |
- if (first_word.IsForwardingAddress()) { |
- HeapObject* target = first_word.ToForwardingAddress(); |
- |
- *slot = target; |
- object->set_map_word(MapWord::FromForwardingAddress(target)); |
- return; |
- } |
- |
- heap->DoScavengeObject(first->map(), slot, first); |
- object->set_map_word(MapWord::FromForwardingAddress(*slot)); |
- return; |
- } |
- |
- int object_size = ConsString::kSize; |
- EvacuateObject<POINTER_OBJECT, kObjectAlignment>( |
- map, slot, object, object_size); |
- } |
- |
- template<ObjectContents object_contents> |
- class ObjectEvacuationStrategy { |
- public: |
- template<int object_size> |
- static inline void VisitSpecialized(Map* map, |
- HeapObject** slot, |
- HeapObject* object) { |
- EvacuateObject<object_contents, kObjectAlignment>( |
- map, slot, object, object_size); |
- } |
- |
- static inline void Visit(Map* map, |
- HeapObject** slot, |
- HeapObject* object) { |
- int object_size = map->instance_size(); |
- EvacuateObject<object_contents, kObjectAlignment>( |
- map, slot, object, object_size); |
- } |
- }; |
- |
- static VisitorDispatchTable<ScavengingCallback> table_; |
-}; |
- |
- |
-template<MarksHandling marks_handling, |
- LoggingAndProfiling logging_and_profiling_mode> |
-VisitorDispatchTable<ScavengingCallback> |
- ScavengingVisitor<marks_handling, logging_and_profiling_mode>::table_; |
- |
- |
-static void InitializeScavengingVisitorsTables() { |
- ScavengingVisitor<TRANSFER_MARKS, |
- LOGGING_AND_PROFILING_DISABLED>::Initialize(); |
- ScavengingVisitor<IGNORE_MARKS, LOGGING_AND_PROFILING_DISABLED>::Initialize(); |
- ScavengingVisitor<TRANSFER_MARKS, |
- LOGGING_AND_PROFILING_ENABLED>::Initialize(); |
- ScavengingVisitor<IGNORE_MARKS, LOGGING_AND_PROFILING_ENABLED>::Initialize(); |
-} |
- |
- |
-void Heap::SelectScavengingVisitorsTable() { |
- bool logging_and_profiling = |
- FLAG_verify_predictable || |
- isolate()->logger()->is_logging() || |
- isolate()->cpu_profiler()->is_profiling() || |
- (isolate()->heap_profiler() != NULL && |
- isolate()->heap_profiler()->is_tracking_object_moves()); |
- |
- if (!incremental_marking()->IsMarking()) { |
- if (!logging_and_profiling) { |
- scavenging_visitors_table_.CopyFrom( |
- ScavengingVisitor<IGNORE_MARKS, |
- LOGGING_AND_PROFILING_DISABLED>::GetTable()); |
- } else { |
- scavenging_visitors_table_.CopyFrom( |
- ScavengingVisitor<IGNORE_MARKS, |
- LOGGING_AND_PROFILING_ENABLED>::GetTable()); |
- } |
- } else { |
- if (!logging_and_profiling) { |
- scavenging_visitors_table_.CopyFrom( |
- ScavengingVisitor<TRANSFER_MARKS, |
- LOGGING_AND_PROFILING_DISABLED>::GetTable()); |
- } else { |
- scavenging_visitors_table_.CopyFrom( |
- ScavengingVisitor<TRANSFER_MARKS, |
- LOGGING_AND_PROFILING_ENABLED>::GetTable()); |
- } |
- |
- if (incremental_marking()->IsCompacting()) { |
- // When compacting forbid short-circuiting of cons-strings. |
- // Scavenging code relies on the fact that new space object |
- // can't be evacuated into evacuation candidate but |
- // short-circuiting violates this assumption. |
- scavenging_visitors_table_.Register( |
- StaticVisitorBase::kVisitShortcutCandidate, |
- scavenging_visitors_table_.GetVisitorById( |
- StaticVisitorBase::kVisitConsString)); |
- } |
- } |
-} |
- |
- |
-void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) { |
- SLOW_DCHECK(object->GetIsolate()->heap()->InFromSpace(object)); |
- MapWord first_word = object->map_word(); |
- SLOW_DCHECK(!first_word.IsForwardingAddress()); |
- Map* map = first_word.ToMap(); |
- map->GetHeap()->DoScavengeObject(map, p, object); |
-} |
- |
- |
-AllocationResult Heap::AllocatePartialMap(InstanceType instance_type, |
- int instance_size) { |
- Object* result; |
- AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE, MAP_SPACE); |
- if (!allocation.To(&result)) return allocation; |
- |
- // Map::cast cannot be used due to uninitialized map field. |
- reinterpret_cast<Map*>(result)->set_map(raw_unchecked_meta_map()); |
- reinterpret_cast<Map*>(result)->set_instance_type(instance_type); |
- reinterpret_cast<Map*>(result)->set_instance_size(instance_size); |
- reinterpret_cast<Map*>(result)->set_visitor_id( |
- StaticVisitorBase::GetVisitorId(instance_type, instance_size)); |
- reinterpret_cast<Map*>(result)->set_inobject_properties(0); |
- reinterpret_cast<Map*>(result)->set_pre_allocated_property_fields(0); |
- reinterpret_cast<Map*>(result)->set_unused_property_fields(0); |
- reinterpret_cast<Map*>(result)->set_bit_field(0); |
- reinterpret_cast<Map*>(result)->set_bit_field2(0); |
- int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) | |
- Map::OwnsDescriptors::encode(true); |
- reinterpret_cast<Map*>(result)->set_bit_field3(bit_field3); |
- return result; |
-} |
- |
- |
-AllocationResult Heap::AllocateMap(InstanceType instance_type, |
- int instance_size, |
- ElementsKind elements_kind) { |
- HeapObject* result; |
- AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE, MAP_SPACE); |
- if (!allocation.To(&result)) return allocation; |
- |
- result->set_map_no_write_barrier(meta_map()); |
- Map* map = Map::cast(result); |
- map->set_instance_type(instance_type); |
- map->set_visitor_id( |
- StaticVisitorBase::GetVisitorId(instance_type, instance_size)); |
- map->set_prototype(null_value(), SKIP_WRITE_BARRIER); |
- map->set_constructor(null_value(), SKIP_WRITE_BARRIER); |
- map->set_instance_size(instance_size); |
- map->set_inobject_properties(0); |
- map->set_pre_allocated_property_fields(0); |
- map->set_code_cache(empty_fixed_array(), SKIP_WRITE_BARRIER); |
- map->set_dependent_code(DependentCode::cast(empty_fixed_array()), |
- SKIP_WRITE_BARRIER); |
- map->init_back_pointer(undefined_value()); |
- map->set_unused_property_fields(0); |
- map->set_instance_descriptors(empty_descriptor_array()); |
- map->set_bit_field(0); |
- map->set_bit_field2(1 << Map::kIsExtensible); |
- int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) | |
- Map::OwnsDescriptors::encode(true); |
- map->set_bit_field3(bit_field3); |
- map->set_elements_kind(elements_kind); |
- |
- return map; |
-} |
- |
- |
-AllocationResult Heap::AllocateFillerObject(int size, |
- bool double_align, |
- AllocationSpace space) { |
- HeapObject* obj; |
- { AllocationResult allocation = AllocateRaw(size, space, space); |
- if (!allocation.To(&obj)) return allocation; |
- } |
-#ifdef DEBUG |
- MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address()); |
- DCHECK(chunk->owner()->identity() == space); |
-#endif |
- CreateFillerObjectAt(obj->address(), size); |
- return obj; |
-} |
- |
- |
-const Heap::StringTypeTable Heap::string_type_table[] = { |
-#define STRING_TYPE_ELEMENT(type, size, name, camel_name) \ |
- {type, size, k##camel_name##MapRootIndex}, |
- STRING_TYPE_LIST(STRING_TYPE_ELEMENT) |
-#undef STRING_TYPE_ELEMENT |
-}; |
- |
- |
-const Heap::ConstantStringTable Heap::constant_string_table[] = { |
-#define CONSTANT_STRING_ELEMENT(name, contents) \ |
- {contents, k##name##RootIndex}, |
- INTERNALIZED_STRING_LIST(CONSTANT_STRING_ELEMENT) |
-#undef CONSTANT_STRING_ELEMENT |
-}; |
- |
- |
-const Heap::StructTable Heap::struct_table[] = { |
-#define STRUCT_TABLE_ELEMENT(NAME, Name, name) \ |
- { NAME##_TYPE, Name::kSize, k##Name##MapRootIndex }, |
- STRUCT_LIST(STRUCT_TABLE_ELEMENT) |
-#undef STRUCT_TABLE_ELEMENT |
-}; |
- |
- |
-bool Heap::CreateInitialMaps() { |
- HeapObject* obj; |
- { AllocationResult allocation = AllocatePartialMap(MAP_TYPE, Map::kSize); |
- if (!allocation.To(&obj)) return false; |
- } |
- // Map::cast cannot be used due to uninitialized map field. |
- Map* new_meta_map = reinterpret_cast<Map*>(obj); |
- set_meta_map(new_meta_map); |
- new_meta_map->set_map(new_meta_map); |
- |
- { // Partial map allocation |
-#define ALLOCATE_PARTIAL_MAP(instance_type, size, field_name) \ |
- { Map* map; \ |
- if (!AllocatePartialMap((instance_type), (size)).To(&map)) return false; \ |
- set_##field_name##_map(map); \ |
- } |
- |
- ALLOCATE_PARTIAL_MAP(FIXED_ARRAY_TYPE, kVariableSizeSentinel, fixed_array); |
- ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, undefined); |
- ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, null); |
- ALLOCATE_PARTIAL_MAP(CONSTANT_POOL_ARRAY_TYPE, kVariableSizeSentinel, |
- constant_pool_array); |
- |
-#undef ALLOCATE_PARTIAL_MAP |
- } |
- |
- // Allocate the empty array. |
- { AllocationResult allocation = AllocateEmptyFixedArray(); |
- if (!allocation.To(&obj)) return false; |
- } |
- set_empty_fixed_array(FixedArray::cast(obj)); |
- |
- { AllocationResult allocation = Allocate(null_map(), OLD_POINTER_SPACE); |
- if (!allocation.To(&obj)) return false; |
- } |
- set_null_value(Oddball::cast(obj)); |
- Oddball::cast(obj)->set_kind(Oddball::kNull); |
- |
- { AllocationResult allocation = Allocate(undefined_map(), OLD_POINTER_SPACE); |
- if (!allocation.To(&obj)) return false; |
- } |
- set_undefined_value(Oddball::cast(obj)); |
- Oddball::cast(obj)->set_kind(Oddball::kUndefined); |
- DCHECK(!InNewSpace(undefined_value())); |
- |
- // Set preliminary exception sentinel value before actually initializing it. |
- set_exception(null_value()); |
- |
- // Allocate the empty descriptor array. |
- { AllocationResult allocation = AllocateEmptyFixedArray(); |
- if (!allocation.To(&obj)) return false; |
- } |
- set_empty_descriptor_array(DescriptorArray::cast(obj)); |
- |
- // Allocate the constant pool array. |
- { AllocationResult allocation = AllocateEmptyConstantPoolArray(); |
- if (!allocation.To(&obj)) return false; |
- } |
- set_empty_constant_pool_array(ConstantPoolArray::cast(obj)); |
- |
- // Fix the instance_descriptors for the existing maps. |
- meta_map()->set_code_cache(empty_fixed_array()); |
- meta_map()->set_dependent_code(DependentCode::cast(empty_fixed_array())); |
- meta_map()->init_back_pointer(undefined_value()); |
- meta_map()->set_instance_descriptors(empty_descriptor_array()); |
- |
- fixed_array_map()->set_code_cache(empty_fixed_array()); |
- fixed_array_map()->set_dependent_code( |
- DependentCode::cast(empty_fixed_array())); |
- fixed_array_map()->init_back_pointer(undefined_value()); |
- fixed_array_map()->set_instance_descriptors(empty_descriptor_array()); |
- |
- undefined_map()->set_code_cache(empty_fixed_array()); |
- undefined_map()->set_dependent_code(DependentCode::cast(empty_fixed_array())); |
- undefined_map()->init_back_pointer(undefined_value()); |
- undefined_map()->set_instance_descriptors(empty_descriptor_array()); |
- |
- null_map()->set_code_cache(empty_fixed_array()); |
- null_map()->set_dependent_code(DependentCode::cast(empty_fixed_array())); |
- null_map()->init_back_pointer(undefined_value()); |
- null_map()->set_instance_descriptors(empty_descriptor_array()); |
- |
- constant_pool_array_map()->set_code_cache(empty_fixed_array()); |
- constant_pool_array_map()->set_dependent_code( |
- DependentCode::cast(empty_fixed_array())); |
- constant_pool_array_map()->init_back_pointer(undefined_value()); |
- constant_pool_array_map()->set_instance_descriptors(empty_descriptor_array()); |
- |
- // Fix prototype object for existing maps. |
- meta_map()->set_prototype(null_value()); |
- meta_map()->set_constructor(null_value()); |
- |
- fixed_array_map()->set_prototype(null_value()); |
- fixed_array_map()->set_constructor(null_value()); |
- |
- undefined_map()->set_prototype(null_value()); |
- undefined_map()->set_constructor(null_value()); |
- |
- null_map()->set_prototype(null_value()); |
- null_map()->set_constructor(null_value()); |
- |
- constant_pool_array_map()->set_prototype(null_value()); |
- constant_pool_array_map()->set_constructor(null_value()); |
- |
- { // Map allocation |
-#define ALLOCATE_MAP(instance_type, size, field_name) \ |
- { Map* map; \ |
- if (!AllocateMap((instance_type), size).To(&map)) return false; \ |
- set_##field_name##_map(map); \ |
- } |
- |
-#define ALLOCATE_VARSIZE_MAP(instance_type, field_name) \ |
- ALLOCATE_MAP(instance_type, kVariableSizeSentinel, field_name) |
- |
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, fixed_cow_array) |
- DCHECK(fixed_array_map() != fixed_cow_array_map()); |
- |
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, scope_info) |
- ALLOCATE_MAP(HEAP_NUMBER_TYPE, HeapNumber::kSize, heap_number) |
- ALLOCATE_MAP( |
- MUTABLE_HEAP_NUMBER_TYPE, HeapNumber::kSize, mutable_heap_number) |
- ALLOCATE_MAP(SYMBOL_TYPE, Symbol::kSize, symbol) |
- ALLOCATE_MAP(FOREIGN_TYPE, Foreign::kSize, foreign) |
- |
- ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, the_hole); |
- ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, boolean); |
- ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, uninitialized); |
- ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, arguments_marker); |
- ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, no_interceptor_result_sentinel); |
- ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, exception); |
- ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, termination_exception); |
- |
- for (unsigned i = 0; i < ARRAY_SIZE(string_type_table); i++) { |
- const StringTypeTable& entry = string_type_table[i]; |
- { AllocationResult allocation = AllocateMap(entry.type, entry.size); |
- if (!allocation.To(&obj)) return false; |
- } |
- // Mark cons string maps as unstable, because their objects can change |
- // maps during GC. |
- Map* map = Map::cast(obj); |
- if (StringShape(entry.type).IsCons()) map->mark_unstable(); |
- roots_[entry.index] = map; |
- } |
- |
- ALLOCATE_VARSIZE_MAP(STRING_TYPE, undetectable_string) |
- undetectable_string_map()->set_is_undetectable(); |
- |
- ALLOCATE_VARSIZE_MAP(ASCII_STRING_TYPE, undetectable_ascii_string); |
- undetectable_ascii_string_map()->set_is_undetectable(); |
- |
- ALLOCATE_VARSIZE_MAP(FIXED_DOUBLE_ARRAY_TYPE, fixed_double_array) |
- ALLOCATE_VARSIZE_MAP(BYTE_ARRAY_TYPE, byte_array) |
- ALLOCATE_VARSIZE_MAP(FREE_SPACE_TYPE, free_space) |
- |
-#define ALLOCATE_EXTERNAL_ARRAY_MAP(Type, type, TYPE, ctype, size) \ |
- ALLOCATE_MAP(EXTERNAL_##TYPE##_ARRAY_TYPE, ExternalArray::kAlignedSize, \ |
- external_##type##_array) |
- |
- TYPED_ARRAYS(ALLOCATE_EXTERNAL_ARRAY_MAP) |
-#undef ALLOCATE_EXTERNAL_ARRAY_MAP |
- |
-#define ALLOCATE_FIXED_TYPED_ARRAY_MAP(Type, type, TYPE, ctype, size) \ |
- ALLOCATE_VARSIZE_MAP(FIXED_##TYPE##_ARRAY_TYPE, \ |
- fixed_##type##_array) |
- |
- TYPED_ARRAYS(ALLOCATE_FIXED_TYPED_ARRAY_MAP) |
-#undef ALLOCATE_FIXED_TYPED_ARRAY_MAP |
- |
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, sloppy_arguments_elements) |
- |
- ALLOCATE_VARSIZE_MAP(CODE_TYPE, code) |
- |
- ALLOCATE_MAP(CELL_TYPE, Cell::kSize, cell) |
- ALLOCATE_MAP(PROPERTY_CELL_TYPE, PropertyCell::kSize, global_property_cell) |
- ALLOCATE_MAP(FILLER_TYPE, kPointerSize, one_pointer_filler) |
- ALLOCATE_MAP(FILLER_TYPE, 2 * kPointerSize, two_pointer_filler) |
- |
- |
- for (unsigned i = 0; i < ARRAY_SIZE(struct_table); i++) { |
- const StructTable& entry = struct_table[i]; |
- Map* map; |
- if (!AllocateMap(entry.type, entry.size).To(&map)) |
- return false; |
- roots_[entry.index] = map; |
- } |
- |
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, hash_table) |
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, ordered_hash_table) |
- |
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, function_context) |
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, catch_context) |
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, with_context) |
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, block_context) |
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, module_context) |
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, global_context) |
- |
- ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, native_context) |
- native_context_map()->set_dictionary_map(true); |
- native_context_map()->set_visitor_id( |
- StaticVisitorBase::kVisitNativeContext); |
- |
- ALLOCATE_MAP(SHARED_FUNCTION_INFO_TYPE, SharedFunctionInfo::kAlignedSize, |
- shared_function_info) |
- |
- ALLOCATE_MAP(JS_MESSAGE_OBJECT_TYPE, JSMessageObject::kSize, |
- message_object) |
- ALLOCATE_MAP(JS_OBJECT_TYPE, JSObject::kHeaderSize + kPointerSize, |
- external) |
- external_map()->set_is_extensible(false); |
-#undef ALLOCATE_VARSIZE_MAP |
-#undef ALLOCATE_MAP |
- } |
- |
- { // Empty arrays |
- { ByteArray* byte_array; |
- if (!AllocateByteArray(0, TENURED).To(&byte_array)) return false; |
- set_empty_byte_array(byte_array); |
- } |
- |
-#define ALLOCATE_EMPTY_EXTERNAL_ARRAY(Type, type, TYPE, ctype, size) \ |
- { ExternalArray* obj; \ |
- if (!AllocateEmptyExternalArray(kExternal##Type##Array).To(&obj)) \ |
- return false; \ |
- set_empty_external_##type##_array(obj); \ |
- } |
- |
- TYPED_ARRAYS(ALLOCATE_EMPTY_EXTERNAL_ARRAY) |
-#undef ALLOCATE_EMPTY_EXTERNAL_ARRAY |
- |
-#define ALLOCATE_EMPTY_FIXED_TYPED_ARRAY(Type, type, TYPE, ctype, size) \ |
- { FixedTypedArrayBase* obj; \ |
- if (!AllocateEmptyFixedTypedArray(kExternal##Type##Array).To(&obj)) \ |
- return false; \ |
- set_empty_fixed_##type##_array(obj); \ |
