Index: src/utils/SkTextureCompressor_R11EAC.cpp |
diff --git a/src/utils/SkTextureCompressor_R11EAC.cpp b/src/utils/SkTextureCompressor_R11EAC.cpp |
index 3ce0120ec5fa29e6c4577896d1dd3d2d677b533c..982fb012ef3cf9b3b6249b96eb1a6cb788789958 100644 |
--- a/src/utils/SkTextureCompressor_R11EAC.cpp |
+++ b/src/utils/SkTextureCompressor_R11EAC.cpp |
@@ -6,6 +6,7 @@ |
*/ |
#include "SkTextureCompressor.h" |
+#include "SkTextureCompressor_Blitter.h" |
#include "SkEndian.h" |
@@ -302,6 +303,45 @@ static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src, |
} |
#endif // (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) |
+// This function converts an integer containing four bytes of alpha |
+// values into an integer containing four bytes of indices into R11 EAC. |
+// Note, there needs to be a mapping of indices: |
+// 0 1 2 3 4 5 6 7 |
+// 3 2 1 0 4 5 6 7 |
+// |
+// To compute this, we first negate each byte, and then add three, which |
+// gives the mapping |
+// 3 2 1 0 -1 -2 -3 -4 |
+// |
+// Then we mask out the negative values, take their absolute value, and |
+// add three. |
+// |
+// Most of the voodoo in this function comes from Hacker's Delight, section 2-18 |
+static inline uint32_t convert_indices(uint32_t x) { |
+ // Take the top three bits... |
+ x = (x & 0xE0E0E0E0) >> 5; |
+ |
+ // Negate... |
+ x = ~((0x80808080 - x) ^ 0x7F7F7F7F); |
+ |
+ // Add three |
+ const uint32_t s = (x & 0x7F7F7F7F) + 0x03030303; |
+ x = ((x ^ 0x03030303) & 0x80808080) ^ s; |
+ |
+ // Absolute value |
+ const uint32_t a = x & 0x80808080; |
+ const uint32_t b = a >> 7; |
+ |
+ // Aside: mask negatives (m is three if the byte was negative) |
+ const uint32_t m = (a >> 6) | b; |
+ |
+ // .. continue absolute value |
+ x = (x ^ ((a - b) | a)) + b; |
+ |
+ // Add three |
+ return x + m; |
+} |
+ |
#if COMPRESS_R11_EAC_FASTEST |
template<unsigned shift> |
static inline uint64_t swap_shift(uint64_t x, uint64_t mask) { |
@@ -376,45 +416,6 @@ static inline uint64_t interleave6(uint64_t topRows, uint64_t bottomRows) { |
return x; |
} |
-// This function converts an integer containing four bytes of alpha |
-// values into an integer containing four bytes of indices into R11 EAC. |
-// Note, there needs to be a mapping of indices: |
-// 0 1 2 3 4 5 6 7 |
-// 3 2 1 0 4 5 6 7 |
-// |
-// To compute this, we first negate each byte, and then add three, which |
-// gives the mapping |
-// 3 2 1 0 -1 -2 -3 -4 |
-// |
-// Then we mask out the negative values, take their absolute value, and |
-// add three. |
-// |
-// Most of the voodoo in this function comes from Hacker's Delight, section 2-18 |
-static inline uint32_t convert_indices(uint32_t x) { |
- // Take the top three bits... |
- x = (x & 0xE0E0E0E0) >> 5; |
- |
- // Negate... |
- x = ~((0x80808080 - x) ^ 0x7F7F7F7F); |
- |
- // Add three |
- const uint32_t s = (x & 0x7F7F7F7F) + 0x03030303; |
- x = ((x ^ 0x03030303) & 0x80808080) ^ s; |
- |
- // Absolute value |
- const uint32_t a = x & 0x80808080; |
- const uint32_t b = a >> 7; |
- |
- // Aside: mask negatives (m is three if the byte was negative) |
- const uint32_t m = (a >> 6) | b; |
- |
- // .. continue absolute value |
- x = (x ^ ((a - b) | a)) + b; |
- |
- // Add three |
- return x + m; |
-} |
- |
// This function follows the same basic procedure as compress_heterogeneous_r11eac_block |
// above when COMPRESS_R11_EAC_FAST is defined, but it avoids a few loads/stores and |
// tries to optimize where it can using SIMD. |
