OLD | NEW |
(Empty) | |
| 1 // Copyright 2014 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "src/compiler/instruction-selector-impl.h" |
| 6 #include "src/compiler/node-matchers.h" |
| 7 #include "src/compiler/node-properties-inl.h" |
| 8 |
| 9 namespace v8 { |
| 10 namespace internal { |
| 11 namespace compiler { |
| 12 |
| 13 // Adds IA32-specific methods for generating operands. |
| 14 class IA32OperandGenerator V8_FINAL : public OperandGenerator { |
| 15 public: |
| 16 explicit IA32OperandGenerator(InstructionSelector* selector) |
| 17 : OperandGenerator(selector) {} |
| 18 |
| 19 InstructionOperand* UseByteRegister(Node* node) { |
| 20 // TODO(dcarney): relax constraint. |
| 21 return UseFixed(node, edx); |
| 22 } |
| 23 |
| 24 bool CanBeImmediate(Node* node) { |
| 25 switch (node->opcode()) { |
| 26 case IrOpcode::kInt32Constant: |
| 27 case IrOpcode::kNumberConstant: |
| 28 case IrOpcode::kExternalConstant: |
| 29 return true; |
| 30 case IrOpcode::kHeapConstant: { |
| 31 // Constants in new space cannot be used as immediates in V8 because |
| 32 // the GC does not scan code objects when collecting the new generation. |
| 33 Handle<HeapObject> value = ValueOf<Handle<HeapObject> >(node->op()); |
| 34 return !isolate()->heap()->InNewSpace(*value); |
| 35 } |
| 36 default: |
| 37 return false; |
| 38 } |
| 39 } |
| 40 }; |
| 41 |
| 42 |
| 43 void InstructionSelector::VisitLoad(Node* node) { |
| 44 MachineRepresentation rep = OpParameter<MachineRepresentation>(node); |
| 45 IA32OperandGenerator g(this); |
| 46 Node* base = node->InputAt(0); |
| 47 Node* index = node->InputAt(1); |
| 48 |
| 49 InstructionOperand* output = rep == kMachineFloat64 |
| 50 ? g.DefineAsDoubleRegister(node) |
| 51 : g.DefineAsRegister(node); |
| 52 ArchOpcode opcode; |
| 53 switch (rep) { |
| 54 case kMachineFloat64: |
| 55 opcode = kSSELoad; |
| 56 break; |
| 57 case kMachineWord8: |
| 58 opcode = kIA32LoadWord8; |
| 59 break; |
| 60 case kMachineWord16: |
| 61 opcode = kIA32LoadWord16; |
| 62 break; |
| 63 case kMachineTagged: // Fall through. |
| 64 case kMachineWord32: |
| 65 opcode = kIA32LoadWord32; |
| 66 break; |
| 67 default: |
| 68 UNREACHABLE(); |
| 69 return; |
| 70 } |
| 71 if (g.CanBeImmediate(base)) { |
| 72 if (Int32Matcher(index).Is(0)) { // load [#base + #0] |
| 73 Emit(opcode | AddressingModeField::encode(kMode_MI), output, |
| 74 g.UseImmediate(base)); |
| 75 } else { // load [#base + %index] |
| 76 Emit(opcode | AddressingModeField::encode(kMode_MRI), output, |
| 77 g.UseRegister(index), g.UseImmediate(base)); |
| 78 } |
| 79 } else if (g.CanBeImmediate(index)) { // load [%base + #index] |
| 80 Emit(opcode | AddressingModeField::encode(kMode_MRI), output, |
| 81 g.UseRegister(base), g.UseImmediate(index)); |
| 82 } else { // load [%base + %index + K] |
| 83 Emit(opcode | AddressingModeField::encode(kMode_MR1I), output, |
| 84 g.UseRegister(base), g.UseRegister(index)); |
| 85 } |
| 86 // TODO(turbofan): addressing modes [r+r*{2,4,8}+K] |
| 87 } |
| 88 |