- } |
- |
- TYPED_ARRAYS(ALLOCATE_EMPTY_FIXED_TYPED_ARRAY) |
-#undef ALLOCATE_EMPTY_FIXED_TYPED_ARRAY |
- } |
- DCHECK(!InNewSpace(empty_fixed_array())); |
- return true; |
-} |
- |
- |
-AllocationResult Heap::AllocateHeapNumber(double value, |
- MutableMode mode, |
- PretenureFlag pretenure) { |
- // Statically ensure that it is safe to allocate heap numbers in paged |
- // spaces. |
- int size = HeapNumber::kSize; |
- STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxRegularHeapObjectSize); |
- |
- AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure); |
- |
- HeapObject* result; |
- { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE); |
- if (!allocation.To(&result)) return allocation; |
- } |
- |
- Map* map = mode == MUTABLE ? mutable_heap_number_map() : heap_number_map(); |
- HeapObject::cast(result)->set_map_no_write_barrier(map); |
- HeapNumber::cast(result)->set_value(value); |
- return result; |
-} |
- |
- |
-AllocationResult Heap::AllocateCell(Object* value) { |
- int size = Cell::kSize; |
- STATIC_ASSERT(Cell::kSize <= Page::kMaxRegularHeapObjectSize); |
- |
- HeapObject* result; |
- { AllocationResult allocation = AllocateRaw(size, CELL_SPACE, CELL_SPACE); |
- if (!allocation.To(&result)) return allocation; |
- } |
- result->set_map_no_write_barrier(cell_map()); |
- Cell::cast(result)->set_value(value); |
- return result; |
-} |
- |
- |
-AllocationResult Heap::AllocatePropertyCell() { |
- int size = PropertyCell::kSize; |
- STATIC_ASSERT(PropertyCell::kSize <= Page::kMaxRegularHeapObjectSize); |
- |
- HeapObject* result; |
- AllocationResult allocation = |
- AllocateRaw(size, PROPERTY_CELL_SPACE, PROPERTY_CELL_SPACE); |
- if (!allocation.To(&result)) return allocation; |
- |
- result->set_map_no_write_barrier(global_property_cell_map()); |
- PropertyCell* cell = PropertyCell::cast(result); |
- cell->set_dependent_code(DependentCode::cast(empty_fixed_array()), |
- SKIP_WRITE_BARRIER); |
- cell->set_value(the_hole_value()); |
- cell->set_type(HeapType::None()); |
- return result; |
-} |
- |
- |
-void Heap::CreateApiObjects() { |
- HandleScope scope(isolate()); |
- Factory* factory = isolate()->factory(); |
- Handle<Map> new_neander_map = |
- factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize); |
- |
- // Don't use Smi-only elements optimizations for objects with the neander |
- // map. There are too many cases where element values are set directly with a |
- // bottleneck to trap the Smi-only -> fast elements transition, and there |
- // appears to be no benefit for optimize this case. |
- new_neander_map->set_elements_kind(TERMINAL_FAST_ELEMENTS_KIND); |
- set_neander_map(*new_neander_map); |
- |
- Handle<JSObject> listeners = factory->NewNeanderObject(); |
- Handle<FixedArray> elements = factory->NewFixedArray(2); |
- elements->set(0, Smi::FromInt(0)); |
- listeners->set_elements(*elements); |
- set_message_listeners(*listeners); |
-} |
- |
- |
-void Heap::CreateJSEntryStub() { |
- JSEntryStub stub(isolate()); |
- set_js_entry_code(*stub.GetCode()); |
-} |
- |
- |
-void Heap::CreateJSConstructEntryStub() { |
- JSConstructEntryStub stub(isolate()); |
- set_js_construct_entry_code(*stub.GetCode()); |
-} |
- |
- |
-void Heap::CreateFixedStubs() { |
- // Here we create roots for fixed stubs. They are needed at GC |
- // for cooking and uncooking (check out frames.cc). |
- // The eliminates the need for doing dictionary lookup in the |
- // stub cache for these stubs. |
- HandleScope scope(isolate()); |
- |
- // Create stubs that should be there, so we don't unexpectedly have to |
- // create them if we need them during the creation of another stub. |
- // Stub creation mixes raw pointers and handles in an unsafe manner so |
- // we cannot create stubs while we are creating stubs. |
- CodeStub::GenerateStubsAheadOfTime(isolate()); |
- |
- // MacroAssembler::Abort calls (usually enabled with --debug-code) depend on |
- // CEntryStub, so we need to call GenerateStubsAheadOfTime before JSEntryStub |
- // is created. |
- |
- // gcc-4.4 has problem generating correct code of following snippet: |
- // { JSEntryStub stub; |
- // js_entry_code_ = *stub.GetCode(); |
- // } |
- // { JSConstructEntryStub stub; |
- // js_construct_entry_code_ = *stub.GetCode(); |
- // } |
- // To workaround the problem, make separate functions without inlining. |
- Heap::CreateJSEntryStub(); |
- Heap::CreateJSConstructEntryStub(); |
-} |
- |
- |
-void Heap::CreateInitialObjects() { |
- HandleScope scope(isolate()); |
- Factory* factory = isolate()->factory(); |
- |
- // The -0 value must be set before NewNumber works. |
- set_minus_zero_value(*factory->NewHeapNumber(-0.0, IMMUTABLE, TENURED)); |
- DCHECK(std::signbit(minus_zero_value()->Number()) != 0); |
- |
- set_nan_value( |
- *factory->NewHeapNumber(base::OS::nan_value(), IMMUTABLE, TENURED)); |
- set_infinity_value(*factory->NewHeapNumber(V8_INFINITY, IMMUTABLE, TENURED)); |
- |
- // The hole has not been created yet, but we want to put something |
- // predictable in the gaps in the string table, so lets make that Smi zero. |
- set_the_hole_value(reinterpret_cast<Oddball*>(Smi::FromInt(0))); |
- |
- // Allocate initial string table. |
- set_string_table(*StringTable::New(isolate(), kInitialStringTableSize)); |
- |
- // Finish initializing oddballs after creating the string table. |
- Oddball::Initialize(isolate(), |
- factory->undefined_value(), |
- "undefined", |
- factory->nan_value(), |
- Oddball::kUndefined); |
- |
- // Initialize the null_value. |
- Oddball::Initialize(isolate(), |
- factory->null_value(), |
- "null", |
- handle(Smi::FromInt(0), isolate()), |
- Oddball::kNull); |
- |
- set_true_value(*factory->NewOddball(factory->boolean_map(), |
- "true", |
- handle(Smi::FromInt(1), isolate()), |
- Oddball::kTrue)); |
- |
- set_false_value(*factory->NewOddball(factory->boolean_map(), |
- "false", |
- handle(Smi::FromInt(0), isolate()), |
- Oddball::kFalse)); |
- |
- set_the_hole_value(*factory->NewOddball(factory->the_hole_map(), |
- "hole", |
- handle(Smi::FromInt(-1), isolate()), |
- Oddball::kTheHole)); |
- |
- set_uninitialized_value( |
- *factory->NewOddball(factory->uninitialized_map(), |
- "uninitialized", |
- handle(Smi::FromInt(-1), isolate()), |
- Oddball::kUninitialized)); |
- |
- set_arguments_marker(*factory->NewOddball(factory->arguments_marker_map(), |
- "arguments_marker", |
- handle(Smi::FromInt(-4), isolate()), |
- Oddball::kArgumentMarker)); |
- |
- set_no_interceptor_result_sentinel( |
- *factory->NewOddball(factory->no_interceptor_result_sentinel_map(), |
- "no_interceptor_result_sentinel", |
- handle(Smi::FromInt(-2), isolate()), |
- Oddball::kOther)); |
- |
- set_termination_exception( |
- *factory->NewOddball(factory->termination_exception_map(), |
- "termination_exception", |
- handle(Smi::FromInt(-3), isolate()), |
- Oddball::kOther)); |
- |
- set_exception( |
- *factory->NewOddball(factory->exception_map(), |
- "exception", |
- handle(Smi::FromInt(-5), isolate()), |
- Oddball::kException)); |
- |
- for (unsigned i = 0; i < ARRAY_SIZE(constant_string_table); i++) { |
- Handle<String> str = |
- factory->InternalizeUtf8String(constant_string_table[i].contents); |
- roots_[constant_string_table[i].index] = *str; |
- } |
- |
- // Allocate the hidden string which is used to identify the hidden properties |
- // in JSObjects. The hash code has a special value so that it will not match |
- // the empty string when searching for the property. It cannot be part of the |
- // loop above because it needs to be allocated manually with the special |
- // hash code in place. The hash code for the hidden_string is zero to ensure |
- // that it will always be at the first entry in property descriptors. |
- hidden_string_ = *factory->NewOneByteInternalizedString( |
- OneByteVector("", 0), String::kEmptyStringHash); |
- |
- // Create the code_stubs dictionary. The initial size is set to avoid |
- // expanding the dictionary during bootstrapping. |
- set_code_stubs(*UnseededNumberDictionary::New(isolate(), 128)); |
- |
- // Create the non_monomorphic_cache used in stub-cache.cc. The initial size |
- // is set to avoid expanding the dictionary during bootstrapping. |
- set_non_monomorphic_cache(*UnseededNumberDictionary::New(isolate(), 64)); |
- |
- set_polymorphic_code_cache(PolymorphicCodeCache::cast( |
- *factory->NewStruct(POLYMORPHIC_CODE_CACHE_TYPE))); |
- |
- set_instanceof_cache_function(Smi::FromInt(0)); |
- set_instanceof_cache_map(Smi::FromInt(0)); |
- set_instanceof_cache_answer(Smi::FromInt(0)); |
- |
- CreateFixedStubs(); |
- |
- // Allocate the dictionary of intrinsic function names. |
- Handle<NameDictionary> intrinsic_names = |
- NameDictionary::New(isolate(), Runtime::kNumFunctions); |
- Runtime::InitializeIntrinsicFunctionNames(isolate(), intrinsic_names); |
- set_intrinsic_function_names(*intrinsic_names); |
- |
- set_number_string_cache(*factory->NewFixedArray( |
- kInitialNumberStringCacheSize * 2, TENURED)); |
- |
- // Allocate cache for single character one byte strings. |
- set_single_character_string_cache(*factory->NewFixedArray( |
- String::kMaxOneByteCharCode + 1, TENURED)); |
- |
- // Allocate cache for string split and regexp-multiple. |
- set_string_split_cache(*factory->NewFixedArray( |
- RegExpResultsCache::kRegExpResultsCacheSize, TENURED)); |
- set_regexp_multiple_cache(*factory->NewFixedArray( |
- RegExpResultsCache::kRegExpResultsCacheSize, TENURED)); |
- |
- // Allocate cache for external strings pointing to native source code. |
- set_natives_source_cache(*factory->NewFixedArray( |
- Natives::GetBuiltinsCount())); |
- |
- set_undefined_cell(*factory->NewCell(factory->undefined_value())); |
- |
- // The symbol registry is initialized lazily. |
- set_symbol_registry(undefined_value()); |
- |
- // Allocate object to hold object observation state. |
- set_observation_state(*factory->NewJSObjectFromMap( |
- factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize))); |
- |
- // Microtask queue uses the empty fixed array as a sentinel for "empty". |
- // Number of queued microtasks stored in Isolate::pending_microtask_count(). |
- set_microtask_queue(empty_fixed_array()); |
- |
- set_detailed_stack_trace_symbol(*factory->NewPrivateSymbol()); |
- set_elements_transition_symbol(*factory->NewPrivateSymbol()); |
- set_frozen_symbol(*factory->NewPrivateSymbol()); |
- set_megamorphic_symbol(*factory->NewPrivateSymbol()); |
- set_nonexistent_symbol(*factory->NewPrivateSymbol()); |
- set_normal_ic_symbol(*factory->NewPrivateSymbol()); |
- set_observed_symbol(*factory->NewPrivateSymbol()); |
- set_stack_trace_symbol(*factory->NewPrivateSymbol()); |
- set_uninitialized_symbol(*factory->NewPrivateSymbol()); |
- |
- Handle<SeededNumberDictionary> slow_element_dictionary = |
- SeededNumberDictionary::New(isolate(), 0, TENURED); |
- slow_element_dictionary->set_requires_slow_elements(); |
- set_empty_slow_element_dictionary(*slow_element_dictionary); |
- |
- set_materialized_objects(*factory->NewFixedArray(0, TENURED)); |
- |
- // Handling of script id generation is in Factory::NewScript. |
- set_last_script_id(Smi::FromInt(v8::UnboundScript::kNoScriptId)); |
- |
- set_allocation_sites_scratchpad(*factory->NewFixedArray( |
- kAllocationSiteScratchpadSize, TENURED)); |
- InitializeAllocationSitesScratchpad(); |
- |
- // Initialize keyed lookup cache. |
- isolate_->keyed_lookup_cache()->Clear(); |
- |
- // Initialize context slot cache. |
- isolate_->context_slot_cache()->Clear(); |
- |
- // Initialize descriptor cache. |
- isolate_->descriptor_lookup_cache()->Clear(); |
- |
- // Initialize compilation cache. |
- isolate_->compilation_cache()->Clear(); |
-} |
- |
- |
-bool Heap::RootCanBeWrittenAfterInitialization(Heap::RootListIndex root_index) { |
- RootListIndex writable_roots[] = { |
- kStoreBufferTopRootIndex, |
- kStackLimitRootIndex, |
- kNumberStringCacheRootIndex, |
- kInstanceofCacheFunctionRootIndex, |
- kInstanceofCacheMapRootIndex, |
- kInstanceofCacheAnswerRootIndex, |
- kCodeStubsRootIndex, |
- kNonMonomorphicCacheRootIndex, |
- kPolymorphicCodeCacheRootIndex, |
- kLastScriptIdRootIndex, |
- kEmptyScriptRootIndex, |
- kRealStackLimitRootIndex, |
- kArgumentsAdaptorDeoptPCOffsetRootIndex, |
- kConstructStubDeoptPCOffsetRootIndex, |
- kGetterStubDeoptPCOffsetRootIndex, |
- kSetterStubDeoptPCOffsetRootIndex, |
- kStringTableRootIndex, |
- }; |
- |
- for (unsigned int i = 0; i < ARRAY_SIZE(writable_roots); i++) { |
- if (root_index == writable_roots[i]) |
- return true; |
- } |
- return false; |
-} |
- |
- |
-bool Heap::RootCanBeTreatedAsConstant(RootListIndex root_index) { |
- return !RootCanBeWrittenAfterInitialization(root_index) && |
- !InNewSpace(roots_array_start()[root_index]); |
-} |
- |
- |
-Object* RegExpResultsCache::Lookup(Heap* heap, |
- String* key_string, |
- Object* key_pattern, |
- ResultsCacheType type) { |
- FixedArray* cache; |
- if (!key_string->IsInternalizedString()) return Smi::FromInt(0); |
- if (type == STRING_SPLIT_SUBSTRINGS) { |
- DCHECK(key_pattern->IsString()); |
- if (!key_pattern->IsInternalizedString()) return Smi::FromInt(0); |
- cache = heap->string_split_cache(); |
- } else { |
- DCHECK(type == REGEXP_MULTIPLE_INDICES); |
- DCHECK(key_pattern->IsFixedArray()); |
- cache = heap->regexp_multiple_cache(); |
- } |
- |
- uint32_t hash = key_string->Hash(); |
- uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) & |
- ~(kArrayEntriesPerCacheEntry - 1)); |
- if (cache->get(index + kStringOffset) == key_string && |
- cache->get(index + kPatternOffset) == key_pattern) { |
- return cache->get(index + kArrayOffset); |
- } |
- index = |
- ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1)); |
- if (cache->get(index + kStringOffset) == key_string && |
- cache->get(index + kPatternOffset) == key_pattern) { |
- return cache->get(index + kArrayOffset); |
- } |
- return Smi::FromInt(0); |
-} |
- |
- |
-void RegExpResultsCache::Enter(Isolate* isolate, |
- Handle<String> key_string, |
- Handle<Object> key_pattern, |
- Handle<FixedArray> value_array, |
- ResultsCacheType type) { |
- Factory* factory = isolate->factory(); |
- Handle<FixedArray> cache; |
- if (!key_string->IsInternalizedString()) return; |
- if (type == STRING_SPLIT_SUBSTRINGS) { |
- DCHECK(key_pattern->IsString()); |
- if (!key_pattern->IsInternalizedString()) return; |
- cache = factory->string_split_cache(); |
- } else { |
- DCHECK(type == REGEXP_MULTIPLE_INDICES); |
- DCHECK(key_pattern->IsFixedArray()); |
- cache = factory->regexp_multiple_cache(); |
- } |
- |
- uint32_t hash = key_string->Hash(); |
- uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) & |
- ~(kArrayEntriesPerCacheEntry - 1)); |
- if (cache->get(index + kStringOffset) == Smi::FromInt(0)) { |
- cache->set(index + kStringOffset, *key_string); |
- cache->set(index + kPatternOffset, *key_pattern); |
- cache->set(index + kArrayOffset, *value_array); |
- } else { |
- uint32_t index2 = |
- ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1)); |
- if (cache->get(index2 + kStringOffset) == Smi::FromInt(0)) { |
- cache->set(index2 + kStringOffset, *key_string); |
- cache->set(index2 + kPatternOffset, *key_pattern); |
- cache->set(index2 + kArrayOffset, *value_array); |
- } else { |
- cache->set(index2 + kStringOffset, Smi::FromInt(0)); |
- cache->set(index2 + kPatternOffset, Smi::FromInt(0)); |
- cache->set(index2 + kArrayOffset, Smi::FromInt(0)); |
- cache->set(index + kStringOffset, *key_string); |
- cache->set(index + kPatternOffset, *key_pattern); |
- cache->set(index + kArrayOffset, *value_array); |
- } |
- } |
- // If the array is a reasonably short list of substrings, convert it into a |
- // list of internalized strings. |
- if (type == STRING_SPLIT_SUBSTRINGS && value_array->length() < 100) { |
- for (int i = 0; i < value_array->length(); i++) { |
- Handle<String> str(String::cast(value_array->get(i)), isolate); |
- Handle<String> internalized_str = factory->InternalizeString(str); |
- value_array->set(i, *internalized_str); |
- } |
- } |
- // Convert backing store to a copy-on-write array. |
- value_array->set_map_no_write_barrier(*factory->fixed_cow_array_map()); |
-} |
- |
- |
-void RegExpResultsCache::Clear(FixedArray* cache) { |
- for (int i = 0; i < kRegExpResultsCacheSize; i++) { |
- cache->set(i, Smi::FromInt(0)); |
- } |
-} |
- |
- |
-int Heap::FullSizeNumberStringCacheLength() { |
- // Compute the size of the number string cache based on the max newspace size. |
- // The number string cache has a minimum size based on twice the initial cache |
- // size to ensure that it is bigger after being made 'full size'. |
- int number_string_cache_size = max_semi_space_size_ / 512; |
- number_string_cache_size = Max(kInitialNumberStringCacheSize * 2, |
- Min(0x4000, number_string_cache_size)); |
- // There is a string and a number per entry so the length is twice the number |
- // of entries. |
- return number_string_cache_size * 2; |
-} |
- |
- |
-void Heap::FlushNumberStringCache() { |