@@ -513,10 +514,15 @@ static inline uint32_t pack_indices_vertical(uint32_t x) { |
// alpha values. Each column is assumed to be loaded from top to bottom, and hence |
// must first be converted to indices and then packed into the resulting 64-bit |
// integer. |
-static inline uint64_t compress_block_vertical(const uint32_t alphaColumn0, |
- const uint32_t alphaColumn1, |
- const uint32_t alphaColumn2, |
- const uint32_t alphaColumn3) { |
+inline void compress_block_vertical(uint8_t* dstPtr, const uint8_t *block) { |
+ |
+ const uint32_t* src = reinterpret_cast<const uint32_t*>(block); |
+ uint64_t* dst = reinterpret_cast<uint64_t*>(dstPtr); |
+ |
+ const uint32_t alphaColumn0 = src[0]; |
+ const uint32_t alphaColumn1 = src[1]; |
+ const uint32_t alphaColumn2 = src[2]; |
+ const uint32_t alphaColumn3 = src[3]; |
if (alphaColumn0 == alphaColumn1 && |
alphaColumn2 == alphaColumn3 && |
@@ -524,11 +530,13 @@ static inline uint64_t compress_block_vertical(const uint32_t alphaColumn0, |
if (0 == alphaColumn0) { |
// Transparent |
- return 0x0020000000002000ULL; |
+ *dst = 0x0020000000002000ULL; |
+ return; |
} |
else if (0xFFFFFFFF == alphaColumn0) { |
// Opaque |
- return 0xFFFFFFFFFFFFFFFFULL; |
+ *dst = 0xFFFFFFFFFFFFFFFFULL; |
+ return; |
} |
} |
@@ -542,25 +550,11 @@ static inline uint64_t compress_block_vertical(const uint32_t alphaColumn0, |
const uint32_t packedIndexColumn2 = pack_indices_vertical(indexColumn2); |
const uint32_t packedIndexColumn3 = pack_indices_vertical(indexColumn3); |
- return SkEndian_SwapBE64(0x8490000000000000ULL | |
+ *dst = SkEndian_SwapBE64(0x8490000000000000ULL | |
(static_cast<uint64_t>(packedIndexColumn0) << 36) | |
(static_cast<uint64_t>(packedIndexColumn1) << 24) | |
static_cast<uint64_t>(packedIndexColumn2 << 12) | |
static_cast<uint64_t>(packedIndexColumn3)); |
- |
-} |
- |
-// Updates the block whose columns are stored in blockColN. curAlphai is expected |
-// to store, as an integer, the four alpha values that will be placed within each |
-// of the columns in the range [col, col+colsLeft). |
-static inline void update_block_columns(uint32_t* block, const int col, |
- const int colsLeft, const uint32_t curAlphai) { |
- SkASSERT(NULL != block); |
- SkASSERT(col + colsLeft <= 4); |
- |
- for (int i = col; i < (col + colsLeft); ++i) { |
- block[i] = curAlphai; |
- } |
} |
//////////////////////////////////////////////////////////////////////////////// |
@@ -582,383 +576,10 @@ bool CompressA8ToR11EAC(uint8_t* dst, const uint8_t* src, int width, int height, |
#endif |
} |
-// This class implements a blitter that blits directly into a buffer that will |
-// be used as an R11 EAC compressed texture. We compute this buffer by |
-// buffering four scan lines and then outputting them all at once. This blitter |
-// is only expected to be used with alpha masks, i.e. kAlpha8_SkColorType. |
-class R11_EACBlitter : public SkBlitter { |
-public: |
- R11_EACBlitter(int width, int height, void *compressedBuffer); |
- virtual ~R11_EACBlitter() { this->flushRuns(); } |
- |
- // Blit a horizontal run of one or more pixels. |
- virtual void blitH(int x, int y, int width) SK_OVERRIDE { |
- // This function is intended to be called from any standard RGB |
- // buffer, so we should never encounter it. However, if some code |
- // path does end up here, then this needs to be investigated. |
- SkFAIL("Not implemented!"); |
- } |
- |