| 89 |
| 90 void InstructionSelector::VisitStore(Node* node) { |
| 91 IA32OperandGenerator g(this); |
| 92 Node* base = node->InputAt(0); |
| 93 Node* index = node->InputAt(1); |
| 94 Node* value = node->InputAt(2); |
| 95 |
| 96 StoreRepresentation store_rep = OpParameter<StoreRepresentation>(node); |
| 97 MachineRepresentation rep = store_rep.rep; |
| 98 if (store_rep.write_barrier_kind == kFullWriteBarrier) { |
| 99 ASSERT_EQ(kMachineTagged, rep); |
| 100 // TODO(dcarney): refactor RecordWrite function to take temp registers |
| 101 // and pass them here instead of using fixed regs |
| 102 // TODO(dcarney): handle immediate indices. |
| 103 InstructionOperand* temps[] = {g.TempRegister(ecx), g.TempRegister(edx)}; |
| 104 Emit(kIA32StoreWriteBarrier, NULL, g.UseFixed(base, ebx), |
| 105 g.UseFixed(index, ecx), g.UseFixed(value, edx), ARRAY_SIZE(temps), |
| 106 temps); |
| 107 return; |
| 108 } |
| 109 ASSERT_EQ(kNoWriteBarrier, store_rep.write_barrier_kind); |
| 110 bool is_immediate = false; |
| 111 InstructionOperand* val; |
| 112 if (rep == kMachineFloat64) { |
| 113 val = g.UseDoubleRegister(value); |
| 114 } else { |
| 115 is_immediate = g.CanBeImmediate(value); |
| 116 if (is_immediate) { |
| 117 val = g.UseImmediate(value); |
| 118 } else if (rep == kMachineWord8) { |
| 119 val = g.UseByteRegister(value); |
| 120 } else { |
| 121 val = g.UseRegister(value); |
| 122 } |
| 123 } |
| 124 ArchOpcode opcode; |
| 125 switch (rep) { |
| 126 case kMachineFloat64: |
| 127 opcode = kSSEStore; |
| 128 break; |
| 129 case kMachineWord8: |
| 130 opcode = is_immediate ? kIA32StoreWord8I : kIA32StoreWord8; |
| 131 break; |
| 132 case kMachineWord16: |
| 133 opcode = is_immediate ? kIA32StoreWord16I : kIA32StoreWord16; |
| 134 break; |
| 135 case kMachineTagged: // Fall through. |
| 136 case kMachineWord32: |
| 137 opcode = is_immediate ? kIA32StoreWord32I : kIA32StoreWord32; |
| 138 break; |
| 139 default: |
| 140 UNREACHABLE(); |
| 141 return; |
| 142 } |
| 143 if (g.CanBeImmediate(base)) { |
| 144 if (Int32Matcher(index).Is(0)) { // store [#base], %|#value |
| 145 Emit(opcode | AddressingModeField::encode(kMode_MI), NULL, |
| 146 g.UseImmediate(base), val); |
| 147 } else { // store [#base + %index], %|#value |
| 148 Emit(opcode | AddressingModeField::encode(kMode_MRI), NULL, |
| 149 g.UseRegister(index), g.UseImmediate(base), val); |
| 150 } |
| 151 } else if (g.CanBeImmediate(index)) { // store [%base + #index], %|#value |
| 152 Emit(opcode | AddressingModeField::encode(kMode_MRI), NULL, |
| 153 g.UseRegister(base), g.UseImmediate(index), val); |
| 154 } else { // store [%base + %index], %|#value |
| 155 Emit(opcode | AddressingModeField::encode(kMode_MR1I), NULL, |
| 156 g.UseRegister(base), g.UseRegister(index), val); |
| 157 } |
| 158 // TODO(turbofan): addressing modes [r+r*{2,4,8}+K] |
| 159 } |
| 160 |
| 161 |
| 162 // Shared routine for multiple binary operations. |
| 163 static inline void VisitBinop(InstructionSelector* selector, Node* node, |