- // Flush the number to string cache. |
- int len = number_string_cache()->length(); |
- for (int i = 0; i < len; i++) { |
- number_string_cache()->set_undefined(i); |
- } |
-} |
- |
- |
-void Heap::FlushAllocationSitesScratchpad() { |
- for (int i = 0; i < allocation_sites_scratchpad_length_; i++) { |
- allocation_sites_scratchpad()->set_undefined(i); |
- } |
- allocation_sites_scratchpad_length_ = 0; |
-} |
- |
- |
-void Heap::InitializeAllocationSitesScratchpad() { |
- DCHECK(allocation_sites_scratchpad()->length() == |
- kAllocationSiteScratchpadSize); |
- for (int i = 0; i < kAllocationSiteScratchpadSize; i++) { |
- allocation_sites_scratchpad()->set_undefined(i); |
- } |
-} |
- |
- |
-void Heap::AddAllocationSiteToScratchpad(AllocationSite* site, |
- ScratchpadSlotMode mode) { |
- if (allocation_sites_scratchpad_length_ < kAllocationSiteScratchpadSize) { |
- // We cannot use the normal write-barrier because slots need to be |
- // recorded with non-incremental marking as well. We have to explicitly |
- // record the slot to take evacuation candidates into account. |
- allocation_sites_scratchpad()->set( |
- allocation_sites_scratchpad_length_, site, SKIP_WRITE_BARRIER); |
- Object** slot = allocation_sites_scratchpad()->RawFieldOfElementAt( |
- allocation_sites_scratchpad_length_); |
- |
- if (mode == RECORD_SCRATCHPAD_SLOT) { |
- // We need to allow slots buffer overflow here since the evacuation |
- // candidates are not part of the global list of old space pages and |
- // releasing an evacuation candidate due to a slots buffer overflow |
- // results in lost pages. |
- mark_compact_collector()->RecordSlot( |
- slot, slot, *slot, SlotsBuffer::IGNORE_OVERFLOW); |
- } |
- allocation_sites_scratchpad_length_++; |
- } |
-} |
- |
- |
-Map* Heap::MapForExternalArrayType(ExternalArrayType array_type) { |
- return Map::cast(roots_[RootIndexForExternalArrayType(array_type)]); |
-} |
- |
- |
-Heap::RootListIndex Heap::RootIndexForExternalArrayType( |
- ExternalArrayType array_type) { |
- switch (array_type) { |
-#define ARRAY_TYPE_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \ |
- case kExternal##Type##Array: \ |
- return kExternal##Type##ArrayMapRootIndex; |
- |
- TYPED_ARRAYS(ARRAY_TYPE_TO_ROOT_INDEX) |
-#undef ARRAY_TYPE_TO_ROOT_INDEX |
- |
- default: |
- UNREACHABLE(); |
- return kUndefinedValueRootIndex; |
- } |
-} |
- |
- |
-Map* Heap::MapForFixedTypedArray(ExternalArrayType array_type) { |
- return Map::cast(roots_[RootIndexForFixedTypedArray(array_type)]); |
-} |
- |
- |
-Heap::RootListIndex Heap::RootIndexForFixedTypedArray( |
- ExternalArrayType array_type) { |
- switch (array_type) { |
-#define ARRAY_TYPE_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \ |
- case kExternal##Type##Array: \ |
- return kFixed##Type##ArrayMapRootIndex; |
- |
- TYPED_ARRAYS(ARRAY_TYPE_TO_ROOT_INDEX) |
-#undef ARRAY_TYPE_TO_ROOT_INDEX |
- |
- default: |
- UNREACHABLE(); |
- return kUndefinedValueRootIndex; |
- } |
-} |
- |
- |
-Heap::RootListIndex Heap::RootIndexForEmptyExternalArray( |
- ElementsKind elementsKind) { |
- switch (elementsKind) { |
-#define ELEMENT_KIND_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \ |
- case EXTERNAL_##TYPE##_ELEMENTS: \ |
- return kEmptyExternal##Type##ArrayRootIndex; |
- |
- TYPED_ARRAYS(ELEMENT_KIND_TO_ROOT_INDEX) |
-#undef ELEMENT_KIND_TO_ROOT_INDEX |
- |
- default: |
- UNREACHABLE(); |
- return kUndefinedValueRootIndex; |
- } |
-} |
- |
- |
-Heap::RootListIndex Heap::RootIndexForEmptyFixedTypedArray( |
- ElementsKind elementsKind) { |
- switch (elementsKind) { |
-#define ELEMENT_KIND_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \ |
- case TYPE##_ELEMENTS: \ |
- return kEmptyFixed##Type##ArrayRootIndex; |
- |
- TYPED_ARRAYS(ELEMENT_KIND_TO_ROOT_INDEX) |
-#undef ELEMENT_KIND_TO_ROOT_INDEX |
- default: |
- UNREACHABLE(); |
- return kUndefinedValueRootIndex; |
- } |
-} |
- |
- |
-ExternalArray* Heap::EmptyExternalArrayForMap(Map* map) { |
- return ExternalArray::cast( |
- roots_[RootIndexForEmptyExternalArray(map->elements_kind())]); |
-} |
- |
- |
-FixedTypedArrayBase* Heap::EmptyFixedTypedArrayForMap(Map* map) { |
- return FixedTypedArrayBase::cast( |
- roots_[RootIndexForEmptyFixedTypedArray(map->elements_kind())]); |
-} |
- |
- |
-AllocationResult Heap::AllocateForeign(Address address, |
- PretenureFlag pretenure) { |
- // Statically ensure that it is safe to allocate foreigns in paged spaces. |
- STATIC_ASSERT(Foreign::kSize <= Page::kMaxRegularHeapObjectSize); |
- AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE; |
- Foreign* result; |
- AllocationResult allocation = Allocate(foreign_map(), space); |
- if (!allocation.To(&result)) return allocation; |
- result->set_foreign_address(address); |
- return result; |
-} |
- |
- |
-AllocationResult Heap::AllocateByteArray(int length, PretenureFlag pretenure) { |
- if (length < 0 || length > ByteArray::kMaxLength) { |
- v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true); |
- } |
- int size = ByteArray::SizeFor(length); |
- AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure); |
- HeapObject* result; |
- { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE); |
- if (!allocation.To(&result)) return allocation; |
- } |
- |
- result->set_map_no_write_barrier(byte_array_map()); |
- ByteArray::cast(result)->set_length(length); |
- return result; |
-} |
- |
- |
-void Heap::CreateFillerObjectAt(Address addr, int size) { |
- if (size == 0) return; |
- HeapObject* filler = HeapObject::FromAddress(addr); |
- if (size == kPointerSize) { |
- filler->set_map_no_write_barrier(one_pointer_filler_map()); |
- } else if (size == 2 * kPointerSize) { |
- filler->set_map_no_write_barrier(two_pointer_filler_map()); |
- } else { |
- filler->set_map_no_write_barrier(free_space_map()); |
- FreeSpace::cast(filler)->set_size(size); |
- } |
-} |
- |
- |
-bool Heap::CanMoveObjectStart(HeapObject* object) { |
- Address address = object->address(); |
- bool is_in_old_pointer_space = InOldPointerSpace(address); |
- bool is_in_old_data_space = InOldDataSpace(address); |
- |
- if (lo_space()->Contains(object)) return false; |
- |
- Page* page = Page::FromAddress(address); |
- // We can move the object start if: |
- // (1) the object is not in old pointer or old data space, |
- // (2) the page of the object was already swept, |
- // (3) the page was already concurrently swept. This case is an optimization |
- // for concurrent sweeping. The WasSwept predicate for concurrently swept |
- // pages is set after sweeping all pages. |
- return (!is_in_old_pointer_space && !is_in_old_data_space) || |
- page->WasSwept() || page->SweepingCompleted(); |
-} |
- |
- |
-void Heap::AdjustLiveBytes(Address address, int by, InvocationMode mode) { |
- if (incremental_marking()->IsMarking() && |
- Marking::IsBlack(Marking::MarkBitFrom(address))) { |
- if (mode == FROM_GC) { |
- MemoryChunk::IncrementLiveBytesFromGC(address, by); |
- } else { |
- MemoryChunk::IncrementLiveBytesFromMutator(address, by); |
- } |
- } |
-} |
- |
- |
-AllocationResult Heap::AllocateExternalArray(int length, |
- ExternalArrayType array_type, |
- void* external_pointer, |
- PretenureFlag pretenure) { |
- int size = ExternalArray::kAlignedSize; |
- AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure); |
- HeapObject* result; |
- { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE); |
- if (!allocation.To(&result)) return allocation; |
- } |
- |
- result->set_map_no_write_barrier( |
- MapForExternalArrayType(array_type)); |
- ExternalArray::cast(result)->set_length(length); |
- ExternalArray::cast(result)->set_external_pointer(external_pointer); |
- return result; |
-} |
- |
-static void ForFixedTypedArray(ExternalArrayType array_type, |
- int* element_size, |
- ElementsKind* element_kind) { |
- switch (array_type) { |
-#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ |
- case kExternal##Type##Array: \ |
- *element_size = size; \ |
- *element_kind = TYPE##_ELEMENTS; \ |
- return; |
- |
- TYPED_ARRAYS(TYPED_ARRAY_CASE) |
-#undef TYPED_ARRAY_CASE |
- |
- default: |
- *element_size = 0; // Bogus |
- *element_kind = UINT8_ELEMENTS; // Bogus |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-AllocationResult Heap::AllocateFixedTypedArray(int length, |
- ExternalArrayType array_type, |
- PretenureFlag pretenure) { |
- int element_size; |
- ElementsKind elements_kind; |
- ForFixedTypedArray(array_type, &element_size, &elements_kind); |
- int size = OBJECT_POINTER_ALIGN( |
- length * element_size + FixedTypedArrayBase::kDataOffset); |
-#ifndef V8_HOST_ARCH_64_BIT |
- if (array_type == kExternalFloat64Array) { |
- size += kPointerSize; |
- } |
-#endif |
- AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure); |
- |
- HeapObject* object; |
- AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE); |
- if (!allocation.To(&object)) return allocation; |
- |
- if (array_type == kExternalFloat64Array) { |
- object = EnsureDoubleAligned(this, object, size); |
- } |
- |
- object->set_map(MapForFixedTypedArray(array_type)); |
- FixedTypedArrayBase* elements = FixedTypedArrayBase::cast(object); |
- elements->set_length(length); |
- memset(elements->DataPtr(), 0, elements->DataSize()); |
- return elements; |
-} |
- |
- |
-AllocationResult Heap::AllocateCode(int object_size, bool immovable) { |
- DCHECK(IsAligned(static_cast<intptr_t>(object_size), kCodeAlignment)); |
- AllocationResult allocation = |
- AllocateRaw(object_size, CODE_SPACE, CODE_SPACE); |
- |
- HeapObject* result; |
- if (!allocation.To(&result)) return allocation; |
- |
- if (immovable) { |
- Address address = result->address(); |
- // Code objects which should stay at a fixed address are allocated either |
- // in the first page of code space (objects on the first page of each space |
- // are never moved) or in large object space. |
- if (!code_space_->FirstPage()->Contains(address) && |
- MemoryChunk::FromAddress(address)->owner()->identity() != LO_SPACE) { |
- // Discard the first code allocation, which was on a page where it could |
- // be moved. |
- CreateFillerObjectAt(result->address(), object_size); |
- allocation = lo_space_->AllocateRaw(object_size, EXECUTABLE); |
- if (!allocation.To(&result)) return allocation; |
- OnAllocationEvent(result, object_size); |
- } |
- } |
- |
- result->set_map_no_write_barrier(code_map()); |
- Code* code = Code::cast(result); |
- DCHECK(isolate_->code_range() == NULL || |
- !isolate_->code_range()->valid() || |
- isolate_->code_range()->contains(code->address())); |
- code->set_gc_metadata(Smi::FromInt(0)); |
- code->set_ic_age(global_ic_age_); |
- return code; |
-} |
- |
- |
-AllocationResult Heap::CopyCode(Code* code) { |
- AllocationResult allocation; |
- HeapObject* new_constant_pool; |
- if (FLAG_enable_ool_constant_pool && |
- code->constant_pool() != empty_constant_pool_array()) { |
- // Copy the constant pool, since edits to the copied code may modify |
- // the constant pool. |
- allocation = CopyConstantPoolArray(code->constant_pool()); |
- if (!allocation.To(&new_constant_pool)) return allocation; |
- } else { |
- new_constant_pool = empty_constant_pool_array(); |
- } |
- |
- HeapObject* result; |
- // Allocate an object the same size as the code object. |
- int obj_size = code->Size(); |
- allocation = AllocateRaw(obj_size, CODE_SPACE, CODE_SPACE); |
- if (!allocation.To(&result)) return allocation; |
- |
- // Copy code object. |
- Address old_addr = code->address(); |
- Address new_addr = result->address(); |
- CopyBlock(new_addr, old_addr, obj_size); |
- Code* new_code = Code::cast(result); |
- |
- // Update the constant pool. |
- new_code->set_constant_pool(new_constant_pool); |
- |
- // Relocate the copy. |
- DCHECK(isolate_->code_range() == NULL || |
- !isolate_->code_range()->valid() || |
- isolate_->code_range()->contains(code->address())); |
- new_code->Relocate(new_addr - old_addr); |
- return new_code; |
-} |
- |
- |
-AllocationResult Heap::CopyCode(Code* code, Vector<byte> reloc_info) { |
- // Allocate ByteArray and ConstantPoolArray before the Code object, so that we |
- // do not risk leaving uninitialized Code object (and breaking the heap). |
- ByteArray* reloc_info_array; |
- { AllocationResult allocation = |
- AllocateByteArray(reloc_info.length(), TENURED); |
- if (!allocation.To(&reloc_info_array)) return allocation; |
- } |
- HeapObject* new_constant_pool; |
- if (FLAG_enable_ool_constant_pool && |
- code->constant_pool() != empty_constant_pool_array()) { |
- // Copy the constant pool, since edits to the copied code may modify |
- // the constant pool. |
- AllocationResult allocation = |
- CopyConstantPoolArray(code->constant_pool()); |
- if (!allocation.To(&new_constant_pool)) return allocation; |
- } else { |
- new_constant_pool = empty_constant_pool_array(); |
- } |
- |
- int new_body_size = RoundUp(code->instruction_size(), kObjectAlignment); |
- |
- int new_obj_size = Code::SizeFor(new_body_size); |
- |
- Address old_addr = code->address(); |
- |
- size_t relocation_offset = |
- static_cast<size_t>(code->instruction_end() - old_addr); |
- |
- HeapObject* result; |
- AllocationResult allocation = |
- AllocateRaw(new_obj_size, CODE_SPACE, CODE_SPACE); |
- if (!allocation.To(&result)) return allocation; |
- |
- // Copy code object. |
- Address new_addr = result->address(); |
- |
- // Copy header and instructions. |
- CopyBytes(new_addr, old_addr, relocation_offset); |
- |
- Code* new_code = Code::cast(result); |
- new_code->set_relocation_info(reloc_info_array); |
- |
- // Update constant pool. |
- new_code->set_constant_pool(new_constant_pool); |
- |
- // Copy patched rinfo. |
- CopyBytes(new_code->relocation_start(), |
- reloc_info.start(), |
- static_cast<size_t>(reloc_info.length())); |
- |
- // Relocate the copy. |
- DCHECK(isolate_->code_range() == NULL || |
- !isolate_->code_range()->valid() || |
- isolate_->code_range()->contains(code->address())); |
- new_code->Relocate(new_addr - old_addr); |
- |
-#ifdef VERIFY_HEAP |
- if (FLAG_verify_heap) code->ObjectVerify(); |
-#endif |
- return new_code; |
-} |
- |
- |
-void Heap::InitializeAllocationMemento(AllocationMemento* memento, |
- AllocationSite* allocation_site) { |
- memento->set_map_no_write_barrier(allocation_memento_map()); |
- DCHECK(allocation_site->map() == allocation_site_map()); |
- memento->set_allocation_site(allocation_site, SKIP_WRITE_BARRIER); |
- if (FLAG_allocation_site_pretenuring) { |
- allocation_site->IncrementMementoCreateCount(); |
- } |
-} |
- |
- |
-AllocationResult Heap::Allocate(Map* map, AllocationSpace space, |
- AllocationSite* allocation_site) { |
- DCHECK(gc_state_ == NOT_IN_GC); |
- DCHECK(map->instance_type() != MAP_TYPE); |
- // If allocation failures are disallowed, we may allocate in a different |
- // space when new space is full and the object is not a large object. |
- AllocationSpace retry_space = |
- (space != NEW_SPACE) ? space : TargetSpaceId(map->instance_type()); |
- int size = map->instance_size(); |
- if (allocation_site != NULL) { |
- size += AllocationMemento::kSize; |
- } |
- HeapObject* result; |
- AllocationResult allocation = AllocateRaw(size, space, retry_space); |
- if (!allocation.To(&result)) return allocation; |
- // No need for write barrier since object is white and map is in old space. |
- result->set_map_no_write_barrier(map); |
- if (allocation_site != NULL) { |
- AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>( |
- reinterpret_cast<Address>(result) + map->instance_size()); |
- InitializeAllocationMemento(alloc_memento, allocation_site); |
- } |
- return result; |
-} |
- |
- |
-void Heap::InitializeJSObjectFromMap(JSObject* obj, |
- FixedArray* properties, |
- Map* map) { |
- obj->set_properties(properties); |
- obj->initialize_elements(); |
- // TODO(1240798): Initialize the object's body using valid initial values |
- // according to the object's initial map. For example, if the map's |
- // instance type is JS_ARRAY_TYPE, the length field should be initialized |
- // to a number (e.g. Smi::FromInt(0)) and the elements initialized to a |
- // fixed array (e.g. Heap::empty_fixed_array()). Currently, the object |
- // verification code has to cope with (temporarily) invalid objects. See |
- // for example, JSArray::JSArrayVerify). |
- Object* filler; |
- // We cannot always fill with one_pointer_filler_map because objects |
- // created from API functions expect their internal fields to be initialized |
- // with undefined_value. |
- // Pre-allocated fields need to be initialized with undefined_value as well |
- // so that object accesses before the constructor completes (e.g. in the |
- // debugger) will not cause a crash. |
- if (map->constructor()->IsJSFunction() && |
- JSFunction::cast(map->constructor())-> |
- IsInobjectSlackTrackingInProgress()) { |
- // We might want to shrink the object later. |
- DCHECK(obj->GetInternalFieldCount() == 0); |
- filler = Heap::one_pointer_filler_map(); |
- } else { |
- filler = Heap::undefined_value(); |
- } |