- // Blit a horizontal run of antialiased pixels; runs[] is a *sparse* |
- // zero-terminated run-length encoding of spans of constant alpha values. |
- virtual void blitAntiH(int x, int y, |
- const SkAlpha antialias[], |
- const int16_t runs[]) SK_OVERRIDE; |
- |
- // Blit a vertical run of pixels with a constant alpha value. |
- virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE { |
- // This function is currently not implemented. It is not explicitly |
- // required by the contract, but if at some time a code path runs into |
- // this function (which is entirely possible), it needs to be implemented. |
- // |
- // TODO (krajcevski): |
- // This function will be most easily implemented in one of two ways: |
- // 1. Buffer each vertical column value and then construct a list |
- // of alpha values and output all of the blocks at once. This only |
- // requires a write to the compressed buffer |
- // 2. Replace the indices of each block with the proper indices based |
- // on the alpha value. This requires a read and write of the compressed |
- // buffer, but much less overhead. |
- SkFAIL("Not implemented!"); |
- } |
- |
- // Blit a solid rectangle one or more pixels wide. |
- virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE { |
- // Analogous to blitRow, this function is intended for RGB targets |
- // and should never be called by this blitter. Any calls to this function |
- // are probably a bug and should be investigated. |
- SkFAIL("Not implemented!"); |
- } |
- |
- // Blit a rectangle with one alpha-blended column on the left, |
- // width (zero or more) opaque pixels, and one alpha-blended column |
- // on the right. The result will always be at least two pixels wide. |
- virtual void blitAntiRect(int x, int y, int width, int height, |
- SkAlpha leftAlpha, SkAlpha rightAlpha) SK_OVERRIDE { |
- // This function is currently not implemented. It is not explicitly |
- // required by the contract, but if at some time a code path runs into |
- // this function (which is entirely possible), it needs to be implemented. |
- // |
- // TODO (krajcevski): |
- // This function will be most easily implemented as follows: |
- // 1. If width/height are smaller than a block, then update the |
- // indices of the affected blocks. |
- // 2. If width/height are larger than a block, then construct a 9-patch |
- // of block encodings that represent the rectangle, and write them |
- // to the compressed buffer as necessary. Whether or not the blocks |
- // are overwritten by zeros or just their indices are updated is up |
- // to debate. |
- SkFAIL("Not implemented!"); |
- } |
- |
- // Blit a pattern of pixels defined by a rectangle-clipped mask; |
- // typically used for text. |
- virtual void blitMask(const SkMask&, const SkIRect& clip) SK_OVERRIDE { |
- // This function is currently not implemented. It is not explicitly |
- // required by the contract, but if at some time a code path runs into |
- // this function (which is entirely possible), it needs to be implemented. |
- // |
- // TODO (krajcevski): |
- // This function will be most easily implemented in the same way as |
- // blitAntiRect above. |
- SkFAIL("Not implemented!"); |
- } |
- |
- // If the blitter just sets a single value for each pixel, return the |
- // bitmap it draws into, and assign value. If not, return NULL and ignore |
- // the value parameter. |
- virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) SK_OVERRIDE { |
- return NULL; |
- } |
- |
