| Index: src/utils/SkTextureCompressor_Blitter.h
|
| diff --git a/src/utils/SkTextureCompressor_Blitter.h b/src/utils/SkTextureCompressor_Blitter.h
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..23265a4d184c6645d72c6ea38544f3d75730d57d
|
| --- /dev/null
|
| +++ b/src/utils/SkTextureCompressor_Blitter.h
|
| @@ -0,0 +1,405 @@
|
| +/*
|
| + * Copyright 2014 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +#ifndef SkTextureCompressor_Blitter_DEFINED
|
| +#define SkTextureCompressor_Blitter_DEFINED
|
| +
|
| +#include "SkTypes.h"
|
| +#include "SkBlitter.h"
|
| +
|
| +namespace SkTextureCompressor {
|
| +
|
| +// The function used to compress an A8 block. This function is expected to be
|
| +// used as a template argument to SkCompressedAlphaBlitter. The layout of the
|
| +// block is also expected to be in column-major order.
|
| +typedef void (*CompressA8Proc)(uint8_t* dst, const uint8_t block[]);
|
| +
|
| +// This class implements a blitter that blits directly into a buffer that will
|
| +// be used as an compressed alpha texture. We compute this buffer by
|
| +// buffering scan lines and then outputting them all at once. The number of
|
| +// scan lines buffered is controlled by kBlockSize
|
| +template<int BlockDim, int EncodedBlockSize, CompressA8Proc CompressionProc>
|
| +class SkTCompressedAlphaBlitter : public SkBlitter {
|
| +public:
|
| + SkTCompressedAlphaBlitter(int width, int height, void *compressedBuffer)
|
| + // 0x7FFE is one minus the largest positive 16-bit int. We use it for
|
| + // debugging to make sure that we're properly setting the nextX distance
|
| + // in flushRuns().
|
| + : kLongestRun(0x7FFE), kZeroAlpha(0)
|
| + , fNextRun(0)
|
| + , fWidth(width)
|
| + , fHeight(height)
|
| + , fBuffer(compressedBuffer)
|
| + {
|
| + SkASSERT((width % BlockDim) == 0);
|
| + SkASSERT((height % BlockDim) == 0);
|
| + }
|
| +
|
| + virtual ~SkTCompressedAlphaBlitter() { this->flushRuns(); }
|
| +
|
| + // Blit a horizontal run of one or more pixels.
|
| + virtual void blitH(int x, int y, int width) SK_OVERRIDE {
|
| + // This function is intended to be called from any standard RGB
|
| + // buffer, so we should never encounter it. However, if some code
|
| + // path does end up here, then this needs to be investigated.
|
| + SkFAIL("Not implemented!");
|
| + }
|
| +
|
| + // Blit a horizontal run of antialiased pixels; runs[] is a *sparse*
|
| + // zero-terminated run-length encoding of spans of constant alpha values.
|
| + virtual void blitAntiH(int x, int y,
|
| + const SkAlpha antialias[],
|
| + const int16_t runs[]) SK_OVERRIDE {
|
| + // Make sure that the new row to blit is either the first
|
| + // row that we're blitting, or it's exactly the next scan row
|
| + // since the last row that we blit. This is to ensure that when
|
| + // we go to flush the runs, that they are all the same four
|
| + // runs.
|
| + if (fNextRun > 0 &&
|
| + ((x != fBufferedRuns[fNextRun-1].fX) ||
|
| + (y-1 != fBufferedRuns[fNextRun-1].fY))) {
|
| + this->flushRuns();
|
| + }
|
| +
|
| + // Align the rows to a block boundary. If we receive rows that
|
| + // are not on a block boundary, then fill in the preceding runs
|
| + // with zeros. We do this by producing a single RLE that says
|
| + // that we have 0x7FFE pixels of zero (0x7FFE = 32766).
|
| + const int row = BlockDim * (y / BlockDim);
|
| + while ((row + fNextRun) < y) {
|
| + fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha;
|
| + fBufferedRuns[fNextRun].fRuns = &kLongestRun;
|
| + fBufferedRuns[fNextRun].fX = 0;
|
| + fBufferedRuns[fNextRun].fY = row + fNextRun;
|
| + ++fNextRun;
|
| + }
|
| +
|
| + // Make sure that our assumptions aren't violated...
|
| + SkASSERT(fNextRun == (y % BlockDim));
|
| + SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y);
|
| +
|
| + // Set the values of the next run
|
| + fBufferedRuns[fNextRun].fAlphas = antialias;
|
| + fBufferedRuns[fNextRun].fRuns = runs;
|
| + fBufferedRuns[fNextRun].fX = x;
|
| + fBufferedRuns[fNextRun].fY = y;
|
| +
|
| + // If we've output a block of scanlines in a row that don't violate our
|
| + // assumptions, then it's time to flush them...