- obj->InitializeBody(map, Heap::undefined_value(), filler); |
-} |
- |
- |
-AllocationResult Heap::AllocateJSObjectFromMap( |
- Map* map, |
- PretenureFlag pretenure, |
- bool allocate_properties, |
- AllocationSite* allocation_site) { |
- // JSFunctions should be allocated using AllocateFunction to be |
- // properly initialized. |
- DCHECK(map->instance_type() != JS_FUNCTION_TYPE); |
- |
- // Both types of global objects should be allocated using |
- // AllocateGlobalObject to be properly initialized. |
- DCHECK(map->instance_type() != JS_GLOBAL_OBJECT_TYPE); |
- DCHECK(map->instance_type() != JS_BUILTINS_OBJECT_TYPE); |
- |
- // Allocate the backing storage for the properties. |
- FixedArray* properties; |
- if (allocate_properties) { |
- int prop_size = map->InitialPropertiesLength(); |
- DCHECK(prop_size >= 0); |
- { AllocationResult allocation = AllocateFixedArray(prop_size, pretenure); |
- if (!allocation.To(&properties)) return allocation; |
- } |
- } else { |
- properties = empty_fixed_array(); |
- } |
- |
- // Allocate the JSObject. |
- int size = map->instance_size(); |
- AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, pretenure); |
- JSObject* js_obj; |
- AllocationResult allocation = Allocate(map, space, allocation_site); |
- if (!allocation.To(&js_obj)) return allocation; |
- |
- // Initialize the JSObject. |
- InitializeJSObjectFromMap(js_obj, properties, map); |
- DCHECK(js_obj->HasFastElements() || |
- js_obj->HasExternalArrayElements() || |
- js_obj->HasFixedTypedArrayElements()); |
- return js_obj; |
-} |
- |
- |
-AllocationResult Heap::AllocateJSObject(JSFunction* constructor, |
- PretenureFlag pretenure, |
- AllocationSite* allocation_site) { |
- DCHECK(constructor->has_initial_map()); |
- |
- // Allocate the object based on the constructors initial map. |
- AllocationResult allocation = AllocateJSObjectFromMap( |
- constructor->initial_map(), pretenure, true, allocation_site); |
-#ifdef DEBUG |
- // Make sure result is NOT a global object if valid. |
- HeapObject* obj; |
- DCHECK(!allocation.To(&obj) || !obj->IsGlobalObject()); |
-#endif |
- return allocation; |
-} |
- |
- |
-AllocationResult Heap::CopyJSObject(JSObject* source, AllocationSite* site) { |
- // Never used to copy functions. If functions need to be copied we |
- // have to be careful to clear the literals array. |
- SLOW_DCHECK(!source->IsJSFunction()); |
- |
- // Make the clone. |
- Map* map = source->map(); |
- int object_size = map->instance_size(); |
- HeapObject* clone; |
- |
- DCHECK(site == NULL || AllocationSite::CanTrack(map->instance_type())); |
- |
- WriteBarrierMode wb_mode = UPDATE_WRITE_BARRIER; |
- |
- // If we're forced to always allocate, we use the general allocation |
- // functions which may leave us with an object in old space. |
- if (always_allocate()) { |
- { AllocationResult allocation = |
- AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE); |
- if (!allocation.To(&clone)) return allocation; |
- } |
- Address clone_address = clone->address(); |
- CopyBlock(clone_address, |
- source->address(), |
- object_size); |
- // Update write barrier for all fields that lie beyond the header. |
- RecordWrites(clone_address, |
- JSObject::kHeaderSize, |
- (object_size - JSObject::kHeaderSize) / kPointerSize); |
- } else { |
- wb_mode = SKIP_WRITE_BARRIER; |
- |
- { int adjusted_object_size = site != NULL |
- ? object_size + AllocationMemento::kSize |
- : object_size; |
- AllocationResult allocation = |
- AllocateRaw(adjusted_object_size, NEW_SPACE, NEW_SPACE); |
- if (!allocation.To(&clone)) return allocation; |
- } |
- SLOW_DCHECK(InNewSpace(clone)); |
- // Since we know the clone is allocated in new space, we can copy |
- // the contents without worrying about updating the write barrier. |
- CopyBlock(clone->address(), |
- source->address(), |
- object_size); |
- |
- if (site != NULL) { |
- AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>( |
- reinterpret_cast<Address>(clone) + object_size); |
- InitializeAllocationMemento(alloc_memento, site); |
- } |
- } |
- |
- SLOW_DCHECK( |
- JSObject::cast(clone)->GetElementsKind() == source->GetElementsKind()); |
- FixedArrayBase* elements = FixedArrayBase::cast(source->elements()); |
- FixedArray* properties = FixedArray::cast(source->properties()); |
- // Update elements if necessary. |
- if (elements->length() > 0) { |
- FixedArrayBase* elem; |
- { AllocationResult allocation; |
- if (elements->map() == fixed_cow_array_map()) { |
- allocation = FixedArray::cast(elements); |
- } else if (source->HasFastDoubleElements()) { |
- allocation = CopyFixedDoubleArray(FixedDoubleArray::cast(elements)); |
- } else { |
- allocation = CopyFixedArray(FixedArray::cast(elements)); |
- } |
- if (!allocation.To(&elem)) return allocation; |
- } |
- JSObject::cast(clone)->set_elements(elem, wb_mode); |
- } |
- // Update properties if necessary. |
- if (properties->length() > 0) { |
- FixedArray* prop; |
- { AllocationResult allocation = CopyFixedArray(properties); |
- if (!allocation.To(&prop)) return allocation; |
- } |
- JSObject::cast(clone)->set_properties(prop, wb_mode); |
- } |
- // Return the new clone. |
- return clone; |
-} |
- |
- |
-static inline void WriteOneByteData(Vector<const char> vector, |
- uint8_t* chars, |
- int len) { |
- // Only works for ascii. |
- DCHECK(vector.length() == len); |
- MemCopy(chars, vector.start(), len); |
-} |
- |
-static inline void WriteTwoByteData(Vector<const char> vector, |
- uint16_t* chars, |
- int len) { |
- const uint8_t* stream = reinterpret_cast<const uint8_t*>(vector.start()); |
- unsigned stream_length = vector.length(); |
- while (stream_length != 0) { |
- unsigned consumed = 0; |
- uint32_t c = unibrow::Utf8::ValueOf(stream, stream_length, &consumed); |
- DCHECK(c != unibrow::Utf8::kBadChar); |
- DCHECK(consumed <= stream_length); |
- stream_length -= consumed; |
- stream += consumed; |
- if (c > unibrow::Utf16::kMaxNonSurrogateCharCode) { |
- len -= 2; |
- if (len < 0) break; |
- *chars++ = unibrow::Utf16::LeadSurrogate(c); |
- *chars++ = unibrow::Utf16::TrailSurrogate(c); |
- } else { |
- len -= 1; |
- if (len < 0) break; |
- *chars++ = c; |
- } |
- } |
- DCHECK(stream_length == 0); |
- DCHECK(len == 0); |
-} |
- |
- |
-static inline void WriteOneByteData(String* s, uint8_t* chars, int len) { |
- DCHECK(s->length() == len); |
- String::WriteToFlat(s, chars, 0, len); |
-} |
- |
- |
-static inline void WriteTwoByteData(String* s, uint16_t* chars, int len) { |
- DCHECK(s->length() == len); |
- String::WriteToFlat(s, chars, 0, len); |
-} |
- |
- |
-template<bool is_one_byte, typename T> |
-AllocationResult Heap::AllocateInternalizedStringImpl( |
- T t, int chars, uint32_t hash_field) { |
- DCHECK(chars >= 0); |
- // Compute map and object size. |
- int size; |
- Map* map; |
- |
- DCHECK_LE(0, chars); |
- DCHECK_GE(String::kMaxLength, chars); |
- if (is_one_byte) { |
- map = ascii_internalized_string_map(); |
- size = SeqOneByteString::SizeFor(chars); |
- } else { |
- map = internalized_string_map(); |
- size = SeqTwoByteString::SizeFor(chars); |
- } |
- AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED); |
- |
- // Allocate string. |
- HeapObject* result; |
- { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE); |
- if (!allocation.To(&result)) return allocation; |
- } |
- |
- result->set_map_no_write_barrier(map); |
- // Set length and hash fields of the allocated string. |
- String* answer = String::cast(result); |
- answer->set_length(chars); |
- answer->set_hash_field(hash_field); |
- |
- DCHECK_EQ(size, answer->Size()); |
- |
- if (is_one_byte) { |
- WriteOneByteData(t, SeqOneByteString::cast(answer)->GetChars(), chars); |
- } else { |
- WriteTwoByteData(t, SeqTwoByteString::cast(answer)->GetChars(), chars); |
- } |
- return answer; |
-} |
- |
- |
-// Need explicit instantiations. |
-template |
-AllocationResult Heap::AllocateInternalizedStringImpl<true>( |
- String*, int, uint32_t); |
-template |
-AllocationResult Heap::AllocateInternalizedStringImpl<false>( |
- String*, int, uint32_t); |
-template |
-AllocationResult Heap::AllocateInternalizedStringImpl<false>( |
- Vector<const char>, int, uint32_t); |
- |
- |
-AllocationResult Heap::AllocateRawOneByteString(int length, |
- PretenureFlag pretenure) { |
- DCHECK_LE(0, length); |
- DCHECK_GE(String::kMaxLength, length); |
- int size = SeqOneByteString::SizeFor(length); |
- DCHECK(size <= SeqOneByteString::kMaxSize); |
- AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure); |
- |
- HeapObject* result; |
- { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE); |
- if (!allocation.To(&result)) return allocation; |
- } |
- |
- // Partially initialize the object. |
- result->set_map_no_write_barrier(ascii_string_map()); |
- String::cast(result)->set_length(length); |
- String::cast(result)->set_hash_field(String::kEmptyHashField); |
- DCHECK_EQ(size, HeapObject::cast(result)->Size()); |
- |
- return result; |
-} |
- |
- |
-AllocationResult Heap::AllocateRawTwoByteString(int length, |
- PretenureFlag pretenure) { |
- DCHECK_LE(0, length); |
- DCHECK_GE(String::kMaxLength, length); |
- int size = SeqTwoByteString::SizeFor(length); |
- DCHECK(size <= SeqTwoByteString::kMaxSize); |
- AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure); |
- |
- HeapObject* result; |
- { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE); |
- if (!allocation.To(&result)) return allocation; |
- } |
- |
- // Partially initialize the object. |
- result->set_map_no_write_barrier(string_map()); |
- String::cast(result)->set_length(length); |
- String::cast(result)->set_hash_field(String::kEmptyHashField); |
- DCHECK_EQ(size, HeapObject::cast(result)->Size()); |
- return result; |
-} |
- |
- |
-AllocationResult Heap::AllocateEmptyFixedArray() { |
- int size = FixedArray::SizeFor(0); |
- HeapObject* result; |
- { AllocationResult allocation = |
- AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE); |
- if (!allocation.To(&result)) return allocation; |
- } |
- // Initialize the object. |
- result->set_map_no_write_barrier(fixed_array_map()); |
- FixedArray::cast(result)->set_length(0); |
- return result; |
-} |
- |
- |
-AllocationResult Heap::AllocateEmptyExternalArray( |
- ExternalArrayType array_type) { |
- return AllocateExternalArray(0, array_type, NULL, TENURED); |
-} |
- |
- |
-AllocationResult Heap::CopyAndTenureFixedCOWArray(FixedArray* src) { |
- if (!InNewSpace(src)) { |
- return src; |
- } |
- |
- int len = src->length(); |
- HeapObject* obj; |
- { AllocationResult allocation = AllocateRawFixedArray(len, TENURED); |
- if (!allocation.To(&obj)) return allocation; |
- } |
- obj->set_map_no_write_barrier(fixed_array_map()); |
- FixedArray* result = FixedArray::cast(obj); |
- result->set_length(len); |
- |
- // Copy the content |
- DisallowHeapAllocation no_gc; |
- WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); |
- for (int i = 0; i < len; i++) result->set(i, src->get(i), mode); |
- |
- // TODO(mvstanton): The map is set twice because of protection against calling |
- // set() on a COW FixedArray. Issue v8:3221 created to track this, and |
- // we might then be able to remove this whole method. |
- HeapObject::cast(obj)->set_map_no_write_barrier(fixed_cow_array_map()); |
- return result; |
-} |
- |
- |
-AllocationResult Heap::AllocateEmptyFixedTypedArray( |
- ExternalArrayType array_type) { |
- return AllocateFixedTypedArray(0, array_type, TENURED); |
-} |
- |
- |
-AllocationResult Heap::CopyFixedArrayWithMap(FixedArray* src, Map* map) { |
- int len = src->length(); |
- HeapObject* obj; |
- { AllocationResult allocation = AllocateRawFixedArray(len, NOT_TENURED); |
- if (!allocation.To(&obj)) return allocation; |
- } |
- if (InNewSpace(obj)) { |
- obj->set_map_no_write_barrier(map); |
- CopyBlock(obj->address() + kPointerSize, |
- src->address() + kPointerSize, |
- FixedArray::SizeFor(len) - kPointerSize); |
- return obj; |
- } |
- obj->set_map_no_write_barrier(map); |
- FixedArray* result = FixedArray::cast(obj); |
- result->set_length(len); |
- |
- // Copy the content |
- DisallowHeapAllocation no_gc; |
- WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); |
- for (int i = 0; i < len; i++) result->set(i, src->get(i), mode); |
- return result; |
-} |
- |
- |
-AllocationResult Heap::CopyFixedDoubleArrayWithMap(FixedDoubleArray* src, |
- Map* map) { |
- int len = src->length(); |
- HeapObject* obj; |
- { AllocationResult allocation = AllocateRawFixedDoubleArray(len, NOT_TENURED); |
- if (!allocation.To(&obj)) return allocation; |
- } |
- obj->set_map_no_write_barrier(map); |
- CopyBlock( |
- obj->address() + FixedDoubleArray::kLengthOffset, |
- src->address() + FixedDoubleArray::kLengthOffset, |
- FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset); |
- return obj; |
-} |
- |
- |
-AllocationResult Heap::CopyConstantPoolArrayWithMap(ConstantPoolArray* src, |
- Map* map) { |
- HeapObject* obj; |
- if (src->is_extended_layout()) { |
- ConstantPoolArray::NumberOfEntries small(src, |
- ConstantPoolArray::SMALL_SECTION); |
- ConstantPoolArray::NumberOfEntries extended(src, |
- ConstantPoolArray::EXTENDED_SECTION); |
- AllocationResult allocation = |
- AllocateExtendedConstantPoolArray(small, extended); |
- if (!allocation.To(&obj)) return allocation; |
- } else { |
- ConstantPoolArray::NumberOfEntries small(src, |
- ConstantPoolArray::SMALL_SECTION); |
- AllocationResult allocation = AllocateConstantPoolArray(small); |
- if (!allocation.To(&obj)) return allocation; |
- } |
- obj->set_map_no_write_barrier(map); |
- CopyBlock( |
- obj->address() + ConstantPoolArray::kFirstEntryOffset, |
- src->address() + ConstantPoolArray::kFirstEntryOffset, |
- src->size() - ConstantPoolArray::kFirstEntryOffset); |
- return obj; |
-} |
- |
- |
-AllocationResult Heap::AllocateRawFixedArray(int length, |
- PretenureFlag pretenure) { |
- if (length < 0 || length > FixedArray::kMaxLength) { |
- v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true); |
- } |
- int size = FixedArray::SizeFor(length); |
- AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, pretenure); |
- |
- return AllocateRaw(size, space, OLD_POINTER_SPACE); |
-} |
- |
- |
-AllocationResult Heap::AllocateFixedArrayWithFiller(int length, |
- PretenureFlag pretenure, |
- Object* filler) { |
- DCHECK(length >= 0); |
- DCHECK(empty_fixed_array()->IsFixedArray()); |
- if (length == 0) return empty_fixed_array(); |
- |
- DCHECK(!InNewSpace(filler)); |
- HeapObject* result; |
- { AllocationResult allocation = AllocateRawFixedArray(length, pretenure); |
- if (!allocation.To(&result)) return allocation; |
- } |
- |
- result->set_map_no_write_barrier(fixed_array_map()); |
- FixedArray* array = FixedArray::cast(result); |
- array->set_length(length); |
- MemsetPointer(array->data_start(), filler, length); |
- return array; |
-} |
- |
- |
-AllocationResult Heap::AllocateFixedArray(int length, PretenureFlag pretenure) { |
- return AllocateFixedArrayWithFiller(length, pretenure, undefined_value()); |
-} |
- |
- |
-AllocationResult Heap::AllocateUninitializedFixedArray(int length) { |
- if (length == 0) return empty_fixed_array(); |
- |
- HeapObject* obj; |
- { AllocationResult allocation = AllocateRawFixedArray(length, NOT_TENURED); |
- if (!allocation.To(&obj)) return allocation; |
- } |
- |
- obj->set_map_no_write_barrier(fixed_array_map()); |
- FixedArray::cast(obj)->set_length(length); |
- return obj; |
-} |
- |
- |
-AllocationResult Heap::AllocateUninitializedFixedDoubleArray( |
- int length, |
- PretenureFlag pretenure) { |
- if (length == 0) return empty_fixed_array(); |
- |
- HeapObject* elements; |
- AllocationResult allocation = AllocateRawFixedDoubleArray(length, pretenure); |
- if (!allocation.To(&elements)) return allocation; |
- |
- elements->set_map_no_write_barrier(fixed_double_array_map()); |
- FixedDoubleArray::cast(elements)->set_length(length); |
- return elements; |
-} |
- |
- |
-AllocationResult Heap::AllocateRawFixedDoubleArray(int length, |
- PretenureFlag pretenure) { |
- if (length < 0 || length > FixedDoubleArray::kMaxLength) { |
- v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true); |
- } |
- int size = FixedDoubleArray::SizeFor(length); |
-#ifndef V8_HOST_ARCH_64_BIT |
- size += kPointerSize; |
-#endif |
- AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure); |
- |
- HeapObject* object; |
- { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE); |
- if (!allocation.To(&object)) return allocation; |
- } |
- |
- return EnsureDoubleAligned(this, object, size); |
-} |
- |
- |
-AllocationResult Heap::AllocateConstantPoolArray( |
- const ConstantPoolArray::NumberOfEntries& small) { |
- CHECK(small.are_in_range(0, ConstantPoolArray::kMaxSmallEntriesPerType)); |
- int size = ConstantPoolArray::SizeFor(small); |
-#ifndef V8_HOST_ARCH_64_BIT |
- size += kPointerSize; |
-#endif |
- AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, TENURED); |
- |
- HeapObject* object; |
- { AllocationResult allocation = AllocateRaw(size, space, OLD_POINTER_SPACE); |