- /** |
- * Compressed texture blitters only really work correctly if they get |
- * four blocks at a time. That being said, this blitter tries it's best |
- * to preserve semantics if blitAntiH doesn't get called in too many |
- * weird ways... |
- */ |
- virtual int requestRowsPreserved() const { return kR11_EACBlockSz; } |
- |
-protected: |
- virtual void onNotifyFinished() { this->flushRuns(); } |
- |
-private: |
- static const int kR11_EACBlockSz = 4; |
- static const int kPixelsPerBlock = kR11_EACBlockSz * kR11_EACBlockSz; |
- |
- // The longest possible run of pixels that this blitter will receive. |
- // This is initialized in the constructor to 0x7FFE, which is one less |
- // than the largest positive 16-bit integer. We make sure that it's one |
- // less for debugging purposes. We also don't make this variable static |
- // in order to make sure that we can construct a valid pointer to it. |
- const int16_t kLongestRun; |
- |
- // Usually used in conjunction with kLongestRun. This is initialized to |
- // zero. |
- const SkAlpha kZeroAlpha; |
- |
- // This is the information that we buffer whenever we're asked to blit |
- // a row with this blitter. |
- struct BufferedRun { |
- const SkAlpha* fAlphas; |
- const int16_t* fRuns; |
- int fX, fY; |
- } fBufferedRuns[kR11_EACBlockSz]; |
- |
- // The next row (0-3) that we need to blit. This value should never exceed |
- // the number of rows that we have (kR11_EACBlockSz) |
- int fNextRun; |
- |
- // The width and height of the image that we're blitting |
- const int fWidth; |
- const int fHeight; |
- |
- // The R11 EAC buffer that we're blitting into. It is assumed that the buffer |
- // is large enough to store a compressed image of size fWidth*fHeight. |
- uint64_t* const fBuffer; |
- |
- // Various utility functions |
- int blocksWide() const { return fWidth / kR11_EACBlockSz; } |
- int blocksTall() const { return fHeight / kR11_EACBlockSz; } |
- int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; } |
- |
- // Returns the block index for the block containing pixel (x, y). Block |
- // indices start at zero and proceed in raster order. |
- int getBlockOffset(int x, int y) const { |
- SkASSERT(x < fWidth); |
- SkASSERT(y < fHeight); |
- const int blockCol = x / kR11_EACBlockSz; |
- const int blockRow = y / kR11_EACBlockSz; |
- return blockRow * this->blocksWide() + blockCol; |
- } |
- |
- // Returns a pointer to the block containing pixel (x, y) |
- uint64_t *getBlock(int x, int y) const { |
- return fBuffer + this->getBlockOffset(x, y); |
- } |
- |
- // The following function writes the buffered runs to compressed blocks. |
- // If fNextRun < 4, then we fill the runs that we haven't buffered with |
- // the constant zero buffer. |
- void flushRuns(); |
-}; |
- |
- |
-R11_EACBlitter::R11_EACBlitter(int width, int height, void *latcBuffer) |
- // 0x7FFE is one minus the largest positive 16-bit int. We use it for |
- // debugging to make sure that we're properly setting the nextX distance |
- // in flushRuns(). |
- : kLongestRun(0x7FFE), kZeroAlpha(0) |
- , fNextRun(0) |
- , fWidth(width) |
- , fHeight(height) |
- , fBuffer(reinterpret_cast<uint64_t*const>(latcBuffer)) |
-{ |
- SkASSERT((width % kR11_EACBlockSz) == 0); |
- SkASSERT((height % kR11_EACBlockSz) == 0); |
-} |
- |
-void R11_EACBlitter::blitAntiH(int x, int y, |
- const SkAlpha* antialias, |
- const int16_t* runs) { |
- // Make sure that the new row to blit is either the first |