|
| + if (BlockDim == ++fNextRun) {
|
| + this->flushRuns();
|
| + }
|
| + }
|
| +
|
| + // Blit a vertical run of pixels with a constant alpha value.
|
| + virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE {
|
| + // This function is currently not implemented. It is not explicitly
|
| + // required by the contract, but if at some time a code path runs into
|
| + // this function (which is entirely possible), it needs to be implemented.
|
| + //
|
| + // TODO (krajcevski):
|
| + // This function will be most easily implemented in one of two ways:
|
| + // 1. Buffer each vertical column value and then construct a list
|
| + // of alpha values and output all of the blocks at once. This only
|
| + // requires a write to the compressed buffer
|
| + // 2. Replace the indices of each block with the proper indices based
|
| + // on the alpha value. This requires a read and write of the compressed
|
| + // buffer, but much less overhead.
|
| + SkFAIL("Not implemented!");
|
| + }
|
| +
|
| + // Blit a solid rectangle one or more pixels wide.
|
| + virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE {
|
| + // Analogous to blitRow, this function is intended for RGB targets
|
| + // and should never be called by this blitter. Any calls to this function
|
| + // are probably a bug and should be investigated.
|
| + SkFAIL("Not implemented!");
|
| + }
|
| +
|
| + // Blit a rectangle with one alpha-blended column on the left,
|
| + // width (zero or more) opaque pixels, and one alpha-blended column
|
| + // on the right. The result will always be at least two pixels wide.
|
| + virtual void blitAntiRect(int x, int y, int width, int height,
|
| + SkAlpha leftAlpha, SkAlpha rightAlpha) SK_OVERRIDE {
|
| + // This function is currently not implemented. It is not explicitly
|
| + // required by the contract, but if at some time a code path runs into
|
| + // this function (which is entirely possible), it needs to be implemented.
|
| + //
|
| + // TODO (krajcevski):
|
| + // This function will be most easily implemented as follows:
|
| + // 1. If width/height are smaller than a block, then update the
|
| + // indices of the affected blocks.
|
| + // 2. If width/height are larger than a block, then construct a 9-patch
|
| + // of block encodings that represent the rectangle, and write them
|
| + // to the compressed buffer as necessary. Whether or not the blocks
|
| + // are overwritten by zeros or just their indices are updated is up
|
| + // to debate.
|
| + SkFAIL("Not implemented!");
|
| + }
|
| +
|
| + // Blit a pattern of pixels defined by a rectangle-clipped mask;
|
| + // typically used for text.
|
| + virtual void blitMask(const SkMask&, const SkIRect& clip) SK_OVERRIDE {
|
| + // This function is currently not implemented. It is not explicitly
|
| + // required by the contract, but if at some time a code path runs into
|
| + // this function (which is entirely possible), it needs to be implemented.
|
| + //
|
| + // TODO (krajcevski):
|
| + // This function will be most easily implemented in the same way as
|
| + // blitAntiRect above.
|
| + SkFAIL("Not implemented!");
|
| + }
|
| +
|
| + // If the blitter just sets a single value for each pixel, return the
|
| + // bitmap it draws into, and assign value. If not, return NULL and ignore
|
| + // the value parameter.
|
| + virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) SK_OVERRIDE {
|
| + return NULL;
|
| + }
|
| +
|
| + /**
|
| + * Compressed texture blitters only really work correctly if they get
|
| + * BlockDim rows at a time. That being said, this blitter tries it's best
|
| + * to preserve semantics if blitAntiH doesn't get called in too many
|
| + * weird ways...
|
| + */
|
| + virtual int requestRowsPreserved() const { return BlockDim; }
|
| +
|
| +private:
|
| + static const int kPixelsPerBlock = BlockDim * BlockDim;
|
| +
|
| + // The longest possible run of pixels that this blitter will receive.
|
| + // This is initialized in the constructor to 0x7FFE, which is one less
|
| + // than the largest positive 16-bit integer. We make sure that it's one
|
| + // less for debugging purposes. We also don't make this variable static
|
| + // in order to make sure that we can construct a valid pointer to it.
|
| + const int16_t kLongestRun;
|
| +
|
| + // Usually used in conjunction with kLongestRun. This is initialized to
|
| + // zero.
|
| + const SkAlpha kZeroAlpha;
|
| +
|
| + // This is the information that we buffer whenever we're asked to blit
|
| + // a row with this blitter.