- if (!allocation.To(&object)) return allocation; |
- } |
- object = EnsureDoubleAligned(this, object, size); |
- object->set_map_no_write_barrier(constant_pool_array_map()); |
- |
- ConstantPoolArray* constant_pool = ConstantPoolArray::cast(object); |
- constant_pool->Init(small); |
- constant_pool->ClearPtrEntries(isolate()); |
- return constant_pool; |
-} |
- |
- |
-AllocationResult Heap::AllocateExtendedConstantPoolArray( |
- const ConstantPoolArray::NumberOfEntries& small, |
- const ConstantPoolArray::NumberOfEntries& extended) { |
- CHECK(small.are_in_range(0, ConstantPoolArray::kMaxSmallEntriesPerType)); |
- CHECK(extended.are_in_range(0, kMaxInt)); |
- int size = ConstantPoolArray::SizeForExtended(small, extended); |
-#ifndef V8_HOST_ARCH_64_BIT |
- size += kPointerSize; |
-#endif |
- AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, TENURED); |
- |
- HeapObject* object; |
- { AllocationResult allocation = AllocateRaw(size, space, OLD_POINTER_SPACE); |
- if (!allocation.To(&object)) return allocation; |
- } |
- object = EnsureDoubleAligned(this, object, size); |
- object->set_map_no_write_barrier(constant_pool_array_map()); |
- |
- ConstantPoolArray* constant_pool = ConstantPoolArray::cast(object); |
- constant_pool->InitExtended(small, extended); |
- constant_pool->ClearPtrEntries(isolate()); |
- return constant_pool; |
-} |
- |
- |
-AllocationResult Heap::AllocateEmptyConstantPoolArray() { |
- ConstantPoolArray::NumberOfEntries small(0, 0, 0, 0); |
- int size = ConstantPoolArray::SizeFor(small); |
- HeapObject* result; |
- { AllocationResult allocation = |
- AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE); |
- if (!allocation.To(&result)) return allocation; |
- } |
- result->set_map_no_write_barrier(constant_pool_array_map()); |
- ConstantPoolArray::cast(result)->Init(small); |
- return result; |
-} |
- |
- |
-AllocationResult Heap::AllocateSymbol() { |
- // Statically ensure that it is safe to allocate symbols in paged spaces. |
- STATIC_ASSERT(Symbol::kSize <= Page::kMaxRegularHeapObjectSize); |
- |
- HeapObject* result; |
- AllocationResult allocation = |
- AllocateRaw(Symbol::kSize, OLD_POINTER_SPACE, OLD_POINTER_SPACE); |
- if (!allocation.To(&result)) return allocation; |
- |
- result->set_map_no_write_barrier(symbol_map()); |
- |
- // Generate a random hash value. |
- int hash; |
- int attempts = 0; |
- do { |
- hash = isolate()->random_number_generator()->NextInt() & Name::kHashBitMask; |
- attempts++; |
- } while (hash == 0 && attempts < 30); |
- if (hash == 0) hash = 1; // never return 0 |
- |
- Symbol::cast(result)->set_hash_field( |
- Name::kIsNotArrayIndexMask | (hash << Name::kHashShift)); |
- Symbol::cast(result)->set_name(undefined_value()); |
- Symbol::cast(result)->set_flags(Smi::FromInt(0)); |
- |
- DCHECK(!Symbol::cast(result)->is_private()); |
- return result; |
-} |
- |
- |
-AllocationResult Heap::AllocateStruct(InstanceType type) { |
- Map* map; |
- switch (type) { |
-#define MAKE_CASE(NAME, Name, name) \ |
- case NAME##_TYPE: map = name##_map(); break; |
-STRUCT_LIST(MAKE_CASE) |
-#undef MAKE_CASE |
- default: |
- UNREACHABLE(); |
- return exception(); |
- } |
- int size = map->instance_size(); |
- AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, TENURED); |
- Struct* result; |
- { AllocationResult allocation = Allocate(map, space); |
- if (!allocation.To(&result)) return allocation; |
- } |
- result->InitializeBody(size); |
- return result; |
-} |
- |
- |
-bool Heap::IsHeapIterable() { |
- // TODO(hpayer): This function is not correct. Allocation folding in old |
- // space breaks the iterability. |
- return (old_pointer_space()->swept_precisely() && |
- old_data_space()->swept_precisely() && |
- new_space_top_after_last_gc_ == new_space()->top()); |
-} |
- |
- |
-void Heap::MakeHeapIterable() { |
- DCHECK(AllowHeapAllocation::IsAllowed()); |
- if (!IsHeapIterable()) { |
- CollectAllGarbage(kMakeHeapIterableMask, "Heap::MakeHeapIterable"); |
- } |
- if (mark_compact_collector()->sweeping_in_progress()) { |
- mark_compact_collector()->EnsureSweepingCompleted(); |
- } |
- DCHECK(IsHeapIterable()); |
-} |
- |
- |
-void Heap::AdvanceIdleIncrementalMarking(intptr_t step_size) { |
- incremental_marking()->Step(step_size, |
- IncrementalMarking::NO_GC_VIA_STACK_GUARD); |
- |
- if (incremental_marking()->IsComplete()) { |
- bool uncommit = false; |
- if (gc_count_at_last_idle_gc_ == gc_count_) { |
- // No GC since the last full GC, the mutator is probably not active. |
- isolate_->compilation_cache()->Clear(); |
- uncommit = true; |
- } |
- CollectAllGarbage(kReduceMemoryFootprintMask, |
- "idle notification: finalize incremental"); |
- mark_sweeps_since_idle_round_started_++; |
- gc_count_at_last_idle_gc_ = gc_count_; |
- if (uncommit) { |
- new_space_.Shrink(); |
- UncommitFromSpace(); |
- } |
- } |
-} |
- |
- |
-bool Heap::IdleNotification(int hint) { |
- // If incremental marking is off, we do not perform idle notification. |
- if (!FLAG_incremental_marking) return true; |
- |
- // Hints greater than this value indicate that |
- // the embedder is requesting a lot of GC work. |
- const int kMaxHint = 1000; |
- const int kMinHintForIncrementalMarking = 10; |
- // Minimal hint that allows to do full GC. |
- const int kMinHintForFullGC = 100; |
- intptr_t size_factor = Min(Max(hint, 20), kMaxHint) / 4; |
- // The size factor is in range [5..250]. The numbers here are chosen from |
- // experiments. If you changes them, make sure to test with |
- // chrome/performance_ui_tests --gtest_filter="GeneralMixMemoryTest.* |
- intptr_t step_size = |
- size_factor * IncrementalMarking::kAllocatedThreshold; |
- |
- isolate()->counters()->gc_idle_time_allotted_in_ms()->AddSample(hint); |
- HistogramTimerScope idle_notification_scope( |
- isolate_->counters()->gc_idle_notification()); |
- |
- if (contexts_disposed_ > 0) { |
- contexts_disposed_ = 0; |
- int mark_sweep_time = Min(TimeMarkSweepWouldTakeInMs(), 1000); |
- if (hint >= mark_sweep_time && !FLAG_expose_gc && |
- incremental_marking()->IsStopped()) { |
- HistogramTimerScope scope(isolate_->counters()->gc_context()); |
- CollectAllGarbage(kReduceMemoryFootprintMask, |
- "idle notification: contexts disposed"); |
- } else { |
- AdvanceIdleIncrementalMarking(step_size); |
- } |
- |
- // After context disposal there is likely a lot of garbage remaining, reset |
- // the idle notification counters in order to trigger more incremental GCs |
- // on subsequent idle notifications. |
- StartIdleRound(); |
- return false; |
- } |
- |
- // By doing small chunks of GC work in each IdleNotification, |
- // perform a round of incremental GCs and after that wait until |
- // the mutator creates enough garbage to justify a new round. |
- // An incremental GC progresses as follows: |
- // 1. many incremental marking steps, |
- // 2. one old space mark-sweep-compact, |
- // Use mark-sweep-compact events to count incremental GCs in a round. |
- |
- if (mark_sweeps_since_idle_round_started_ >= kMaxMarkSweepsInIdleRound) { |
- if (EnoughGarbageSinceLastIdleRound()) { |
- StartIdleRound(); |
- } else { |
- return true; |
- } |
- } |
- |
- int remaining_mark_sweeps = kMaxMarkSweepsInIdleRound - |
- mark_sweeps_since_idle_round_started_; |
- |
- if (incremental_marking()->IsStopped()) { |
- // If there are no more than two GCs left in this idle round and we are |
- // allowed to do a full GC, then make those GCs full in order to compact |
- // the code space. |
- // TODO(ulan): Once we enable code compaction for incremental marking, |
- // we can get rid of this special case and always start incremental marking. |
- if (remaining_mark_sweeps <= 2 && hint >= kMinHintForFullGC) { |
- CollectAllGarbage(kReduceMemoryFootprintMask, |
- "idle notification: finalize idle round"); |
- mark_sweeps_since_idle_round_started_++; |
- } else if (hint > kMinHintForIncrementalMarking) { |
- incremental_marking()->Start(); |
- } |
- } |
- if (!incremental_marking()->IsStopped() && |
- hint > kMinHintForIncrementalMarking) { |
- AdvanceIdleIncrementalMarking(step_size); |
- } |
- |
- if (mark_sweeps_since_idle_round_started_ >= kMaxMarkSweepsInIdleRound) { |
- FinishIdleRound(); |
- return true; |
- } |
- |
- // If the IdleNotifcation is called with a large hint we will wait for |
- // the sweepter threads here. |
- if (hint >= kMinHintForFullGC && |
- mark_compact_collector()->sweeping_in_progress()) { |
- mark_compact_collector()->EnsureSweepingCompleted(); |
- } |
- |
- return false; |
-} |
- |
- |
-#ifdef DEBUG |
- |
-void Heap::Print() { |
- if (!HasBeenSetUp()) return; |
- isolate()->PrintStack(stdout); |
- AllSpaces spaces(this); |
- for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { |
- space->Print(); |
- } |
-} |
- |
- |
-void Heap::ReportCodeStatistics(const char* title) { |
- PrintF(">>>>>> Code Stats (%s) >>>>>>\n", title); |
- PagedSpace::ResetCodeStatistics(isolate()); |
- // We do not look for code in new space, map space, or old space. If code |
- // somehow ends up in those spaces, we would miss it here. |
- code_space_->CollectCodeStatistics(); |
- lo_space_->CollectCodeStatistics(); |
- PagedSpace::ReportCodeStatistics(isolate()); |
-} |
- |
- |
-// This function expects that NewSpace's allocated objects histogram is |
-// populated (via a call to CollectStatistics or else as a side effect of a |
-// just-completed scavenge collection). |
-void Heap::ReportHeapStatistics(const char* title) { |
- USE(title); |
- PrintF(">>>>>> =============== %s (%d) =============== >>>>>>\n", |
- title, gc_count_); |
- PrintF("old_generation_allocation_limit_ %" V8_PTR_PREFIX "d\n", |
- old_generation_allocation_limit_); |
- |
- PrintF("\n"); |
- PrintF("Number of handles : %d\n", HandleScope::NumberOfHandles(isolate_)); |
- isolate_->global_handles()->PrintStats(); |
- PrintF("\n"); |
- |
- PrintF("Heap statistics : "); |
- isolate_->memory_allocator()->ReportStatistics(); |
- PrintF("To space : "); |
- new_space_.ReportStatistics(); |
- PrintF("Old pointer space : "); |
- old_pointer_space_->ReportStatistics(); |
- PrintF("Old data space : "); |
- old_data_space_->ReportStatistics(); |
- PrintF("Code space : "); |
- code_space_->ReportStatistics(); |
- PrintF("Map space : "); |
- map_space_->ReportStatistics(); |
- PrintF("Cell space : "); |
- cell_space_->ReportStatistics(); |
- PrintF("PropertyCell space : "); |
- property_cell_space_->ReportStatistics(); |
- PrintF("Large object space : "); |
- lo_space_->ReportStatistics(); |
- PrintF(">>>>>> ========================================= >>>>>>\n"); |
-} |
- |
-#endif // DEBUG |
- |
-bool Heap::Contains(HeapObject* value) { |
- return Contains(value->address()); |
-} |
- |
- |
-bool Heap::Contains(Address addr) { |
- if (isolate_->memory_allocator()->IsOutsideAllocatedSpace(addr)) return false; |
- return HasBeenSetUp() && |
- (new_space_.ToSpaceContains(addr) || |
- old_pointer_space_->Contains(addr) || |
- old_data_space_->Contains(addr) || |
- code_space_->Contains(addr) || |
- map_space_->Contains(addr) || |
- cell_space_->Contains(addr) || |
- property_cell_space_->Contains(addr) || |
- lo_space_->SlowContains(addr)); |
-} |
- |
- |
-bool Heap::InSpace(HeapObject* value, AllocationSpace space) { |
- return InSpace(value->address(), space); |
-} |
- |
- |
-bool Heap::InSpace(Address addr, AllocationSpace space) { |
- if (isolate_->memory_allocator()->IsOutsideAllocatedSpace(addr)) return false; |
- if (!HasBeenSetUp()) return false; |
- |
- switch (space) { |
- case NEW_SPACE: |
- return new_space_.ToSpaceContains(addr); |
- case OLD_POINTER_SPACE: |
- return old_pointer_space_->Contains(addr); |
- case OLD_DATA_SPACE: |
- return old_data_space_->Contains(addr); |
- case CODE_SPACE: |
- return code_space_->Contains(addr); |
- case MAP_SPACE: |
- return map_space_->Contains(addr); |
- case CELL_SPACE: |
- return cell_space_->Contains(addr); |
- case PROPERTY_CELL_SPACE: |
- return property_cell_space_->Contains(addr); |
- case LO_SPACE: |
- return lo_space_->SlowContains(addr); |
- case INVALID_SPACE: |
- break; |
- } |
- UNREACHABLE(); |
- return false; |
-} |
- |
- |
-#ifdef VERIFY_HEAP |
-void Heap::Verify() { |
- CHECK(HasBeenSetUp()); |
- HandleScope scope(isolate()); |
- |
- store_buffer()->Verify(); |
- |
- if (mark_compact_collector()->sweeping_in_progress()) { |
- // We have to wait here for the sweeper threads to have an iterable heap. |
- mark_compact_collector()->EnsureSweepingCompleted(); |
- } |
- |
- VerifyPointersVisitor visitor; |
- IterateRoots(&visitor, VISIT_ONLY_STRONG); |
- |
- VerifySmisVisitor smis_visitor; |
- IterateSmiRoots(&smis_visitor); |
- |
- new_space_.Verify(); |
- |
- old_pointer_space_->Verify(&visitor); |
- map_space_->Verify(&visitor); |
- |
- VerifyPointersVisitor no_dirty_regions_visitor; |
- old_data_space_->Verify(&no_dirty_regions_visitor); |
- code_space_->Verify(&no_dirty_regions_visitor); |
- cell_space_->Verify(&no_dirty_regions_visitor); |
- property_cell_space_->Verify(&no_dirty_regions_visitor); |
- |
- lo_space_->Verify(); |
-} |
-#endif |
- |
- |
-void Heap::ZapFromSpace() { |
- NewSpacePageIterator it(new_space_.FromSpaceStart(), |
- new_space_.FromSpaceEnd()); |
- while (it.has_next()) { |
- NewSpacePage* page = it.next(); |
- for (Address cursor = page->area_start(), limit = page->area_end(); |
- cursor < limit; |
- cursor += kPointerSize) { |
- Memory::Address_at(cursor) = kFromSpaceZapValue; |
- } |
- } |
-} |
- |
- |
-void Heap::IterateAndMarkPointersToFromSpace(Address start, |
- Address end, |
- ObjectSlotCallback callback) { |
- Address slot_address = start; |
- |
- // We are not collecting slots on new space objects during mutation |
- // thus we have to scan for pointers to evacuation candidates when we |
- // promote objects. But we should not record any slots in non-black |
- // objects. Grey object's slots would be rescanned. |
- // White object might not survive until the end of collection |
- // it would be a violation of the invariant to record it's slots. |
- bool record_slots = false; |
- if (incremental_marking()->IsCompacting()) { |
- MarkBit mark_bit = Marking::MarkBitFrom(HeapObject::FromAddress(start)); |
- record_slots = Marking::IsBlack(mark_bit); |
- } |
- |
- while (slot_address < end) { |
- Object** slot = reinterpret_cast<Object**>(slot_address); |
- Object* object = *slot; |
- // If the store buffer becomes overfull we mark pages as being exempt from |
- // the store buffer. These pages are scanned to find pointers that point |
- // to the new space. In that case we may hit newly promoted objects and |
- // fix the pointers before the promotion queue gets to them. Thus the 'if'. |
- if (object->IsHeapObject()) { |
- if (Heap::InFromSpace(object)) { |
- callback(reinterpret_cast<HeapObject**>(slot), |
- HeapObject::cast(object)); |
- Object* new_object = *slot; |
- if (InNewSpace(new_object)) { |
- SLOW_DCHECK(Heap::InToSpace(new_object)); |
- SLOW_DCHECK(new_object->IsHeapObject()); |
- store_buffer_.EnterDirectlyIntoStoreBuffer( |
- reinterpret_cast<Address>(slot)); |
- } |
- SLOW_DCHECK(!MarkCompactCollector::IsOnEvacuationCandidate(new_object)); |
- } else if (record_slots && |
- MarkCompactCollector::IsOnEvacuationCandidate(object)) { |
- mark_compact_collector()->RecordSlot(slot, slot, object); |
- } |
- } |
- slot_address += kPointerSize; |
- } |
-} |
- |
- |
-#ifdef DEBUG |
-typedef bool (*CheckStoreBufferFilter)(Object** addr); |
- |
- |
-bool IsAMapPointerAddress(Object** addr) { |
- uintptr_t a = reinterpret_cast<uintptr_t>(addr); |
- int mod = a % Map::kSize; |
- return mod >= Map::kPointerFieldsBeginOffset && |
- mod < Map::kPointerFieldsEndOffset; |
-} |
- |
- |
-bool EverythingsAPointer(Object** addr) { |
- return true; |
-} |
- |
- |
-static void CheckStoreBuffer(Heap* heap, |
- Object** current, |
- Object** limit, |
- Object**** store_buffer_position, |
- Object*** store_buffer_top, |
- CheckStoreBufferFilter filter, |
- Address special_garbage_start, |
- Address special_garbage_end) { |
- Map* free_space_map = heap->free_space_map(); |
- for ( ; current < limit; current++) { |
- Object* o = *current; |
- Address current_address = reinterpret_cast<Address>(current); |
- // Skip free space. |
- if (o == free_space_map) { |
- Address current_address = reinterpret_cast<Address>(current); |
- FreeSpace* free_space = |
- FreeSpace::cast(HeapObject::FromAddress(current_address)); |
- int skip = free_space->Size(); |
- DCHECK(current_address + skip <= reinterpret_cast<Address>(limit)); |
- DCHECK(skip > 0); |
- current_address += skip - kPointerSize; |
- current = reinterpret_cast<Object**>(current_address); |
- continue; |
- } |
- // Skip the current linear allocation space between top and limit which is |
- // unmarked with the free space map, but can contain junk. |
- if (current_address == special_garbage_start && |
- special_garbage_end != special_garbage_start) { |
- current_address = special_garbage_end - kPointerSize; |
- current = reinterpret_cast<Object**>(current_address); |