- // row that we're blitting, or it's exactly the next scan row |
- // since the last row that we blit. This is to ensure that when |
- // we go to flush the runs, that they are all the same four |
- // runs. |
- if (fNextRun > 0 && |
- ((x != fBufferedRuns[fNextRun-1].fX) || |
- (y-1 != fBufferedRuns[fNextRun-1].fY))) { |
- this->flushRuns(); |
- } |
- |
- // Align the rows to a block boundary. If we receive rows that |
- // are not on a block boundary, then fill in the preceding runs |
- // with zeros. We do this by producing a single RLE that says |
- // that we have 0x7FFE pixels of zero (0x7FFE = 32766). |
- const int row = y & ~3; |
- while ((row + fNextRun) < y) { |
- fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha; |
- fBufferedRuns[fNextRun].fRuns = &kLongestRun; |
- fBufferedRuns[fNextRun].fX = 0; |
- fBufferedRuns[fNextRun].fY = row + fNextRun; |
- ++fNextRun; |
- } |
- |
- // Make sure that our assumptions aren't violated... |
- SkASSERT(fNextRun == (y & 3)); |
- SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y); |
- |
- // Set the values of the next run |
- fBufferedRuns[fNextRun].fAlphas = antialias; |
- fBufferedRuns[fNextRun].fRuns = runs; |
- fBufferedRuns[fNextRun].fX = x; |
- fBufferedRuns[fNextRun].fY = y; |
- |
- // If we've output four scanlines in a row that don't violate our |
- // assumptions, then it's time to flush them... |
- if (4 == ++fNextRun) { |
- this->flushRuns(); |
- } |
-} |
- |
-void R11_EACBlitter::flushRuns() { |
- |
- // If we don't have any runs, then just return. |
- if (0 == fNextRun) { |
- return; |
- } |
- |
-#ifndef NDEBUG |
- // Make sure that if we have any runs, they all match |
- for (int i = 1; i < fNextRun; ++i) { |
- SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1); |
- SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX); |
- } |
-#endif |
- |
- // If we dont have as many runs as we have rows, fill in the remaining |
- // runs with constant zeros. |
- for (int i = fNextRun; i < kR11_EACBlockSz; ++i) { |
- fBufferedRuns[i].fY = fBufferedRuns[0].fY + i; |
- fBufferedRuns[i].fX = fBufferedRuns[0].fX; |
- fBufferedRuns[i].fAlphas = &kZeroAlpha; |
- fBufferedRuns[i].fRuns = &kLongestRun; |
- } |
- |
- // Make sure that our assumptions aren't violated. |
- SkASSERT(fNextRun > 0 && fNextRun <= 4); |
- SkASSERT((fBufferedRuns[0].fY & 3) == 0); |
- |
- // The following logic walks four rows at a time and outputs compressed |
- // blocks to the buffer passed into the constructor. |
- // We do the following: |
- // |
- // c1 c2 c3 c4 |
- // ----------------------------------------------------------------------- |
- // ... | | | | | ----> fBufferedRuns[0] |
- // ----------------------------------------------------------------------- |
- // ... | | | | | ----> fBufferedRuns[1] |
- // ----------------------------------------------------------------------- |
- // ... | | | | | ----> fBufferedRuns[2] |
- // ----------------------------------------------------------------------- |
- // ... | | | | | ----> fBufferedRuns[3] |
- // ----------------------------------------------------------------------- |
- // |
- // curX -- the macro X value that we've gotten to. |
- // c1, c2, c3, c4 -- the integers that represent the columns of the current block |
- // that we're operating on |
- // curAlphaColumn -- integer containing the column of alpha values from fBufferedRuns. |
- // nextX -- for each run, the next point at which we need to update curAlphaColumn |