|
| + struct BufferedRun {
|
| + const SkAlpha* fAlphas;
|
| + const int16_t* fRuns;
|
| + int fX, fY;
|
| + } fBufferedRuns[BlockDim];
|
| +
|
| + // The next row [0, BlockDim) that we need to blit.
|
| + int fNextRun;
|
| +
|
| + // The width and height of the image that we're blitting
|
| + const int fWidth;
|
| + const int fHeight;
|
| +
|
| + // The compressed buffer that we're blitting into. It is assumed that the buffer
|
| + // is large enough to store a compressed image of size fWidth*fHeight.
|
| + void* const fBuffer;
|
| +
|
| + // Various utility functions
|
| + int blocksWide() const { return fWidth / BlockDim; }
|
| + int blocksTall() const { return fHeight / BlockDim; }
|
| + int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; }
|
| +
|
| + // Returns the block index for the block containing pixel (x, y). Block
|
| + // indices start at zero and proceed in raster order.
|
| + int getBlockOffset(int x, int y) const {
|
| + SkASSERT(x < fWidth);
|
| + SkASSERT(y < fHeight);
|
| + const int blockCol = x / BlockDim;
|
| + const int blockRow = y / BlockDim;
|
| + return blockRow * this->blocksWide() + blockCol;
|
| + }
|
| +
|
| + // Returns a pointer to the block containing pixel (x, y)
|
| + uint8_t *getBlock(int x, int y) const {
|
| + uint8_t* ptr = reinterpret_cast<uint8_t*>(fBuffer);
|
| + return ptr + EncodedBlockSize*this->getBlockOffset(x, y);
|
| + }
|
| +
|
| + // Updates the block whose columns are stored in block. curAlphai is expected
|
| + // to store the alpha values that will be placed within each of the columns in
|
| + // the range [col, col+colsLeft).
|
| + typedef uint32_t Column[BlockDim/4];
|
| + typedef uint32_t Block[BlockDim][BlockDim/4];
|
| + inline void updateBlockColumns(Block block, const int col,
|
| + const int colsLeft, const Column curAlphai) {
|
| + SkASSERT(NULL != block);
|
| + SkASSERT(col + colsLeft <= 4);
|
| +
|
| + for (int i = col; i < (col + colsLeft); ++i) {
|
| + memcpy(block[i], curAlphai, sizeof(Column));
|
| + }
|
| + }
|
| +
|
| + // The following function writes the buffered runs to compressed blocks.
|
| + // If fNextRun < BlockDim, then we fill the runs that we haven't buffered with
|
| + // the constant zero buffer.
|
| + void flushRuns() {
|
| + // If we don't have any runs, then just return.
|
| + if (0 == fNextRun) {
|
| + return;
|
| + }
|
| +
|
| +#ifndef NDEBUG
|
| + // Make sure that if we have any runs, they all match
|
| + for (int i = 1; i < fNextRun; ++i) {
|
| + SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1);
|
| + SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX);
|
| + }
|
| +#endif
|
| +
|
| + // If we don't have as many runs as we have rows, fill in the remaining
|
| + // runs with constant zeros.
|
| + for (int i = fNextRun; i < BlockDim; ++i) {
|
| + fBufferedRuns[i].fY = fBufferedRuns[0].fY + i;
|
| + fBufferedRuns[i].fX = fBufferedRuns[0].fX;
|
| + fBufferedRuns[i].fAlphas = &kZeroAlpha;
|
| + fBufferedRuns[i].fRuns = &kLongestRun;
|
| + }
|
| +
|
| + // Make sure that our assumptions aren't violated.
|
| + SkASSERT(fNextRun > 0 && fNextRun <= BlockDim);
|
| + SkASSERT((fBufferedRuns[0].fY % BlockDim) == 0);
|
| +
|
| + // The following logic walks BlockDim rows at a time and outputs compressed
|
| + // blocks to the buffer passed into the constructor.
|
| + // We do the following:
|
| + //
|
| + // c1 c2 c3 c4
|
| + // -----------------------------------------------------------------------
|
| + // ... | | | | | ----> fBufferedRuns[0]
|
| + // -----------------------------------------------------------------------
|
| + // ... | | | | | ----> fBufferedRuns[1]
|
| + // -----------------------------------------------------------------------
|
| + // ... | | | | | ----> fBufferedRuns[2]
|
| + // -----------------------------------------------------------------------
|
| + // ... | | | | | ----> fBufferedRuns[3]
|
| + // -----------------------------------------------------------------------
|
| + //
|
| + // curX -- the macro X value that we've gotten to.
|
| + // c[BlockDim] -- the buffers that represent the columns of the current block
|
| + // that we're operating on
|
| + // curAlphaColumn -- buffer containing the column of alpha values from fBufferedRuns.