- continue; |
- } |
- if (!(*filter)(current)) continue; |
- DCHECK(current_address < special_garbage_start || |
- current_address >= special_garbage_end); |
- DCHECK(reinterpret_cast<uintptr_t>(o) != kFreeListZapValue); |
- // We have to check that the pointer does not point into new space |
- // without trying to cast it to a heap object since the hash field of |
- // a string can contain values like 1 and 3 which are tagged null |
- // pointers. |
- if (!heap->InNewSpace(o)) continue; |
- while (**store_buffer_position < current && |
- *store_buffer_position < store_buffer_top) { |
- (*store_buffer_position)++; |
- } |
- if (**store_buffer_position != current || |
- *store_buffer_position == store_buffer_top) { |
- Object** obj_start = current; |
- while (!(*obj_start)->IsMap()) obj_start--; |
- UNREACHABLE(); |
- } |
- } |
-} |
- |
- |
-// Check that the store buffer contains all intergenerational pointers by |
-// scanning a page and ensuring that all pointers to young space are in the |
-// store buffer. |
-void Heap::OldPointerSpaceCheckStoreBuffer() { |
- OldSpace* space = old_pointer_space(); |
- PageIterator pages(space); |
- |
- store_buffer()->SortUniq(); |
- |
- while (pages.has_next()) { |
- Page* page = pages.next(); |
- Object** current = reinterpret_cast<Object**>(page->area_start()); |
- |
- Address end = page->area_end(); |
- |
- Object*** store_buffer_position = store_buffer()->Start(); |
- Object*** store_buffer_top = store_buffer()->Top(); |
- |
- Object** limit = reinterpret_cast<Object**>(end); |
- CheckStoreBuffer(this, |
- current, |
- limit, |
- &store_buffer_position, |
- store_buffer_top, |
- &EverythingsAPointer, |
- space->top(), |
- space->limit()); |
- } |
-} |
- |
- |
-void Heap::MapSpaceCheckStoreBuffer() { |
- MapSpace* space = map_space(); |
- PageIterator pages(space); |
- |
- store_buffer()->SortUniq(); |
- |
- while (pages.has_next()) { |
- Page* page = pages.next(); |
- Object** current = reinterpret_cast<Object**>(page->area_start()); |
- |
- Address end = page->area_end(); |
- |
- Object*** store_buffer_position = store_buffer()->Start(); |
- Object*** store_buffer_top = store_buffer()->Top(); |
- |
- Object** limit = reinterpret_cast<Object**>(end); |
- CheckStoreBuffer(this, |
- current, |
- limit, |
- &store_buffer_position, |
- store_buffer_top, |
- &IsAMapPointerAddress, |
- space->top(), |
- space->limit()); |
- } |
-} |
- |
- |
-void Heap::LargeObjectSpaceCheckStoreBuffer() { |
- LargeObjectIterator it(lo_space()); |
- for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) { |
- // We only have code, sequential strings, or fixed arrays in large |
- // object space, and only fixed arrays can possibly contain pointers to |
- // the young generation. |
- if (object->IsFixedArray()) { |
- Object*** store_buffer_position = store_buffer()->Start(); |
- Object*** store_buffer_top = store_buffer()->Top(); |
- Object** current = reinterpret_cast<Object**>(object->address()); |
- Object** limit = |
- reinterpret_cast<Object**>(object->address() + object->Size()); |
- CheckStoreBuffer(this, |
- current, |
- limit, |
- &store_buffer_position, |
- store_buffer_top, |
- &EverythingsAPointer, |
- NULL, |
- NULL); |
- } |
- } |
-} |
-#endif |
- |
- |
-void Heap::IterateRoots(ObjectVisitor* v, VisitMode mode) { |
- IterateStrongRoots(v, mode); |
- IterateWeakRoots(v, mode); |
-} |
- |
- |
-void Heap::IterateWeakRoots(ObjectVisitor* v, VisitMode mode) { |
- v->VisitPointer(reinterpret_cast<Object**>(&roots_[kStringTableRootIndex])); |
- v->Synchronize(VisitorSynchronization::kStringTable); |
- if (mode != VISIT_ALL_IN_SCAVENGE && |
- mode != VISIT_ALL_IN_SWEEP_NEWSPACE) { |
- // Scavenge collections have special processing for this. |
- external_string_table_.Iterate(v); |
- } |
- v->Synchronize(VisitorSynchronization::kExternalStringsTable); |
-} |
- |
- |
-void Heap::IterateSmiRoots(ObjectVisitor* v) { |
- // Acquire execution access since we are going to read stack limit values. |
- ExecutionAccess access(isolate()); |
- v->VisitPointers(&roots_[kSmiRootsStart], &roots_[kRootListLength]); |
- v->Synchronize(VisitorSynchronization::kSmiRootList); |
-} |
- |
- |
-void Heap::IterateStrongRoots(ObjectVisitor* v, VisitMode mode) { |
- v->VisitPointers(&roots_[0], &roots_[kStrongRootListLength]); |
- v->Synchronize(VisitorSynchronization::kStrongRootList); |
- |
- v->VisitPointer(BitCast<Object**>(&hidden_string_)); |
- v->Synchronize(VisitorSynchronization::kInternalizedString); |
- |
- isolate_->bootstrapper()->Iterate(v); |
- v->Synchronize(VisitorSynchronization::kBootstrapper); |
- isolate_->Iterate(v); |
- v->Synchronize(VisitorSynchronization::kTop); |
- Relocatable::Iterate(isolate_, v); |
- v->Synchronize(VisitorSynchronization::kRelocatable); |
- |
- if (isolate_->deoptimizer_data() != NULL) { |
- isolate_->deoptimizer_data()->Iterate(v); |
- } |
- v->Synchronize(VisitorSynchronization::kDebug); |
- isolate_->compilation_cache()->Iterate(v); |
- v->Synchronize(VisitorSynchronization::kCompilationCache); |
- |
- // Iterate over local handles in handle scopes. |
- isolate_->handle_scope_implementer()->Iterate(v); |
- isolate_->IterateDeferredHandles(v); |
- v->Synchronize(VisitorSynchronization::kHandleScope); |
- |
- // Iterate over the builtin code objects and code stubs in the |
- // heap. Note that it is not necessary to iterate over code objects |
- // on scavenge collections. |
- if (mode != VISIT_ALL_IN_SCAVENGE) { |
- isolate_->builtins()->IterateBuiltins(v); |
- } |
- v->Synchronize(VisitorSynchronization::kBuiltins); |
- |
- // Iterate over global handles. |
- switch (mode) { |
- case VISIT_ONLY_STRONG: |
- isolate_->global_handles()->IterateStrongRoots(v); |
- break; |
- case VISIT_ALL_IN_SCAVENGE: |
- isolate_->global_handles()->IterateNewSpaceStrongAndDependentRoots(v); |
- break; |
- case VISIT_ALL_IN_SWEEP_NEWSPACE: |
- case VISIT_ALL: |
- isolate_->global_handles()->IterateAllRoots(v); |
- break; |
- } |
- v->Synchronize(VisitorSynchronization::kGlobalHandles); |
- |
- // Iterate over eternal handles. |
- if (mode == VISIT_ALL_IN_SCAVENGE) { |
- isolate_->eternal_handles()->IterateNewSpaceRoots(v); |
- } else { |
- isolate_->eternal_handles()->IterateAllRoots(v); |
- } |
- v->Synchronize(VisitorSynchronization::kEternalHandles); |
- |
- // Iterate over pointers being held by inactive threads. |
- isolate_->thread_manager()->Iterate(v); |
- v->Synchronize(VisitorSynchronization::kThreadManager); |
- |
- // Iterate over the pointers the Serialization/Deserialization code is |
- // holding. |
- // During garbage collection this keeps the partial snapshot cache alive. |
- // During deserialization of the startup snapshot this creates the partial |
- // snapshot cache and deserializes the objects it refers to. During |
- // serialization this does nothing, since the partial snapshot cache is |
- // empty. However the next thing we do is create the partial snapshot, |
- // filling up the partial snapshot cache with objects it needs as we go. |
- SerializerDeserializer::Iterate(isolate_, v); |
- // We don't do a v->Synchronize call here, because in debug mode that will |
- // output a flag to the snapshot. However at this point the serializer and |
- // deserializer are deliberately a little unsynchronized (see above) so the |
- // checking of the sync flag in the snapshot would fail. |
-} |
- |
- |
-// TODO(1236194): Since the heap size is configurable on the command line |
-// and through the API, we should gracefully handle the case that the heap |
-// size is not big enough to fit all the initial objects. |
-bool Heap::ConfigureHeap(int max_semi_space_size, |
- int max_old_space_size, |
- int max_executable_size, |
- size_t code_range_size) { |
- if (HasBeenSetUp()) return false; |
- |
- // Overwrite default configuration. |
- if (max_semi_space_size > 0) { |
- max_semi_space_size_ = max_semi_space_size * MB; |
- } |
- if (max_old_space_size > 0) { |
- max_old_generation_size_ = max_old_space_size * MB; |
- } |
- if (max_executable_size > 0) { |
- max_executable_size_ = max_executable_size * MB; |
- } |
- |
- // If max space size flags are specified overwrite the configuration. |
- if (FLAG_max_semi_space_size > 0) { |
- max_semi_space_size_ = FLAG_max_semi_space_size * MB; |
- } |
- if (FLAG_max_old_space_size > 0) { |
- max_old_generation_size_ = FLAG_max_old_space_size * MB; |
- } |
- if (FLAG_max_executable_size > 0) { |
- max_executable_size_ = FLAG_max_executable_size * MB; |
- } |
- |
- if (FLAG_stress_compaction) { |
- // This will cause more frequent GCs when stressing. |
- max_semi_space_size_ = Page::kPageSize; |
- } |
- |
- if (Snapshot::HaveASnapshotToStartFrom()) { |
- // If we are using a snapshot we always reserve the default amount |
- // of memory for each semispace because code in the snapshot has |
- // write-barrier code that relies on the size and alignment of new |
- // space. We therefore cannot use a larger max semispace size |
- // than the default reserved semispace size. |
- if (max_semi_space_size_ > reserved_semispace_size_) { |
- max_semi_space_size_ = reserved_semispace_size_; |
- if (FLAG_trace_gc) { |
- PrintPID("Max semi-space size cannot be more than %d kbytes\n", |
- reserved_semispace_size_ >> 10); |
- } |
- } |
- } else { |
- // If we are not using snapshots we reserve space for the actual |
- // max semispace size. |
- reserved_semispace_size_ = max_semi_space_size_; |
- } |
- |
- // The max executable size must be less than or equal to the max old |
- // generation size. |
- if (max_executable_size_ > max_old_generation_size_) { |
- max_executable_size_ = max_old_generation_size_; |
- } |
- |
- // The new space size must be a power of two to support single-bit testing |
- // for containment. |
- max_semi_space_size_ = RoundUpToPowerOf2(max_semi_space_size_); |
- reserved_semispace_size_ = RoundUpToPowerOf2(reserved_semispace_size_); |
- |
- if (FLAG_min_semi_space_size > 0) { |
- int initial_semispace_size = FLAG_min_semi_space_size * MB; |
- if (initial_semispace_size > max_semi_space_size_) { |
- initial_semispace_size_ = max_semi_space_size_; |
- if (FLAG_trace_gc) { |
- PrintPID("Min semi-space size cannot be more than the maximum" |
- "semi-space size of %d MB\n", max_semi_space_size_); |
- } |
- } else { |
- initial_semispace_size_ = initial_semispace_size; |
- } |
- } |
- |
- initial_semispace_size_ = Min(initial_semispace_size_, max_semi_space_size_); |
- |
- // The old generation is paged and needs at least one page for each space. |
- int paged_space_count = LAST_PAGED_SPACE - FIRST_PAGED_SPACE + 1; |
- max_old_generation_size_ = |
- Max(static_cast<intptr_t>(paged_space_count * Page::kPageSize), |
- max_old_generation_size_); |
- |
- // We rely on being able to allocate new arrays in paged spaces. |
- DCHECK(Page::kMaxRegularHeapObjectSize >= |
- (JSArray::kSize + |
- FixedArray::SizeFor(JSObject::kInitialMaxFastElementArray) + |
- AllocationMemento::kSize)); |
- |
- code_range_size_ = code_range_size * MB; |
- |
- configured_ = true; |
- return true; |
-} |
- |
- |
-bool Heap::ConfigureHeapDefault() { |
- return ConfigureHeap(0, 0, 0, 0); |
-} |
- |
- |
-void Heap::RecordStats(HeapStats* stats, bool take_snapshot) { |
- *stats->start_marker = HeapStats::kStartMarker; |
- *stats->end_marker = HeapStats::kEndMarker; |
- *stats->new_space_size = new_space_.SizeAsInt(); |
- *stats->new_space_capacity = static_cast<int>(new_space_.Capacity()); |
- *stats->old_pointer_space_size = old_pointer_space_->SizeOfObjects(); |
- *stats->old_pointer_space_capacity = old_pointer_space_->Capacity(); |
- *stats->old_data_space_size = old_data_space_->SizeOfObjects(); |
- *stats->old_data_space_capacity = old_data_space_->Capacity(); |
- *stats->code_space_size = code_space_->SizeOfObjects(); |
- *stats->code_space_capacity = code_space_->Capacity(); |
- *stats->map_space_size = map_space_->SizeOfObjects(); |
- *stats->map_space_capacity = map_space_->Capacity(); |
- *stats->cell_space_size = cell_space_->SizeOfObjects(); |
- *stats->cell_space_capacity = cell_space_->Capacity(); |
- *stats->property_cell_space_size = property_cell_space_->SizeOfObjects(); |
- *stats->property_cell_space_capacity = property_cell_space_->Capacity(); |
- *stats->lo_space_size = lo_space_->Size(); |
- isolate_->global_handles()->RecordStats(stats); |
- *stats->memory_allocator_size = isolate()->memory_allocator()->Size(); |
- *stats->memory_allocator_capacity = |
- isolate()->memory_allocator()->Size() + |
- isolate()->memory_allocator()->Available(); |
- *stats->os_error = base::OS::GetLastError(); |
- isolate()->memory_allocator()->Available(); |
- if (take_snapshot) { |
- HeapIterator iterator(this); |
- for (HeapObject* obj = iterator.next(); |
- obj != NULL; |
- obj = iterator.next()) { |
- InstanceType type = obj->map()->instance_type(); |
- DCHECK(0 <= type && type <= LAST_TYPE); |
- stats->objects_per_type[type]++; |
- stats->size_per_type[type] += obj->Size(); |
- } |
- } |
-} |
- |
- |
-intptr_t Heap::PromotedSpaceSizeOfObjects() { |
- return old_pointer_space_->SizeOfObjects() |
- + old_data_space_->SizeOfObjects() |
- + code_space_->SizeOfObjects() |
- + map_space_->SizeOfObjects() |
- + cell_space_->SizeOfObjects() |
- + property_cell_space_->SizeOfObjects() |
- + lo_space_->SizeOfObjects(); |
-} |
- |
- |
-int64_t Heap::PromotedExternalMemorySize() { |
- if (amount_of_external_allocated_memory_ |
- <= amount_of_external_allocated_memory_at_last_global_gc_) return 0; |
- return amount_of_external_allocated_memory_ |
- - amount_of_external_allocated_memory_at_last_global_gc_; |
-} |
- |
- |
-intptr_t Heap::OldGenerationAllocationLimit(intptr_t old_gen_size, |
- int freed_global_handles) { |
- const int kMaxHandles = 1000; |
- const int kMinHandles = 100; |
- double min_factor = 1.1; |
- double max_factor = 4; |
- // We set the old generation growing factor to 2 to grow the heap slower on |
- // memory-constrained devices. |
- if (max_old_generation_size_ <= kMaxOldSpaceSizeMediumMemoryDevice) { |
- max_factor = 2; |
- } |
- // If there are many freed global handles, then the next full GC will |
- // likely collect a lot of garbage. Choose the heap growing factor |
- // depending on freed global handles. |
- // TODO(ulan, hpayer): Take into account mutator utilization. |
- double factor; |
- if (freed_global_handles <= kMinHandles) { |
- factor = max_factor; |
- } else if (freed_global_handles >= kMaxHandles) { |
- factor = min_factor; |
- } else { |
- // Compute factor using linear interpolation between points |
- // (kMinHandles, max_factor) and (kMaxHandles, min_factor). |
- factor = max_factor - |
- (freed_global_handles - kMinHandles) * (max_factor - min_factor) / |
- (kMaxHandles - kMinHandles); |
- } |
- |
- if (FLAG_stress_compaction || |
- mark_compact_collector()->reduce_memory_footprint_) { |
- factor = min_factor; |
- } |
- |
- intptr_t limit = static_cast<intptr_t>(old_gen_size * factor); |
- limit = Max(limit, kMinimumOldGenerationAllocationLimit); |
- limit += new_space_.Capacity(); |
- intptr_t halfway_to_the_max = (old_gen_size + max_old_generation_size_) / 2; |
- return Min(limit, halfway_to_the_max); |
-} |
- |
- |
-void Heap::EnableInlineAllocation() { |
- if (!inline_allocation_disabled_) return; |
- inline_allocation_disabled_ = false; |
- |
- // Update inline allocation limit for new space. |
- new_space()->UpdateInlineAllocationLimit(0); |
-} |
- |
- |
-void Heap::DisableInlineAllocation() { |
- if (inline_allocation_disabled_) return; |
- inline_allocation_disabled_ = true; |
- |
- // Update inline allocation limit for new space. |
- new_space()->UpdateInlineAllocationLimit(0); |
- |
- // Update inline allocation limit for old spaces. |
- PagedSpaces spaces(this); |
- for (PagedSpace* space = spaces.next(); |
- space != NULL; |
- space = spaces.next()) { |
- space->EmptyAllocationInfo(); |
- } |
-} |
- |
- |
-V8_DECLARE_ONCE(initialize_gc_once); |
- |
-static void InitializeGCOnce() { |
- InitializeScavengingVisitorsTables(); |
- NewSpaceScavenger::Initialize(); |
- MarkCompactCollector::Initialize(); |
-} |
- |
- |
-bool Heap::SetUp() { |
-#ifdef DEBUG |
- allocation_timeout_ = FLAG_gc_interval; |
-#endif |
- |
- // Initialize heap spaces and initial maps and objects. Whenever something |
- // goes wrong, just return false. The caller should check the results and |
- // call Heap::TearDown() to release allocated memory. |
- // |
- // If the heap is not yet configured (e.g. through the API), configure it. |
- // Configuration is based on the flags new-space-size (really the semispace |
- // size) and old-space-size if set or the initial values of semispace_size_ |
- // and old_generation_size_ otherwise. |
- if (!configured_) { |
- if (!ConfigureHeapDefault()) return false; |
- } |
- |
- base::CallOnce(&initialize_gc_once, &InitializeGCOnce); |
- |
- MarkMapPointersAsEncoded(false); |
- |
- // Set up memory allocator. |