| 164 ArchOpcode opcode) { |
| 165 IA32OperandGenerator g(selector); |
| 166 Node* left = node->InputAt(0); |
| 167 Node* right = node->InputAt(1); |
| 168 // TODO(turbofan): match complex addressing modes. |
| 169 // TODO(turbofan): if commutative, pick the non-live-in operand as the left as |
| 170 // this might be the last use and therefore its register can be reused. |
| 171 if (g.CanBeImmediate(right)) { |
| 172 selector->Emit(opcode, g.DefineSameAsFirst(node), g.Use(left), |
| 173 g.UseImmediate(right)); |
| 174 } else if (g.CanBeImmediate(left) && |
| 175 node->op()->HasProperty(Operator::kCommutative)) { |
| 176 selector->Emit(opcode, g.DefineSameAsFirst(node), g.Use(right), |
| 177 g.UseImmediate(left)); |
| 178 } else { |
| 179 selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left), |
| 180 g.Use(right)); |
| 181 } |
| 182 } |
| 183 |
| 184 |
| 185 void InstructionSelector::VisitWord32And(Node* node) { |
| 186 VisitBinop(this, node, kIA32And); |
| 187 } |
| 188 |
| 189 |
| 190 void InstructionSelector::VisitWord32Or(Node* node) { |
| 191 VisitBinop(this, node, kIA32Or); |
| 192 } |
| 193 |
| 194 |
| 195 void InstructionSelector::VisitWord32Xor(Node* node) { |
| 196 IA32OperandGenerator g(this); |
| 197 Int32BinopMatcher m(node); |
| 198 if (m.right().Is(-1)) { |
| 199 Emit(kIA32Not, g.DefineSameAsFirst(node), g.Use(m.left().node())); |
| 200 } else { |
| 201 VisitBinop(this, node, kIA32Xor); |
| 202 } |
| 203 } |
| 204 |
| 205 |
| 206 // Shared routine for multiple shift operations. |
| 207 static inline void VisitShift(InstructionSelector* selector, Node* node, |
| 208 ArchOpcode opcode) { |
| 209 IA32OperandGenerator g(selector); |
| 210 Node* left = node->InputAt(0); |
| 211 Node* right = node->InputAt(1); |
| 212 |
| 213 // TODO(turbofan): assembler only supports some addressing modes for shifts. |
| 214 if (g.CanBeImmediate(right)) { |
| 215 selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left), |
| 216 g.UseImmediate(right)); |
| 217 } else { |
| 218 Int32BinopMatcher m(node); |
| 219 if (m.right().IsWord32And()) { |
| 220 Int32BinopMatcher mright(right); |
| 221 if (mright.right().Is(0x1F)) { |
| 222 right = mright.left().node(); |
| 223 } |
| 224 } |
| 225 selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left), |
| 226 g.UseFixed(right, ecx)); |
| 227 } |
| 228 } |
| 229 |
| 230 |
| 231 void InstructionSelector::VisitWord32Shl(Node* node) { |
| 232 VisitShift(this, node, kIA32Shl); |
| 233 } |
| 234 |
| 235 |
| 236 void InstructionSelector::VisitWord32Shr(Node* node) { |
| 237 VisitShift(this, node, kIA32Shr); |
| 238 } |
| 239 |
| 240 |
| 241 void InstructionSelector::VisitWord32Sar(Node* node) { |
| 242 VisitShift(this, node, kIA32Sar); |
| 243 } |
| 244 |
| 245 |
| 246 void InstructionSelector::VisitInt32Add(Node* node) { |
| 247 VisitBinop(this, node, kIA32Add); |
| 248 } |
| 249 |
| 250 |
| 251 void InstructionSelector::VisitInt32Sub(Node* node) { |
| 252 IA32OperandGenerator g(this); |
| 253 Int32BinopMatcher m(node); |
