Index: src/utils/SkTextureCompressor_Blitter.h |
diff --git a/src/utils/SkTextureCompressor_Blitter.h b/src/utils/SkTextureCompressor_Blitter.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..23265a4d184c6645d72c6ea38544f3d75730d57d |
--- /dev/null |
+++ b/src/utils/SkTextureCompressor_Blitter.h |
@@ -0,0 +1,405 @@ |
+/* |
+ * Copyright 2014 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+#ifndef SkTextureCompressor_Blitter_DEFINED |
+#define SkTextureCompressor_Blitter_DEFINED |
+ |
+#include "SkTypes.h" |
+#include "SkBlitter.h" |
+ |
+namespace SkTextureCompressor { |
+ |
+// The function used to compress an A8 block. This function is expected to be |
+// used as a template argument to SkCompressedAlphaBlitter. The layout of the |
+// block is also expected to be in column-major order. |
+typedef void (*CompressA8Proc)(uint8_t* dst, const uint8_t block[]); |
+ |
+// This class implements a blitter that blits directly into a buffer that will |
+// be used as an compressed alpha texture. We compute this buffer by |
+// buffering scan lines and then outputting them all at once. The number of |
+// scan lines buffered is controlled by kBlockSize |
+template<int BlockDim, int EncodedBlockSize, CompressA8Proc CompressionProc> |
+class SkTCompressedAlphaBlitter : public SkBlitter { |
+public: |
+ SkTCompressedAlphaBlitter(int width, int height, void *compressedBuffer) |
+ // 0x7FFE is one minus the largest positive 16-bit int. We use it for |
+ // debugging to make sure that we're properly setting the nextX distance |
+ // in flushRuns(). |
+ : kLongestRun(0x7FFE), kZeroAlpha(0) |
+ , fNextRun(0) |
+ , fWidth(width) |
+ , fHeight(height) |
+ , fBuffer(compressedBuffer) |
+ { |
+ SkASSERT((width % BlockDim) == 0); |
+ SkASSERT((height % BlockDim) == 0); |
+ } |
+ |
+ virtual ~SkTCompressedAlphaBlitter() { this->flushRuns(); } |
+ |
+ // Blit a horizontal run of one or more pixels. |
+ virtual void blitH(int x, int y, int width) SK_OVERRIDE { |
+ // This function is intended to be called from any standard RGB |
+ // buffer, so we should never encounter it. However, if some code |
+ // path does end up here, then this needs to be investigated. |
+ SkFAIL("Not implemented!"); |
+ } |
+ |
+ // Blit a horizontal run of antialiased pixels; runs[] is a *sparse* |
+ // zero-terminated run-length encoding of spans of constant alpha values. |
+ virtual void blitAntiH(int x, int y, |
+ const SkAlpha antialias[], |
+ const int16_t runs[]) SK_OVERRIDE { |
+ // Make sure that the new row to blit is either the first |
+ // row that we're blitting, or it's exactly the next scan row |
+ // since the last row that we blit. This is to ensure that when |
+ // we go to flush the runs, that they are all the same four |
+ // runs. |
+ if (fNextRun > 0 && |
+ ((x != fBufferedRuns[fNextRun-1].fX) || |
+ (y-1 != fBufferedRuns[fNextRun-1].fY))) { |
+ this->flushRuns(); |
+ } |
+ |
+ // Align the rows to a block boundary. If we receive rows that |
+ // are not on a block boundary, then fill in the preceding runs |
+ // with zeros. We do this by producing a single RLE that says |
+ // that we have 0x7FFE pixels of zero (0x7FFE = 32766). |
+ const int row = BlockDim * (y / BlockDim); |
+ while ((row + fNextRun) < y) { |
+ fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha; |
+ fBufferedRuns[fNextRun].fRuns = &kLongestRun; |
+ fBufferedRuns[fNextRun].fX = 0; |
+ fBufferedRuns[fNextRun].fY = row + fNextRun; |
+ ++fNextRun; |
+ } |
+ |
+ // Make sure that our assumptions aren't violated... |
+ SkASSERT(fNextRun == (y % BlockDim)); |
+ SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y); |
+ |
+ // Set the values of the next run |
+ fBufferedRuns[fNextRun].fAlphas = antialias; |
+ fBufferedRuns[fNextRun].fRuns = runs; |
+ fBufferedRuns[fNextRun].fX = x; |
+ fBufferedRuns[fNextRun].fY = y; |
+ |
+ // If we've output a block of scanlines in a row that don't violate our |
+ // assumptions, then it's time to flush them... |