- if (!isolate_->memory_allocator()->SetUp(MaxReserved(), MaxExecutableSize())) |
- return false; |
- |
- // Set up new space. |
- if (!new_space_.SetUp(reserved_semispace_size_, max_semi_space_size_)) { |
- return false; |
- } |
- new_space_top_after_last_gc_ = new_space()->top(); |
- |
- // Initialize old pointer space. |
- old_pointer_space_ = |
- new OldSpace(this, |
- max_old_generation_size_, |
- OLD_POINTER_SPACE, |
- NOT_EXECUTABLE); |
- if (old_pointer_space_ == NULL) return false; |
- if (!old_pointer_space_->SetUp()) return false; |
- |
- // Initialize old data space. |
- old_data_space_ = |
- new OldSpace(this, |
- max_old_generation_size_, |
- OLD_DATA_SPACE, |
- NOT_EXECUTABLE); |
- if (old_data_space_ == NULL) return false; |
- if (!old_data_space_->SetUp()) return false; |
- |
- if (!isolate_->code_range()->SetUp(code_range_size_)) return false; |
- |
- // Initialize the code space, set its maximum capacity to the old |
- // generation size. It needs executable memory. |
- code_space_ = |
- new OldSpace(this, max_old_generation_size_, CODE_SPACE, EXECUTABLE); |
- if (code_space_ == NULL) return false; |
- if (!code_space_->SetUp()) return false; |
- |
- // Initialize map space. |
- map_space_ = new MapSpace(this, max_old_generation_size_, MAP_SPACE); |
- if (map_space_ == NULL) return false; |
- if (!map_space_->SetUp()) return false; |
- |
- // Initialize simple cell space. |
- cell_space_ = new CellSpace(this, max_old_generation_size_, CELL_SPACE); |
- if (cell_space_ == NULL) return false; |
- if (!cell_space_->SetUp()) return false; |
- |
- // Initialize global property cell space. |
- property_cell_space_ = new PropertyCellSpace(this, max_old_generation_size_, |
- PROPERTY_CELL_SPACE); |
- if (property_cell_space_ == NULL) return false; |
- if (!property_cell_space_->SetUp()) return false; |
- |
- // The large object code space may contain code or data. We set the memory |
- // to be non-executable here for safety, but this means we need to enable it |
- // explicitly when allocating large code objects. |
- lo_space_ = new LargeObjectSpace(this, max_old_generation_size_, LO_SPACE); |
- if (lo_space_ == NULL) return false; |
- if (!lo_space_->SetUp()) return false; |
- |
- // Set up the seed that is used to randomize the string hash function. |
- DCHECK(hash_seed() == 0); |
- if (FLAG_randomize_hashes) { |
- if (FLAG_hash_seed == 0) { |
- int rnd = isolate()->random_number_generator()->NextInt(); |
- set_hash_seed(Smi::FromInt(rnd & Name::kHashBitMask)); |
- } else { |
- set_hash_seed(Smi::FromInt(FLAG_hash_seed)); |
- } |
- } |
- |
- LOG(isolate_, IntPtrTEvent("heap-capacity", Capacity())); |
- LOG(isolate_, IntPtrTEvent("heap-available", Available())); |
- |
- store_buffer()->SetUp(); |
- |
- mark_compact_collector()->SetUp(); |
- |
- return true; |
-} |
- |
- |
-bool Heap::CreateHeapObjects() { |
- // Create initial maps. |
- if (!CreateInitialMaps()) return false; |
- CreateApiObjects(); |
- |
- // Create initial objects |
- CreateInitialObjects(); |
- CHECK_EQ(0, gc_count_); |
- |
- set_native_contexts_list(undefined_value()); |
- set_array_buffers_list(undefined_value()); |
- set_allocation_sites_list(undefined_value()); |
- weak_object_to_code_table_ = undefined_value(); |
- return true; |
-} |
- |
- |
-void Heap::SetStackLimits() { |
- DCHECK(isolate_ != NULL); |
- DCHECK(isolate_ == isolate()); |
- // On 64 bit machines, pointers are generally out of range of Smis. We write |
- // something that looks like an out of range Smi to the GC. |
- |
- // Set up the special root array entries containing the stack limits. |
- // These are actually addresses, but the tag makes the GC ignore it. |
- roots_[kStackLimitRootIndex] = |
- reinterpret_cast<Object*>( |
- (isolate_->stack_guard()->jslimit() & ~kSmiTagMask) | kSmiTag); |
- roots_[kRealStackLimitRootIndex] = |
- reinterpret_cast<Object*>( |
- (isolate_->stack_guard()->real_jslimit() & ~kSmiTagMask) | kSmiTag); |
-} |
- |
- |
-void Heap::TearDown() { |
-#ifdef VERIFY_HEAP |
- if (FLAG_verify_heap) { |
- Verify(); |
- } |
-#endif |
- |
- UpdateMaximumCommitted(); |
- |
- if (FLAG_print_cumulative_gc_stat) { |
- PrintF("\n"); |
- PrintF("gc_count=%d ", gc_count_); |
- PrintF("mark_sweep_count=%d ", ms_count_); |
- PrintF("max_gc_pause=%.1f ", get_max_gc_pause()); |
- PrintF("total_gc_time=%.1f ", total_gc_time_ms_); |
- PrintF("min_in_mutator=%.1f ", get_min_in_mutator()); |
- PrintF("max_alive_after_gc=%" V8_PTR_PREFIX "d ", |
- get_max_alive_after_gc()); |
- PrintF("total_marking_time=%.1f ", tracer_.cumulative_sweeping_duration()); |
- PrintF("total_sweeping_time=%.1f ", tracer_.cumulative_sweeping_duration()); |
- PrintF("\n\n"); |
- } |
- |
- if (FLAG_print_max_heap_committed) { |
- PrintF("\n"); |
- PrintF("maximum_committed_by_heap=%" V8_PTR_PREFIX "d ", |
- MaximumCommittedMemory()); |
- PrintF("maximum_committed_by_new_space=%" V8_PTR_PREFIX "d ", |
- new_space_.MaximumCommittedMemory()); |
- PrintF("maximum_committed_by_old_pointer_space=%" V8_PTR_PREFIX "d ", |
- old_data_space_->MaximumCommittedMemory()); |
- PrintF("maximum_committed_by_old_data_space=%" V8_PTR_PREFIX "d ", |
- old_pointer_space_->MaximumCommittedMemory()); |
- PrintF("maximum_committed_by_old_data_space=%" V8_PTR_PREFIX "d ", |
- old_pointer_space_->MaximumCommittedMemory()); |
- PrintF("maximum_committed_by_code_space=%" V8_PTR_PREFIX "d ", |
- code_space_->MaximumCommittedMemory()); |
- PrintF("maximum_committed_by_map_space=%" V8_PTR_PREFIX "d ", |
- map_space_->MaximumCommittedMemory()); |
- PrintF("maximum_committed_by_cell_space=%" V8_PTR_PREFIX "d ", |
- cell_space_->MaximumCommittedMemory()); |
- PrintF("maximum_committed_by_property_space=%" V8_PTR_PREFIX "d ", |
- property_cell_space_->MaximumCommittedMemory()); |
- PrintF("maximum_committed_by_lo_space=%" V8_PTR_PREFIX "d ", |
- lo_space_->MaximumCommittedMemory()); |
- PrintF("\n\n"); |
- } |
- |
- if (FLAG_verify_predictable) { |
- PrintAlloctionsHash(); |
- } |
- |
- TearDownArrayBuffers(); |
- |
- isolate_->global_handles()->TearDown(); |
- |
- external_string_table_.TearDown(); |
- |
- mark_compact_collector()->TearDown(); |
- |
- new_space_.TearDown(); |
- |
- if (old_pointer_space_ != NULL) { |
- old_pointer_space_->TearDown(); |
- delete old_pointer_space_; |
- old_pointer_space_ = NULL; |
- } |
- |
- if (old_data_space_ != NULL) { |
- old_data_space_->TearDown(); |
- delete old_data_space_; |
- old_data_space_ = NULL; |
- } |
- |
- if (code_space_ != NULL) { |
- code_space_->TearDown(); |
- delete code_space_; |
- code_space_ = NULL; |
- } |
- |
- if (map_space_ != NULL) { |
- map_space_->TearDown(); |
- delete map_space_; |
- map_space_ = NULL; |
- } |
- |
- if (cell_space_ != NULL) { |
- cell_space_->TearDown(); |
- delete cell_space_; |
- cell_space_ = NULL; |
- } |
- |
- if (property_cell_space_ != NULL) { |
- property_cell_space_->TearDown(); |
- delete property_cell_space_; |
- property_cell_space_ = NULL; |
- } |
- |
- if (lo_space_ != NULL) { |
- lo_space_->TearDown(); |
- delete lo_space_; |
- lo_space_ = NULL; |
- } |
- |
- store_buffer()->TearDown(); |
- incremental_marking()->TearDown(); |
- |
- isolate_->memory_allocator()->TearDown(); |
-} |
- |
- |
-void Heap::AddGCPrologueCallback(v8::Isolate::GCPrologueCallback callback, |
- GCType gc_type, |
- bool pass_isolate) { |
- DCHECK(callback != NULL); |
- GCPrologueCallbackPair pair(callback, gc_type, pass_isolate); |
- DCHECK(!gc_prologue_callbacks_.Contains(pair)); |
- return gc_prologue_callbacks_.Add(pair); |
-} |
- |
- |
-void Heap::RemoveGCPrologueCallback(v8::Isolate::GCPrologueCallback callback) { |
- DCHECK(callback != NULL); |
- for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) { |
- if (gc_prologue_callbacks_[i].callback == callback) { |
- gc_prologue_callbacks_.Remove(i); |
- return; |
- } |
- } |
- UNREACHABLE(); |
-} |
- |
- |
-void Heap::AddGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback, |
- GCType gc_type, |
- bool pass_isolate) { |
- DCHECK(callback != NULL); |
- GCEpilogueCallbackPair pair(callback, gc_type, pass_isolate); |
- DCHECK(!gc_epilogue_callbacks_.Contains(pair)); |
- return gc_epilogue_callbacks_.Add(pair); |
-} |
- |
- |
-void Heap::RemoveGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback) { |
- DCHECK(callback != NULL); |
- for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) { |
- if (gc_epilogue_callbacks_[i].callback == callback) { |
- gc_epilogue_callbacks_.Remove(i); |
- return; |
- } |
- } |
- UNREACHABLE(); |
-} |
- |
- |
-// TODO(ishell): Find a better place for this. |
-void Heap::AddWeakObjectToCodeDependency(Handle<Object> obj, |
- Handle<DependentCode> dep) { |
- DCHECK(!InNewSpace(*obj)); |
- DCHECK(!InNewSpace(*dep)); |
- // This handle scope keeps the table handle local to this function, which |
- // allows us to safely skip write barriers in table update operations. |
- HandleScope scope(isolate()); |
- Handle<WeakHashTable> table(WeakHashTable::cast(weak_object_to_code_table_), |
- isolate()); |
- table = WeakHashTable::Put(table, obj, dep); |
- |
- if (ShouldZapGarbage() && weak_object_to_code_table_ != *table) { |
- WeakHashTable::cast(weak_object_to_code_table_)->Zap(the_hole_value()); |
- } |
- set_weak_object_to_code_table(*table); |
- DCHECK_EQ(*dep, table->Lookup(obj)); |
-} |
- |
- |
-DependentCode* Heap::LookupWeakObjectToCodeDependency(Handle<Object> obj) { |
- Object* dep = WeakHashTable::cast(weak_object_to_code_table_)->Lookup(obj); |
- if (dep->IsDependentCode()) return DependentCode::cast(dep); |
- return DependentCode::cast(empty_fixed_array()); |
-} |
- |
- |
-void Heap::EnsureWeakObjectToCodeTable() { |
- if (!weak_object_to_code_table()->IsHashTable()) { |
- set_weak_object_to_code_table(*WeakHashTable::New( |
- isolate(), 16, USE_DEFAULT_MINIMUM_CAPACITY, TENURED)); |
- } |
-} |
- |
- |
-void Heap::FatalProcessOutOfMemory(const char* location, bool take_snapshot) { |
- v8::internal::V8::FatalProcessOutOfMemory(location, take_snapshot); |
-} |
- |
-#ifdef DEBUG |
- |
-class PrintHandleVisitor: public ObjectVisitor { |
- public: |
- void VisitPointers(Object** start, Object** end) { |
- for (Object** p = start; p < end; p++) |
- PrintF(" handle %p to %p\n", |
- reinterpret_cast<void*>(p), |
- reinterpret_cast<void*>(*p)); |
- } |
-}; |
- |
- |
-void Heap::PrintHandles() { |
- PrintF("Handles:\n"); |
- PrintHandleVisitor v; |
- isolate_->handle_scope_implementer()->Iterate(&v); |
-} |
- |
-#endif |
- |
- |
-Space* AllSpaces::next() { |
- switch (counter_++) { |
- case NEW_SPACE: |
- return heap_->new_space(); |
- case OLD_POINTER_SPACE: |
- return heap_->old_pointer_space(); |
- case OLD_DATA_SPACE: |
- return heap_->old_data_space(); |
- case CODE_SPACE: |
- return heap_->code_space(); |
- case MAP_SPACE: |
- return heap_->map_space(); |
- case CELL_SPACE: |
- return heap_->cell_space(); |
- case PROPERTY_CELL_SPACE: |
- return heap_->property_cell_space(); |
- case LO_SPACE: |
- return heap_->lo_space(); |
- default: |
- return NULL; |
- } |
-} |
- |
- |
-PagedSpace* PagedSpaces::next() { |
- switch (counter_++) { |
- case OLD_POINTER_SPACE: |
- return heap_->old_pointer_space(); |
- case OLD_DATA_SPACE: |
- return heap_->old_data_space(); |
- case CODE_SPACE: |
- return heap_->code_space(); |
- case MAP_SPACE: |
- return heap_->map_space(); |
- case CELL_SPACE: |
- return heap_->cell_space(); |
- case PROPERTY_CELL_SPACE: |
- return heap_->property_cell_space(); |
- default: |
- return NULL; |
- } |
-} |
- |
- |
- |
-OldSpace* OldSpaces::next() { |
- switch (counter_++) { |
- case OLD_POINTER_SPACE: |
- return heap_->old_pointer_space(); |
- case OLD_DATA_SPACE: |
- return heap_->old_data_space(); |
- case CODE_SPACE: |
- return heap_->code_space(); |
- default: |
- return NULL; |
- } |
-} |
- |
- |
-SpaceIterator::SpaceIterator(Heap* heap) |
- : heap_(heap), |
- current_space_(FIRST_SPACE), |
- iterator_(NULL), |
- size_func_(NULL) { |
-} |
- |
- |
-SpaceIterator::SpaceIterator(Heap* heap, HeapObjectCallback size_func) |
- : heap_(heap), |
- current_space_(FIRST_SPACE), |
- iterator_(NULL), |
- size_func_(size_func) { |
-} |
- |
- |
-SpaceIterator::~SpaceIterator() { |
- // Delete active iterator if any. |
- delete iterator_; |
-} |
- |
- |
-bool SpaceIterator::has_next() { |
- // Iterate until no more spaces. |
- return current_space_ != LAST_SPACE; |
-} |
- |
- |
-ObjectIterator* SpaceIterator::next() { |
- if (iterator_ != NULL) { |
- delete iterator_; |
- iterator_ = NULL; |
- // Move to the next space |
- current_space_++; |
- if (current_space_ > LAST_SPACE) { |
- return NULL; |
- } |
- } |
- |
- // Return iterator for the new current space. |
- return CreateIterator(); |
-} |
- |
- |
-// Create an iterator for the space to iterate. |
-ObjectIterator* SpaceIterator::CreateIterator() { |
- DCHECK(iterator_ == NULL); |
- |
- switch (current_space_) { |
- case NEW_SPACE: |
- iterator_ = new SemiSpaceIterator(heap_->new_space(), size_func_); |
- break; |
- case OLD_POINTER_SPACE: |
- iterator_ = |
- new HeapObjectIterator(heap_->old_pointer_space(), size_func_); |
- break; |
- case OLD_DATA_SPACE: |
- iterator_ = new HeapObjectIterator(heap_->old_data_space(), size_func_); |
- break; |
- case CODE_SPACE: |
- iterator_ = new HeapObjectIterator(heap_->code_space(), size_func_); |
- break; |
- case MAP_SPACE: |
- iterator_ = new HeapObjectIterator(heap_->map_space(), size_func_); |
- break; |
- case CELL_SPACE: |
- iterator_ = new HeapObjectIterator(heap_->cell_space(), size_func_); |
- break; |
- case PROPERTY_CELL_SPACE: |
- iterator_ = new HeapObjectIterator(heap_->property_cell_space(), |
- size_func_); |
- break; |
- case LO_SPACE: |
- iterator_ = new LargeObjectIterator(heap_->lo_space(), size_func_); |
- break; |
- } |
- |
- // Return the newly allocated iterator; |
- DCHECK(iterator_ != NULL); |
- return iterator_; |
-} |
- |
- |
-class HeapObjectsFilter { |
- public: |
- virtual ~HeapObjectsFilter() {} |
- virtual bool SkipObject(HeapObject* object) = 0; |
-}; |
- |
- |
-class UnreachableObjectsFilter : public HeapObjectsFilter { |
- public: |
- explicit UnreachableObjectsFilter(Heap* heap) : heap_(heap) { |
- MarkReachableObjects(); |
- } |
- |
- ~UnreachableObjectsFilter() { |
- heap_->mark_compact_collector()->ClearMarkbits(); |
- } |
- |
- bool SkipObject(HeapObject* object) { |
- MarkBit mark_bit = Marking::MarkBitFrom(object); |
- return !mark_bit.Get(); |
- } |
- |
- private: |
- class MarkingVisitor : public ObjectVisitor { |
- public: |
- MarkingVisitor() : marking_stack_(10) {} |
- |
- void VisitPointers(Object** start, Object** end) { |
- for (Object** p = start; p < end; p++) { |
- if (!(*p)->IsHeapObject()) continue; |
- HeapObject* obj = HeapObject::cast(*p); |
- MarkBit mark_bit = Marking::MarkBitFrom(obj); |
- if (!mark_bit.Get()) { |
- mark_bit.Set(); |
- marking_stack_.Add(obj); |
- } |
- } |
- } |
- |
- void TransitiveClosure() { |
- while (!marking_stack_.is_empty()) { |
- HeapObject* obj = marking_stack_.RemoveLast(); |
- obj->Iterate(this); |
- } |
- } |
- |
- private: |
- List<HeapObject*> marking_stack_; |
- }; |
- |
- void MarkReachableObjects() { |
- MarkingVisitor visitor; |
- heap_->IterateRoots(&visitor, VISIT_ALL); |
- visitor.TransitiveClosure(); |
- } |
- |
- Heap* heap_; |
- DisallowHeapAllocation no_allocation_; |
-}; |
- |
- |
-HeapIterator::HeapIterator(Heap* heap) |
- : make_heap_iterable_helper_(heap), |
- no_heap_allocation_(), |
- heap_(heap), |
- filtering_(HeapIterator::kNoFiltering), |
- filter_(NULL) { |
- Init(); |
-} |
- |
- |
-HeapIterator::HeapIterator(Heap* heap, |
- HeapIterator::HeapObjectsFiltering filtering) |
- : make_heap_iterable_helper_(heap), |
- no_heap_allocation_(), |
- heap_(heap), |
- filtering_(filtering), |
- filter_(NULL) { |
- Init(); |
-} |
- |
- |
-HeapIterator::~HeapIterator() { |
- Shutdown(); |
-} |
- |
- |
-void HeapIterator::Init() { |
- // Start the iteration. |
- space_iterator_ = new SpaceIterator(heap_); |
- switch (filtering_) { |
- case kFilterUnreachable: |
- filter_ = new UnreachableObjectsFilter(heap_); |
- break; |
- default: |
- break; |
- } |
- object_iterator_ = space_iterator_->next(); |
-} |
- |
- |
-void HeapIterator::Shutdown() { |
-#ifdef DEBUG |
- // Assert that in filtering mode we have iterated through all |
- // objects. Otherwise, heap will be left in an inconsistent state. |
- if (filtering_ != kNoFiltering) { |
- DCHECK(object_iterator_ == NULL); |
- } |
-#endif |
- // Make sure the last iterator is deallocated. |
- delete space_iterator_; |
- space_iterator_ = NULL; |
- object_iterator_ = NULL; |
- delete filter_; |
- filter_ = NULL; |
-} |
- |
- |
-HeapObject* HeapIterator::next() { |
- if (filter_ == NULL) return NextObject(); |
- |
- HeapObject* obj = NextObject(); |
- while (obj != NULL && filter_->SkipObject(obj)) obj = NextObject(); |
- return obj; |
-} |
- |
- |
-HeapObject* HeapIterator::NextObject() { |
- // No iterator means we are done. |
- if (object_iterator_ == NULL) return NULL; |
- |