| 254 if (m.left().Is(0)) { |
| 255 Emit(kIA32Neg, g.DefineSameAsFirst(node), g.Use(m.right().node())); |
| 256 } else { |
| 257 VisitBinop(this, node, kIA32Sub); |
| 258 } |
| 259 } |
| 260 |
| 261 |
| 262 void InstructionSelector::VisitInt32Mul(Node* node) { |
| 263 IA32OperandGenerator g(this); |
| 264 Node* left = node->InputAt(0); |
| 265 Node* right = node->InputAt(1); |
| 266 if (g.CanBeImmediate(right)) { |
| 267 Emit(kIA32Imul, g.DefineAsRegister(node), g.Use(left), |
| 268 g.UseImmediate(right)); |
| 269 } else if (g.CanBeImmediate(left)) { |
| 270 Emit(kIA32Imul, g.DefineAsRegister(node), g.Use(right), |
| 271 g.UseImmediate(left)); |
| 272 } else { |
| 273 // TODO(turbofan): select better left operand. |
| 274 Emit(kIA32Imul, g.DefineSameAsFirst(node), g.UseRegister(left), |
| 275 g.Use(right)); |
| 276 } |
| 277 } |
| 278 |
| 279 |
| 280 static inline void VisitDiv(InstructionSelector* selector, Node* node, |
| 281 ArchOpcode opcode) { |
| 282 IA32OperandGenerator g(selector); |
| 283 InstructionOperand* temps[] = {g.TempRegister(edx)}; |
| 284 size_t temp_count = ARRAY_SIZE(temps); |
| 285 selector->Emit(opcode, g.DefineAsFixed(node, eax), |
| 286 g.UseFixed(node->InputAt(0), eax), |
| 287 g.UseUnique(node->InputAt(1)), temp_count, temps); |
| 288 } |
| 289 |
| 290 |
| 291 void InstructionSelector::VisitInt32Div(Node* node) { |
| 292 VisitDiv(this, node, kIA32Idiv); |
| 293 } |
| 294 |
| 295 |
| 296 void InstructionSelector::VisitInt32UDiv(Node* node) { |
| 297 VisitDiv(this, node, kIA32Udiv); |
| 298 } |
| 299 |
| 300 |
| 301 static inline void VisitMod(InstructionSelector* selector, Node* node, |
| 302 ArchOpcode opcode) { |
| 303 IA32OperandGenerator g(selector); |
| 304 InstructionOperand* temps[] = {g.TempRegister(eax), g.TempRegister(edx)}; |
| 305 size_t temp_count = ARRAY_SIZE(temps); |
| 306 selector->Emit(opcode, g.DefineAsFixed(node, edx), |
| 307 g.UseFixed(node->InputAt(0), eax), |
| 308 g.UseUnique(node->InputAt(1)), temp_count, temps); |
| 309 } |
| 310 |
| 311 |
| 312 void InstructionSelector::VisitInt32Mod(Node* node) { |
| 313 VisitMod(this, node, kIA32Idiv); |
| 314 } |
| 315 |
| 316 |
| 317 void InstructionSelector::VisitInt32UMod(Node* node) { |
| 318 VisitMod(this, node, kIA32Udiv); |
| 319 } |
| 320 |
| 321 |
| 322 void InstructionSelector::VisitConvertInt32ToFloat64(Node* node) { |
| 323 IA32OperandGenerator g(this); |
| 324 Emit(kSSEInt32ToFloat64, g.DefineAsDoubleRegister(node), |
| 325 g.Use(node->InputAt(0))); |
| 326 } |
| 327 |
| 328 |
| 329 void InstructionSelector::VisitConvertFloat64ToInt32(Node* node) { |
| 330 IA32OperandGenerator g(this); |
| 331 Emit(kSSEFloat64ToInt32, g.DefineAsRegister(node), g.Use(node->InputAt(0))); |
| 332 } |
| 333 |
| 334 |
| 335 void InstructionSelector::VisitFloat64Add(Node* node) { |
| 336 IA32OperandGenerator g(this); |
| 337 Emit(kSSEFloat64Add, g.DefineSameAsFirst(node), |
| 338 g.UseDoubleRegister(node->InputAt(0)), |
| 339 g.UseDoubleRegister(node->InputAt(1))); |
| 340 } |