+ if (BlockDim == ++fNextRun) { |
+ this->flushRuns(); |
+ } |
+ } |
+ |
+ // Blit a vertical run of pixels with a constant alpha value. |
+ virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE { |
+ // This function is currently not implemented. It is not explicitly |
+ // required by the contract, but if at some time a code path runs into |
+ // this function (which is entirely possible), it needs to be implemented. |
+ // |
+ // TODO (krajcevski): |
+ // This function will be most easily implemented in one of two ways: |
+ // 1. Buffer each vertical column value and then construct a list |
+ // of alpha values and output all of the blocks at once. This only |
+ // requires a write to the compressed buffer |
+ // 2. Replace the indices of each block with the proper indices based |
+ // on the alpha value. This requires a read and write of the compressed |
+ // buffer, but much less overhead. |
+ SkFAIL("Not implemented!"); |
+ } |
+ |
+ // Blit a solid rectangle one or more pixels wide. |
+ virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE { |
+ // Analogous to blitRow, this function is intended for RGB targets |
+ // and should never be called by this blitter. Any calls to this function |
+ // are probably a bug and should be investigated. |
+ SkFAIL("Not implemented!"); |
+ } |
+ |
+ // Blit a rectangle with one alpha-blended column on the left, |
+ // width (zero or more) opaque pixels, and one alpha-blended column |
+ // on the right. The result will always be at least two pixels wide. |
+ virtual void blitAntiRect(int x, int y, int width, int height, |
+ SkAlpha leftAlpha, SkAlpha rightAlpha) SK_OVERRIDE { |
+ // This function is currently not implemented. It is not explicitly |
+ // required by the contract, but if at some time a code path runs into |
+ // this function (which is entirely possible), it needs to be implemented. |
+ // |
+ // TODO (krajcevski): |
+ // This function will be most easily implemented as follows: |
+ // 1. If width/height are smaller than a block, then update the |
+ // indices of the affected blocks. |
+ // 2. If width/height are larger than a block, then construct a 9-patch |
+ // of block encodings that represent the rectangle, and write them |
+ // to the compressed buffer as necessary. Whether or not the blocks |
+ // are overwritten by zeros or just their indices are updated is up |
+ // to debate. |
+ SkFAIL("Not implemented!"); |
+ } |
+ |
+ // Blit a pattern of pixels defined by a rectangle-clipped mask; |
+ // typically used for text. |
+ virtual void blitMask(const SkMask&, const SkIRect& clip) SK_OVERRIDE { |
+ // This function is currently not implemented. It is not explicitly |
+ // required by the contract, but if at some time a code path runs into |
+ // this function (which is entirely possible), it needs to be implemented. |
+ // |
+ // TODO (krajcevski): |
+ // This function will be most easily implemented in the same way as |
+ // blitAntiRect above. |
+ SkFAIL("Not implemented!"); |
+ } |
+ |
+ // If the blitter just sets a single value for each pixel, return the |
+ // bitmap it draws into, and assign value. If not, return NULL and ignore |
+ // the value parameter. |
+ virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) SK_OVERRIDE { |
+ return NULL; |
+ } |
+ |
+ /** |
+ * Compressed texture blitters only really work correctly if they get |
+ * BlockDim rows at a time. That being said, this blitter tries it's best |
+ * to preserve semantics if blitAntiH doesn't get called in too many |
+ * weird ways... |
+ */ |
+ virtual int requestRowsPreserved() const { return BlockDim; } |
+ |
+private: |
+ static const int kPixelsPerBlock = BlockDim * BlockDim; |
+ |
+ // The longest possible run of pixels that this blitter will receive. |
+ // This is initialized in the constructor to 0x7FFE, which is one less |
+ // than the largest positive 16-bit integer. We make sure that it's one |