- if (HeapObject* obj = object_iterator_->next_object()) { |
- // If the current iterator has more objects we are fine. |
- return obj; |
- } else { |
- // Go though the spaces looking for one that has objects. |
- while (space_iterator_->has_next()) { |
- object_iterator_ = space_iterator_->next(); |
- if (HeapObject* obj = object_iterator_->next_object()) { |
- return obj; |
- } |
- } |
- } |
- // Done with the last space. |
- object_iterator_ = NULL; |
- return NULL; |
-} |
- |
- |
-void HeapIterator::reset() { |
- // Restart the iterator. |
- Shutdown(); |
- Init(); |
-} |
- |
- |
-#ifdef DEBUG |
- |
-Object* const PathTracer::kAnyGlobalObject = NULL; |
- |
-class PathTracer::MarkVisitor: public ObjectVisitor { |
- public: |
- explicit MarkVisitor(PathTracer* tracer) : tracer_(tracer) {} |
- void VisitPointers(Object** start, Object** end) { |
- // Scan all HeapObject pointers in [start, end) |
- for (Object** p = start; !tracer_->found() && (p < end); p++) { |
- if ((*p)->IsHeapObject()) |
- tracer_->MarkRecursively(p, this); |
- } |
- } |
- |
- private: |
- PathTracer* tracer_; |
-}; |
- |
- |
-class PathTracer::UnmarkVisitor: public ObjectVisitor { |
- public: |
- explicit UnmarkVisitor(PathTracer* tracer) : tracer_(tracer) {} |
- void VisitPointers(Object** start, Object** end) { |
- // Scan all HeapObject pointers in [start, end) |
- for (Object** p = start; p < end; p++) { |
- if ((*p)->IsHeapObject()) |
- tracer_->UnmarkRecursively(p, this); |
- } |
- } |
- |
- private: |
- PathTracer* tracer_; |
-}; |
- |
- |
-void PathTracer::VisitPointers(Object** start, Object** end) { |
- bool done = ((what_to_find_ == FIND_FIRST) && found_target_); |
- // Visit all HeapObject pointers in [start, end) |
- for (Object** p = start; !done && (p < end); p++) { |
- if ((*p)->IsHeapObject()) { |
- TracePathFrom(p); |
- done = ((what_to_find_ == FIND_FIRST) && found_target_); |
- } |
- } |
-} |
- |
- |
-void PathTracer::Reset() { |
- found_target_ = false; |
- object_stack_.Clear(); |
-} |
- |
- |
-void PathTracer::TracePathFrom(Object** root) { |
- DCHECK((search_target_ == kAnyGlobalObject) || |
- search_target_->IsHeapObject()); |
- found_target_in_trace_ = false; |
- Reset(); |
- |
- MarkVisitor mark_visitor(this); |
- MarkRecursively(root, &mark_visitor); |
- |
- UnmarkVisitor unmark_visitor(this); |
- UnmarkRecursively(root, &unmark_visitor); |
- |
- ProcessResults(); |
-} |
- |
- |
-static bool SafeIsNativeContext(HeapObject* obj) { |
- return obj->map() == obj->GetHeap()->raw_unchecked_native_context_map(); |
-} |
- |
- |
-void PathTracer::MarkRecursively(Object** p, MarkVisitor* mark_visitor) { |
- if (!(*p)->IsHeapObject()) return; |
- |
- HeapObject* obj = HeapObject::cast(*p); |
- |
- MapWord map_word = obj->map_word(); |
- if (!map_word.ToMap()->IsHeapObject()) return; // visited before |
- |
- if (found_target_in_trace_) return; // stop if target found |
- object_stack_.Add(obj); |
- if (((search_target_ == kAnyGlobalObject) && obj->IsJSGlobalObject()) || |
- (obj == search_target_)) { |
- found_target_in_trace_ = true; |
- found_target_ = true; |
- return; |
- } |
- |
- bool is_native_context = SafeIsNativeContext(obj); |
- |
- // not visited yet |
- Map* map = Map::cast(map_word.ToMap()); |
- |
- MapWord marked_map_word = |
- MapWord::FromRawValue(obj->map_word().ToRawValue() + kMarkTag); |
- obj->set_map_word(marked_map_word); |
- |
- // Scan the object body. |
- if (is_native_context && (visit_mode_ == VISIT_ONLY_STRONG)) { |
- // This is specialized to scan Context's properly. |
- Object** start = reinterpret_cast<Object**>(obj->address() + |
- Context::kHeaderSize); |
- Object** end = reinterpret_cast<Object**>(obj->address() + |
- Context::kHeaderSize + Context::FIRST_WEAK_SLOT * kPointerSize); |
- mark_visitor->VisitPointers(start, end); |
- } else { |
- obj->IterateBody(map->instance_type(), obj->SizeFromMap(map), mark_visitor); |
- } |
- |
- // Scan the map after the body because the body is a lot more interesting |
- // when doing leak detection. |
- MarkRecursively(reinterpret_cast<Object**>(&map), mark_visitor); |
- |
- if (!found_target_in_trace_) { // don't pop if found the target |
- object_stack_.RemoveLast(); |
- } |
-} |
- |
- |
-void PathTracer::UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor) { |
- if (!(*p)->IsHeapObject()) return; |
- |
- HeapObject* obj = HeapObject::cast(*p); |
- |
- MapWord map_word = obj->map_word(); |
- if (map_word.ToMap()->IsHeapObject()) return; // unmarked already |
- |
- MapWord unmarked_map_word = |
- MapWord::FromRawValue(map_word.ToRawValue() - kMarkTag); |
- obj->set_map_word(unmarked_map_word); |
- |
- Map* map = Map::cast(unmarked_map_word.ToMap()); |
- |
- UnmarkRecursively(reinterpret_cast<Object**>(&map), unmark_visitor); |
- |
- obj->IterateBody(map->instance_type(), obj->SizeFromMap(map), unmark_visitor); |
-} |
- |
- |
-void PathTracer::ProcessResults() { |
- if (found_target_) { |
- OFStream os(stdout); |
- os << "=====================================\n" |
- << "==== Path to object ====\n" |
- << "=====================================\n\n"; |
- |
- DCHECK(!object_stack_.is_empty()); |
- for (int i = 0; i < object_stack_.length(); i++) { |
- if (i > 0) os << "\n |\n |\n V\n\n"; |
- object_stack_[i]->Print(os); |
- } |
- os << "=====================================\n"; |
- } |
-} |
- |
- |
-// Triggers a depth-first traversal of reachable objects from one |
-// given root object and finds a path to a specific heap object and |
-// prints it. |
-void Heap::TracePathToObjectFrom(Object* target, Object* root) { |
- PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL); |
- tracer.VisitPointer(&root); |
-} |
- |
- |
-// Triggers a depth-first traversal of reachable objects from roots |
-// and finds a path to a specific heap object and prints it. |
-void Heap::TracePathToObject(Object* target) { |
- PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL); |
- IterateRoots(&tracer, VISIT_ONLY_STRONG); |
-} |
- |
- |
-// Triggers a depth-first traversal of reachable objects from roots |
-// and finds a path to any global object and prints it. Useful for |
-// determining the source for leaks of global objects. |
-void Heap::TracePathToGlobal() { |
- PathTracer tracer(PathTracer::kAnyGlobalObject, |
- PathTracer::FIND_ALL, |
- VISIT_ALL); |
- IterateRoots(&tracer, VISIT_ONLY_STRONG); |
-} |
-#endif |
- |
- |
-void Heap::UpdateCumulativeGCStatistics(double duration, |
- double spent_in_mutator, |
- double marking_time) { |
- if (FLAG_print_cumulative_gc_stat) { |
- total_gc_time_ms_ += duration; |
- max_gc_pause_ = Max(max_gc_pause_, duration); |
- max_alive_after_gc_ = Max(max_alive_after_gc_, SizeOfObjects()); |
- min_in_mutator_ = Min(min_in_mutator_, spent_in_mutator); |
- } else if (FLAG_trace_gc_verbose) { |
- total_gc_time_ms_ += duration; |
- } |
- |
- marking_time_ += marking_time; |
-} |
- |
- |
-int KeyedLookupCache::Hash(Handle<Map> map, Handle<Name> name) { |
- DisallowHeapAllocation no_gc; |
- // Uses only lower 32 bits if pointers are larger. |
- uintptr_t addr_hash = |
- static_cast<uint32_t>(reinterpret_cast<uintptr_t>(*map)) >> kMapHashShift; |
- return static_cast<uint32_t>((addr_hash ^ name->Hash()) & kCapacityMask); |
-} |
- |
- |
-int KeyedLookupCache::Lookup(Handle<Map> map, Handle<Name> name) { |
- DisallowHeapAllocation no_gc; |
- int index = (Hash(map, name) & kHashMask); |
- for (int i = 0; i < kEntriesPerBucket; i++) { |
- Key& key = keys_[index + i]; |
- if ((key.map == *map) && key.name->Equals(*name)) { |
- return field_offsets_[index + i]; |
- } |
- } |
- return kNotFound; |
-} |
- |
- |
-void KeyedLookupCache::Update(Handle<Map> map, |
- Handle<Name> name, |
- int field_offset) { |
- DisallowHeapAllocation no_gc; |
- if (!name->IsUniqueName()) { |
- if (!StringTable::InternalizeStringIfExists(name->GetIsolate(), |
- Handle<String>::cast(name)). |
- ToHandle(&name)) { |
- return; |
- } |
- } |
- // This cache is cleared only between mark compact passes, so we expect the |
- // cache to only contain old space names. |
- DCHECK(!map->GetIsolate()->heap()->InNewSpace(*name)); |
- |
- int index = (Hash(map, name) & kHashMask); |
- // After a GC there will be free slots, so we use them in order (this may |
- // help to get the most frequently used one in position 0). |
- for (int i = 0; i< kEntriesPerBucket; i++) { |
- Key& key = keys_[index]; |
- Object* free_entry_indicator = NULL; |
- if (key.map == free_entry_indicator) { |
- key.map = *map; |
- key.name = *name; |
- field_offsets_[index + i] = field_offset; |
- return; |
- } |
- } |
- // No free entry found in this bucket, so we move them all down one and |
- // put the new entry at position zero. |
- for (int i = kEntriesPerBucket - 1; i > 0; i--) { |
- Key& key = keys_[index + i]; |
- Key& key2 = keys_[index + i - 1]; |
- key = key2; |
- field_offsets_[index + i] = field_offsets_[index + i - 1]; |
- } |
- |
- // Write the new first entry. |
- Key& key = keys_[index]; |
- key.map = *map; |
- key.name = *name; |
- field_offsets_[index] = field_offset; |
-} |
- |
- |
-void KeyedLookupCache::Clear() { |
- for (int index = 0; index < kLength; index++) keys_[index].map = NULL; |
-} |
- |
- |
-void DescriptorLookupCache::Clear() { |
- for (int index = 0; index < kLength; index++) keys_[index].source = NULL; |
-} |
- |
- |
-void ExternalStringTable::CleanUp() { |
- int last = 0; |
- for (int i = 0; i < new_space_strings_.length(); ++i) { |
- if (new_space_strings_[i] == heap_->the_hole_value()) { |
- continue; |
- } |
- DCHECK(new_space_strings_[i]->IsExternalString()); |
- if (heap_->InNewSpace(new_space_strings_[i])) { |
- new_space_strings_[last++] = new_space_strings_[i]; |
- } else { |
- old_space_strings_.Add(new_space_strings_[i]); |
- } |
- } |
- new_space_strings_.Rewind(last); |
- new_space_strings_.Trim(); |
- |
- last = 0; |
- for (int i = 0; i < old_space_strings_.length(); ++i) { |
- if (old_space_strings_[i] == heap_->the_hole_value()) { |
- continue; |
- } |
- DCHECK(old_space_strings_[i]->IsExternalString()); |
- DCHECK(!heap_->InNewSpace(old_space_strings_[i])); |
- old_space_strings_[last++] = old_space_strings_[i]; |
- } |
- old_space_strings_.Rewind(last); |
- old_space_strings_.Trim(); |
-#ifdef VERIFY_HEAP |
- if (FLAG_verify_heap) { |
- Verify(); |
- } |
-#endif |
-} |
- |
- |
-void ExternalStringTable::TearDown() { |
- for (int i = 0; i < new_space_strings_.length(); ++i) { |
- heap_->FinalizeExternalString(ExternalString::cast(new_space_strings_[i])); |
- } |
- new_space_strings_.Free(); |
- for (int i = 0; i < old_space_strings_.length(); ++i) { |
- heap_->FinalizeExternalString(ExternalString::cast(old_space_strings_[i])); |
- } |
- old_space_strings_.Free(); |
-} |
- |
- |
-void Heap::QueueMemoryChunkForFree(MemoryChunk* chunk) { |
- chunk->set_next_chunk(chunks_queued_for_free_); |
- chunks_queued_for_free_ = chunk; |
-} |
- |
- |
-void Heap::FreeQueuedChunks() { |
- if (chunks_queued_for_free_ == NULL) return; |
- MemoryChunk* next; |
- MemoryChunk* chunk; |
- for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) { |
- next = chunk->next_chunk(); |
- chunk->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED); |
- |
- if (chunk->owner()->identity() == LO_SPACE) { |
- // StoreBuffer::Filter relies on MemoryChunk::FromAnyPointerAddress. |
- // If FromAnyPointerAddress encounters a slot that belongs to a large |
- // chunk queued for deletion it will fail to find the chunk because |
- // it try to perform a search in the list of pages owned by of the large |
- // object space and queued chunks were detached from that list. |
- // To work around this we split large chunk into normal kPageSize aligned |
- // pieces and initialize size, owner and flags field of every piece. |
- // If FromAnyPointerAddress encounters a slot that belongs to one of |
- // these smaller pieces it will treat it as a slot on a normal Page. |
- Address chunk_end = chunk->address() + chunk->size(); |
- MemoryChunk* inner = MemoryChunk::FromAddress( |
- chunk->address() + Page::kPageSize); |
- MemoryChunk* inner_last = MemoryChunk::FromAddress(chunk_end - 1); |
- while (inner <= inner_last) { |
- // Size of a large chunk is always a multiple of |
- // OS::AllocateAlignment() so there is always |
- // enough space for a fake MemoryChunk header. |
- Address area_end = Min(inner->address() + Page::kPageSize, chunk_end); |
- // Guard against overflow. |
- if (area_end < inner->address()) area_end = chunk_end; |
- inner->SetArea(inner->address(), area_end); |
- inner->set_size(Page::kPageSize); |
- inner->set_owner(lo_space()); |
- inner->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED); |
- inner = MemoryChunk::FromAddress( |
- inner->address() + Page::kPageSize); |
- } |
- } |
- } |
- isolate_->heap()->store_buffer()->Compact(); |
- isolate_->heap()->store_buffer()->Filter(MemoryChunk::ABOUT_TO_BE_FREED); |
- for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) { |
- next = chunk->next_chunk(); |
- isolate_->memory_allocator()->Free(chunk); |
- } |
- chunks_queued_for_free_ = NULL; |
-} |
- |
- |
-void Heap::RememberUnmappedPage(Address page, bool compacted) { |
- uintptr_t p = reinterpret_cast<uintptr_t>(page); |
- // Tag the page pointer to make it findable in the dump file. |
- if (compacted) { |
- p ^= 0xc1ead & (Page::kPageSize - 1); // Cleared. |
- } else { |
- p ^= 0x1d1ed & (Page::kPageSize - 1); // I died. |
- } |
- remembered_unmapped_pages_[remembered_unmapped_pages_index_] = |
- reinterpret_cast<Address>(p); |
- remembered_unmapped_pages_index_++; |
- remembered_unmapped_pages_index_ %= kRememberedUnmappedPages; |
-} |
- |
- |
-void Heap::ClearObjectStats(bool clear_last_time_stats) { |
- memset(object_counts_, 0, sizeof(object_counts_)); |
- memset(object_sizes_, 0, sizeof(object_sizes_)); |
- if (clear_last_time_stats) { |
- memset(object_counts_last_time_, 0, sizeof(object_counts_last_time_)); |
- memset(object_sizes_last_time_, 0, sizeof(object_sizes_last_time_)); |
- } |
-} |
- |
- |
-static base::LazyMutex checkpoint_object_stats_mutex = LAZY_MUTEX_INITIALIZER; |
- |
- |
-void Heap::CheckpointObjectStats() { |
- base::LockGuard<base::Mutex> lock_guard( |
- checkpoint_object_stats_mutex.Pointer()); |
- Counters* counters = isolate()->counters(); |
-#define ADJUST_LAST_TIME_OBJECT_COUNT(name) \ |
- counters->count_of_##name()->Increment( \ |
- static_cast<int>(object_counts_[name])); \ |
- counters->count_of_##name()->Decrement( \ |
- static_cast<int>(object_counts_last_time_[name])); \ |
- counters->size_of_##name()->Increment( \ |
- static_cast<int>(object_sizes_[name])); \ |
- counters->size_of_##name()->Decrement( \ |
- static_cast<int>(object_sizes_last_time_[name])); |
- INSTANCE_TYPE_LIST(ADJUST_LAST_TIME_OBJECT_COUNT) |
-#undef ADJUST_LAST_TIME_OBJECT_COUNT |
- int index; |
-#define ADJUST_LAST_TIME_OBJECT_COUNT(name) \ |
- index = FIRST_CODE_KIND_SUB_TYPE + Code::name; \ |
- counters->count_of_CODE_TYPE_##name()->Increment( \ |
- static_cast<int>(object_counts_[index])); \ |
- counters->count_of_CODE_TYPE_##name()->Decrement( \ |
- static_cast<int>(object_counts_last_time_[index])); \ |
- counters->size_of_CODE_TYPE_##name()->Increment( \ |
- static_cast<int>(object_sizes_[index])); \ |
- counters->size_of_CODE_TYPE_##name()->Decrement( \ |
- static_cast<int>(object_sizes_last_time_[index])); |
- CODE_KIND_LIST(ADJUST_LAST_TIME_OBJECT_COUNT) |
-#undef ADJUST_LAST_TIME_OBJECT_COUNT |
-#define ADJUST_LAST_TIME_OBJECT_COUNT(name) \ |
- index = FIRST_FIXED_ARRAY_SUB_TYPE + name; \ |
- counters->count_of_FIXED_ARRAY_##name()->Increment( \ |
- static_cast<int>(object_counts_[index])); \ |
- counters->count_of_FIXED_ARRAY_##name()->Decrement( \ |
- static_cast<int>(object_counts_last_time_[index])); \ |
- counters->size_of_FIXED_ARRAY_##name()->Increment( \ |
- static_cast<int>(object_sizes_[index])); \ |
- counters->size_of_FIXED_ARRAY_##name()->Decrement( \ |
- static_cast<int>(object_sizes_last_time_[index])); |
- FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(ADJUST_LAST_TIME_OBJECT_COUNT) |
-#undef ADJUST_LAST_TIME_OBJECT_COUNT |
-#define ADJUST_LAST_TIME_OBJECT_COUNT(name) \ |
- index = \ |
- FIRST_CODE_AGE_SUB_TYPE + Code::k##name##CodeAge - Code::kFirstCodeAge; \ |
- counters->count_of_CODE_AGE_##name()->Increment( \ |
- static_cast<int>(object_counts_[index])); \ |
- counters->count_of_CODE_AGE_##name()->Decrement( \ |
- static_cast<int>(object_counts_last_time_[index])); \ |
- counters->size_of_CODE_AGE_##name()->Increment( \ |
- static_cast<int>(object_sizes_[index])); \ |
- counters->size_of_CODE_AGE_##name()->Decrement( \ |
- static_cast<int>(object_sizes_last_time_[index])); |
- CODE_AGE_LIST_COMPLETE(ADJUST_LAST_TIME_OBJECT_COUNT) |
-#undef ADJUST_LAST_TIME_OBJECT_COUNT |
- |
- MemCopy(object_counts_last_time_, object_counts_, sizeof(object_counts_)); |
- MemCopy(object_sizes_last_time_, object_sizes_, sizeof(object_sizes_)); |
- ClearObjectStats(); |
-} |
- |
-} } // namespace v8::internal |