| 341 |
| 342 |
| 343 void InstructionSelector::VisitFloat64Sub(Node* node) { |
| 344 IA32OperandGenerator g(this); |
| 345 Emit(kSSEFloat64Sub, g.DefineSameAsFirst(node), |
| 346 g.UseDoubleRegister(node->InputAt(0)), |
| 347 g.UseDoubleRegister(node->InputAt(1))); |
| 348 } |
| 349 |
| 350 |
| 351 void InstructionSelector::VisitFloat64Mul(Node* node) { |
| 352 IA32OperandGenerator g(this); |
| 353 Emit(kSSEFloat64Mul, g.DefineSameAsFirst(node), |
| 354 g.UseDoubleRegister(node->InputAt(0)), |
| 355 g.UseDoubleRegister(node->InputAt(1))); |
| 356 } |
| 357 |
| 358 |
| 359 void InstructionSelector::VisitFloat64Div(Node* node) { |
| 360 IA32OperandGenerator g(this); |
| 361 Emit(kSSEFloat64Div, g.DefineSameAsFirst(node), |
| 362 g.UseDoubleRegister(node->InputAt(0)), |
| 363 g.UseDoubleRegister(node->InputAt(1))); |
| 364 } |
| 365 |
| 366 |
| 367 void InstructionSelector::VisitFloat64Mod(Node* node) { |
| 368 IA32OperandGenerator g(this); |
| 369 InstructionOperand* temps[] = {g.TempRegister(eax)}; |
| 370 Emit(kSSEFloat64Mod, g.DefineSameAsFirst(node), |
| 371 g.UseDoubleRegister(node->InputAt(0)), |
| 372 g.UseDoubleRegister(node->InputAt(1)), 1, temps); |
| 373 } |
| 374 |
| 375 |
| 376 // Shared routine for multiple compare operations. |
| 377 static inline void VisitCompare(InstructionSelector* selector, |
| 378 InstructionCode opcode, |
| 379 InstructionOperand* left, |
| 380 InstructionOperand* right, |
| 381 FlagsContinuation* cont) { |
| 382 IA32OperandGenerator g(selector); |
| 383 if (cont->IsBranch()) { |
| 384 selector->Emit(cont->Encode(opcode), NULL, left, right, |
| 385 g.Label(cont->true_block()), |
| 386 g.Label(cont->false_block()))->MarkAsControl(); |
| 387 } else { |
| 388 ASSERT(cont->IsSet()); |
| 389 // TODO(titzer): Needs byte register. |
| 390 selector->Emit(cont->Encode(opcode), g.DefineAsRegister(cont->result()), |
| 391 left, right); |
| 392 } |
| 393 } |
| 394 |
| 395 |
| 396 // Shared routine for multiple word compare operations. |
| 397 static inline void VisitWordCompare(InstructionSelector* selector, Node* node, |
| 398 InstructionCode opcode, |
| 399 FlagsContinuation* cont, bool commutative) { |
| 400 IA32OperandGenerator g(selector); |
| 401 Node* left = node->InputAt(0); |
| 402 Node* right = node->InputAt(1); |
| 403 |
| 404 // Match immediates on left or right side of comparison. |
| 405 if (g.CanBeImmediate(right)) { |
| 406 VisitCompare(selector, opcode, g.Use(left), g.UseImmediate(right), cont); |
| 407 } else if (g.CanBeImmediate(left)) { |
| 408 if (!commutative) cont->Commute(); |
| 409 VisitCompare(selector, opcode, g.Use(right), g.UseImmediate(left), cont); |
| 410 } else { |
| 411 VisitCompare(selector, opcode, g.UseRegister(left), g.Use(right), cont); |
| 412 } |
| 413 } |
| 414 |
| 415 |
| 416 void InstructionSelector::VisitWord32Test(Node* node, FlagsContinuation* cont) { |
| 417 switch (node->opcode()) { |
| 418 case IrOpcode::kInt32Sub: |
| 419 return VisitWordCompare(this, node, kIA32Cmp, cont, false); |