+ // less for debugging purposes. We also don't make this variable static |
+ // in order to make sure that we can construct a valid pointer to it. |
+ const int16_t kLongestRun; |
+ |
+ // Usually used in conjunction with kLongestRun. This is initialized to |
+ // zero. |
+ const SkAlpha kZeroAlpha; |
+ |
+ // This is the information that we buffer whenever we're asked to blit |
+ // a row with this blitter. |
+ struct BufferedRun { |
+ const SkAlpha* fAlphas; |
+ const int16_t* fRuns; |
+ int fX, fY; |
+ } fBufferedRuns[BlockDim]; |
+ |
+ // The next row [0, BlockDim) that we need to blit. |
+ int fNextRun; |
+ |
+ // The width and height of the image that we're blitting |
+ const int fWidth; |
+ const int fHeight; |
+ |
+ // The compressed buffer that we're blitting into. It is assumed that the buffer |
+ // is large enough to store a compressed image of size fWidth*fHeight. |
+ void* const fBuffer; |
+ |
+ // Various utility functions |
+ int blocksWide() const { return fWidth / BlockDim; } |
+ int blocksTall() const { return fHeight / BlockDim; } |
+ int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; } |
+ |
+ // Returns the block index for the block containing pixel (x, y). Block |
+ // indices start at zero and proceed in raster order. |
+ int getBlockOffset(int x, int y) const { |
+ SkASSERT(x < fWidth); |
+ SkASSERT(y < fHeight); |
+ const int blockCol = x / BlockDim; |
+ const int blockRow = y / BlockDim; |
+ return blockRow * this->blocksWide() + blockCol; |
+ } |
+ |
+ // Returns a pointer to the block containing pixel (x, y) |
+ uint8_t *getBlock(int x, int y) const { |
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(fBuffer); |
+ return ptr + EncodedBlockSize*this->getBlockOffset(x, y); |
+ } |
+ |
+ // Updates the block whose columns are stored in block. curAlphai is expected |
+ // to store the alpha values that will be placed within each of the columns in |
+ // the range [col, col+colsLeft). |
+ typedef uint32_t Column[BlockDim/4]; |
+ typedef uint32_t Block[BlockDim][BlockDim/4]; |
+ inline void updateBlockColumns(Block block, const int col, |
+ const int colsLeft, const Column curAlphai) { |
+ SkASSERT(NULL != block); |
+ SkASSERT(col + colsLeft <= 4); |
+ |
+ for (int i = col; i < (col + colsLeft); ++i) { |
+ memcpy(block[i], curAlphai, sizeof(Column)); |
+ } |
+ } |
+ |
+ // The following function writes the buffered runs to compressed blocks. |
+ // If fNextRun < BlockDim, then we fill the runs that we haven't buffered with |
+ // the constant zero buffer. |
+ void flushRuns() { |
+ // If we don't have any runs, then just return. |
+ if (0 == fNextRun) { |
+ return; |
+ } |
+ |
+#ifndef NDEBUG |
+ // Make sure that if we have any runs, they all match |
+ for (int i = 1; i < fNextRun; ++i) { |
+ SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1); |
+ SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX); |
+ } |
+#endif |
+ |
+ // If we don't have as many runs as we have rows, fill in the remaining |
+ // runs with constant zeros. |
+ for (int i = fNextRun; i < BlockDim; ++i) { |
+ fBufferedRuns[i].fY = fBufferedRuns[0].fY + i; |
+ fBufferedRuns[i].fX = fBufferedRuns[0].fX; |
+ fBufferedRuns[i].fAlphas = &kZeroAlpha; |
+ fBufferedRuns[i].fRuns = &kLongestRun; |
+ } |
+ |
+ // Make sure that our assumptions aren't violated. |
+ SkASSERT(fNextRun > 0 && fNextRun <= BlockDim); |
+ SkASSERT((fBufferedRuns[0].fY % BlockDim) == 0); |
+ |
+ // The following logic walks BlockDim rows at a time and outputs compressed |
+ // blocks to the buffer passed into the constructor. |
+ // We do the following: |
+ // |
+ // c1 c2 c3 c4 |
+ // ----------------------------------------------------------------------- |
+ // ... | | | | | ----> fBufferedRuns[0] |
+ // ----------------------------------------------------------------------- |
+ // ... | | | | | ----> fBufferedRuns[1] |
+ // ----------------------------------------------------------------------- |
+ // ... | | | | | ----> fBufferedRuns[2] |