|
| + // nextX -- for each run, the next point at which we need to update curAlphaColumn
|
| + // after the value of curX.
|
| + // finalX -- the minimum of all the nextX values.
|
| + //
|
| + // curX advances to finalX outputting any blocks that it passes along
|
| + // the way. Since finalX will not change when we reach the end of a
|
| + // run, the termination criteria will be whenever curX == finalX at the
|
| + // end of a loop.
|
| +
|
| + // Setup:
|
| + Block block;
|
| + sk_bzero(block, sizeof(block));
|
| +
|
| + Column curAlphaColumn;
|
| + sk_bzero(curAlphaColumn, sizeof(curAlphaColumn));
|
| +
|
| + SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn);
|
| +
|
| + int nextX[BlockDim];
|
| + for (int i = 0; i < BlockDim; ++i) {
|
| + nextX[i] = 0x7FFFFF;
|
| + }
|
| +
|
| + uint8_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY);
|
| +
|
| + // Populate the first set of runs and figure out how far we need to
|
| + // advance on the first step
|
| + int curX = 0;
|
| + int finalX = 0xFFFFF;
|
| + for (int i = 0; i < BlockDim; ++i) {
|
| + nextX[i] = *(fBufferedRuns[i].fRuns);
|
| + curAlpha[i] = *(fBufferedRuns[i].fAlphas);
|
| +
|
| + finalX = SkMin32(nextX[i], finalX);
|
| + }
|
| +
|
| + // Make sure that we have a valid right-bound X value
|
| + SkASSERT(finalX < 0xFFFFF);
|
| +
|
| + // Run the blitter...
|
| + while (curX != finalX) {
|
| + SkASSERT(finalX >= curX);
|
| +
|
| + // Do we need to populate the rest of the block?
|
| + if ((finalX - (BlockDim*(curX / BlockDim))) >= BlockDim) {
|
| + const int col = curX % BlockDim;
|
| + const int colsLeft = BlockDim - col;
|
| + SkASSERT(curX + colsLeft <= finalX);
|
| +
|
| + this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
|
| +
|
| + // Write this block
|
| + CompressionProc(outPtr, reinterpret_cast<uint8_t*>(block));
|
| + outPtr += EncodedBlockSize;
|
| + curX += colsLeft;
|
| + }
|
| +
|
| + // If we can advance even further, then just keep memsetting the block
|
| + if ((finalX - curX) >= BlockDim) {
|
| + SkASSERT((curX % BlockDim) == 0);
|
| +
|
| + const int col = 0;
|
| + const int colsLeft = BlockDim;
|
| +
|
| + this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
|
| +
|
| + // While we can keep advancing, just keep writing the block.
|
| + uint8_t lastBlock[EncodedBlockSize];
|
| + CompressionProc(lastBlock, reinterpret_cast<uint8_t*>(block));
|
| + while((finalX - curX) >= BlockDim) {
|
| + memcpy(outPtr, lastBlock, EncodedBlockSize);
|
| + outPtr += EncodedBlockSize;
|
| + curX += BlockDim;
|
| + }
|
| + }
|
| +
|
| + // If we haven't advanced within the block then do so.
|
| + if (curX < finalX) {
|
| + const int col = curX % BlockDim;
|
| + const int colsLeft = finalX - curX;
|
| +
|
| + this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
|
| + curX += colsLeft;
|
| + }
|
| +
|
| + SkASSERT(curX == finalX);
|
| +
|
| + // Figure out what the next advancement is...
|
| + for (int i = 0; i < BlockDim; ++i) {
|
| + if (nextX[i] == finalX) {
|
| + const int16_t run = *(fBufferedRuns[i].fRuns);
|
| + fBufferedRuns[i].fRuns += run;
|
| + fBufferedRuns[i].fAlphas += run;
|
| + curAlpha[i] = *(fBufferedRuns[i].fAlphas);
|
| + nextX[i] += *(fBufferedRuns[i].fRuns);
|
| + }
|
| + }
|
| +
|
| + finalX = 0xFFFFF;
|
| + for (int i = 0; i < BlockDim; ++i) {
|
| + finalX = SkMin32(nextX[i], finalX);
|
| + }
|
| + }
|
| +
|
| + // If we didn't land on a block boundary, output the block...
|
| + if ((curX % BlockDim) > 1) {
|
| + CompressionProc(outPtr, reinterpret_cast<uint8_t*>(block));
|
| + }
|
| +
|
| + fNextRun = 0;
|
| + }
|
| +};
|
| +
|
| +} // namespace SkTextureCompressor
|
| +
|
| +#endif // SkTextureCompressor_Blitter_DEFINED
|
|
|