| 420 case IrOpcode::kWord32And: |
| 421 return VisitWordCompare(this, node, kIA32Test, cont, true); |
| 422 default: |
| 423 break; |
| 424 } |
| 425 |
| 426 IA32OperandGenerator g(this); |
| 427 VisitCompare(this, kIA32Test, g.Use(node), g.TempImmediate(-1), cont); |
| 428 } |
| 429 |
| 430 |
| 431 void InstructionSelector::VisitWord32Compare(Node* node, |
| 432 FlagsContinuation* cont) { |
| 433 VisitWordCompare(this, node, kIA32Cmp, cont, false); |
| 434 } |
| 435 |
| 436 |
| 437 void InstructionSelector::VisitFloat64Compare(Node* node, |
| 438 FlagsContinuation* cont) { |
| 439 IA32OperandGenerator g(this); |
| 440 Node* left = node->InputAt(0); |
| 441 Node* right = node->InputAt(1); |
| 442 VisitCompare(this, kSSEFloat64Cmp, g.UseDoubleRegister(left), g.Use(right), |
| 443 cont); |
| 444 } |
| 445 |
| 446 |
| 447 void InstructionSelector::VisitCall(Node* call, BasicBlock* continuation, |
| 448 BasicBlock* deoptimization) { |
| 449 IA32OperandGenerator g(this); |
| 450 CallDescriptor* descriptor = OpParameter<CallDescriptor*>(call); |
| 451 CallBuffer buffer(zone(), descriptor); |
| 452 |
| 453 // Compute InstructionOperands for inputs and outputs. |
| 454 InitializeCallBuffer(call, &buffer, true, true, continuation, deoptimization); |
| 455 |
| 456 // Push any stack arguments. |
| 457 for (int i = buffer.pushed_count - 1; i >= 0; --i) { |
| 458 Node* input = buffer.pushed_nodes[i]; |
| 459 // TODO(titzer): handle pushing double parameters. |
| 460 Emit(kIA32Push, NULL, |
| 461 g.CanBeImmediate(input) ? g.UseImmediate(input) : g.Use(input)); |
| 462 } |
| 463 |
| 464 // Select the appropriate opcode based on the call type. |
| 465 InstructionCode opcode; |
| 466 switch (descriptor->kind()) { |
| 467 case CallDescriptor::kCallCodeObject: { |
| 468 bool lazy_deopt = descriptor->CanLazilyDeoptimize(); |
| 469 opcode = kIA32CallCodeObject | MiscField::encode(lazy_deopt ? 1 : 0); |
| 470 break; |
| 471 } |
| 472 case CallDescriptor::kCallAddress: |
| 473 opcode = kIA32CallAddress; |
| 474 break; |
| 475 case CallDescriptor::kCallJSFunction: |
| 476 opcode = kIA32CallJSFunction; |
| 477 break; |
| 478 default: |
| 479 UNREACHABLE(); |
| 480 return; |
| 481 } |
| 482 |
| 483 // Emit the call instruction. |
| 484 Instruction* call_instr = |
| 485 Emit(opcode, buffer.output_count, buffer.outputs, |
| 486 buffer.fixed_and_control_count(), buffer.fixed_and_control_args); |
| 487 |
| 488 call_instr->MarkAsCall(); |
| 489 if (deoptimization != NULL) { |
| 490 ASSERT(continuation != NULL); |
| 491 call_instr->MarkAsControl(); |
| 492 } |
| 493 |
| 494 // Caller clean up of stack for C-style calls. |
| 495 if (descriptor->kind() == CallDescriptor::kCallAddress && |
| 496 buffer.pushed_count > 0) { |
| 497 ASSERT(deoptimization == NULL && continuation == NULL); |
| 498 Emit(kPopStack | MiscField::encode(buffer.pushed_count), NULL); |
| 499 } |
| 500 } |
| 501 |
| 502 } // namespace compiler |
| 503 } // namespace internal |
| 504 } // namespace v8 |
OLD | NEW |