- // after the value of curX. |
- // finalX -- the minimum of all the nextX values. |
- // |
- // curX advances to finalX outputting any blocks that it passes along |
- // the way. Since finalX will not change when we reach the end of a |
- // run, the termination criteria will be whenever curX == finalX at the |
- // end of a loop. |
- |
- // Setup: |
- uint32_t c[4] = { 0, 0, 0, 0 }; |
- uint32_t curAlphaColumn = 0; |
- SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn); |
- |
- int nextX[kR11_EACBlockSz]; |
- for (int i = 0; i < kR11_EACBlockSz; ++i) { |
- nextX[i] = 0x7FFFFF; |
- } |
- |
- uint64_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY); |
- |
- // Populate the first set of runs and figure out how far we need to |
- // advance on the first step |
- int curX = 0; |
- int finalX = 0xFFFFF; |
- for (int i = 0; i < kR11_EACBlockSz; ++i) { |
- nextX[i] = *(fBufferedRuns[i].fRuns); |
- curAlpha[i] = *(fBufferedRuns[i].fAlphas); |
- |
- finalX = SkMin32(nextX[i], finalX); |
- } |
- |
- // Make sure that we have a valid right-bound X value |
- SkASSERT(finalX < 0xFFFFF); |
- |
- // Run the blitter... |
- while (curX != finalX) { |
- SkASSERT(finalX >= curX); |
- |
- // Do we need to populate the rest of the block? |
- if ((finalX - (curX & ~3)) >= kR11_EACBlockSz) { |
- const int col = curX & 3; |
- const int colsLeft = 4 - col; |
- SkASSERT(curX + colsLeft <= finalX); |
- |
- update_block_columns(c, col, colsLeft, curAlphaColumn); |
- |
- // Write this block |
- *outPtr = compress_block_vertical(c[0], c[1], c[2], c[3]); |
- ++outPtr; |
- curX += colsLeft; |
- } |
- |
- // If we can advance even further, then just keep memsetting the block |
- if ((finalX - curX) >= kR11_EACBlockSz) { |
- SkASSERT((curX & 3) == 0); |
- |
- const int col = 0; |
- const int colsLeft = kR11_EACBlockSz; |
- |
- update_block_columns(c, col, colsLeft, curAlphaColumn); |
- |
- // While we can keep advancing, just keep writing the block. |
- uint64_t lastBlock = compress_block_vertical(c[0], c[1], c[2], c[3]); |
- while((finalX - curX) >= kR11_EACBlockSz) { |
- *outPtr = lastBlock; |
- ++outPtr; |
- curX += kR11_EACBlockSz; |
- } |
- } |
- |
- // If we haven't advanced within the block then do so. |
- if (curX < finalX) { |
- const int col = curX & 3; |
- const int colsLeft = finalX - curX; |
- |
- update_block_columns(c, col, colsLeft, curAlphaColumn); |
- |
- curX += colsLeft; |
- } |
- |
- SkASSERT(curX == finalX); |
- |
- // Figure out what the next advancement is... |
- for (int i = 0; i < kR11_EACBlockSz; ++i) { |
- if (nextX[i] == finalX) { |
- const int16_t run = *(fBufferedRuns[i].fRuns); |
- fBufferedRuns[i].fRuns += run; |
- fBufferedRuns[i].fAlphas += run; |
- curAlpha[i] = *(fBufferedRuns[i].fAlphas); |
- nextX[i] += *(fBufferedRuns[i].fRuns); |
- } |
- } |
- |
- finalX = 0xFFFFF; |
- for (int i = 0; i < kR11_EACBlockSz; ++i) { |
- finalX = SkMin32(nextX[i], finalX); |
- } |
- } |
- |
- // If we didn't land on a block boundary, output the block... |
- if ((curX & 3) > 1) { |
- *outPtr = compress_block_vertical(c[0], c[1], c[2], c[3]); |
- } |
- |
- fNextRun = 0; |
-} |
- |
SkBlitter* CreateR11EACBlitter(int width, int height, void* outputBuffer) { |
- return new R11_EACBlitter(width, height, outputBuffer); |
+ return new |
+ SkTCompressedAlphaBlitter<4, 8, compress_block_vertical> |
+ (width, height, outputBuffer); |
} |
} // namespace SkTextureCompressor |