+ // ----------------------------------------------------------------------- |
+ // ... | | | | | ----> fBufferedRuns[3] |
+ // ----------------------------------------------------------------------- |
+ // |
+ // curX -- the macro X value that we've gotten to. |
+ // c[BlockDim] -- the buffers that represent the columns of the current block |
+ // that we're operating on |
+ // curAlphaColumn -- buffer containing the column of alpha values from fBufferedRuns. |
+ // nextX -- for each run, the next point at which we need to update curAlphaColumn |
+ // after the value of curX. |
+ // finalX -- the minimum of all the nextX values. |
+ // |
+ // curX advances to finalX outputting any blocks that it passes along |
+ // the way. Since finalX will not change when we reach the end of a |
+ // run, the termination criteria will be whenever curX == finalX at the |
+ // end of a loop. |
+ |
+ // Setup: |
+ Block block; |
+ sk_bzero(block, sizeof(block)); |
+ |
+ Column curAlphaColumn; |
+ sk_bzero(curAlphaColumn, sizeof(curAlphaColumn)); |
+ |
+ SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn); |
+ |
+ int nextX[BlockDim]; |
+ for (int i = 0; i < BlockDim; ++i) { |
+ nextX[i] = 0x7FFFFF; |
+ } |
+ |
+ uint8_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY); |
+ |
+ // Populate the first set of runs and figure out how far we need to |
+ // advance on the first step |
+ int curX = 0; |
+ int finalX = 0xFFFFF; |
+ for (int i = 0; i < BlockDim; ++i) { |
+ nextX[i] = *(fBufferedRuns[i].fRuns); |
+ curAlpha[i] = *(fBufferedRuns[i].fAlphas); |
+ |
+ finalX = SkMin32(nextX[i], finalX); |
+ } |
+ |
+ // Make sure that we have a valid right-bound X value |
+ SkASSERT(finalX < 0xFFFFF); |
+ |
+ // Run the blitter... |
+ while (curX != finalX) { |
+ SkASSERT(finalX >= curX); |
+ |
+ // Do we need to populate the rest of the block? |
+ if ((finalX - (BlockDim*(curX / BlockDim))) >= BlockDim) { |
+ const int col = curX % BlockDim; |
+ const int colsLeft = BlockDim - col; |
+ SkASSERT(curX + colsLeft <= finalX); |
+ |
+ this->updateBlockColumns(block, col, colsLeft, curAlphaColumn); |
+ |
+ // Write this block |
+ CompressionProc(outPtr, reinterpret_cast<uint8_t*>(block)); |
+ outPtr += EncodedBlockSize; |
+ curX += colsLeft; |
+ } |
+ |
+ // If we can advance even further, then just keep memsetting the block |
+ if ((finalX - curX) >= BlockDim) { |
+ SkASSERT((curX % BlockDim) == 0); |
+ |
+ const int col = 0; |
+ const int colsLeft = BlockDim; |
+ |
+ this->updateBlockColumns(block, col, colsLeft, curAlphaColumn); |
+ |
+ // While we can keep advancing, just keep writing the block. |
+ uint8_t lastBlock[EncodedBlockSize]; |
+ CompressionProc(lastBlock, reinterpret_cast<uint8_t*>(block)); |
+ while((finalX - curX) >= BlockDim) { |
+ memcpy(outPtr, lastBlock, EncodedBlockSize); |
+ outPtr += EncodedBlockSize; |
+ curX += BlockDim; |
+ } |
+ } |
+ |
+ // If we haven't advanced within the block then do so. |
+ if (curX < finalX) { |
+ const int col = curX % BlockDim; |
+ const int colsLeft = finalX - curX; |
+ |
+ this->updateBlockColumns(block, col, colsLeft, curAlphaColumn); |
+ curX += colsLeft; |
+ } |
+ |
+ SkASSERT(curX == finalX); |
+ |
+ // Figure out what the next advancement is... |
+ for (int i = 0; i < BlockDim; ++i) { |
+ if (nextX[i] == finalX) { |
+ const int16_t run = *(fBufferedRuns[i].fRuns); |
+ fBufferedRuns[i].fRuns += run; |
+ fBufferedRuns[i].fAlphas += run; |
+ curAlpha[i] = *(fBufferedRuns[i].fAlphas); |
+ nextX[i] += *(fBufferedRuns[i].fRuns); |
+ } |
+ } |
+ |
+ finalX = 0xFFFFF; |
+ for (int i = 0; i < BlockDim; ++i) { |
+ finalX = SkMin32(nextX[i], finalX); |
+ } |
+ } |
+ |
+ // If we didn't land on a block boundary, output the block... |
+ if ((curX % BlockDim) > 1) { |
+ CompressionProc(outPtr, reinterpret_cast<uint8_t*>(block)); |
+ } |
+ |
+ fNextRun = 0; |
+ } |
+}; |
+ |
+} // namespace SkTextureCompressor |
+ |
+#endif // SkTextureCompressor_Blitter_DEFINED |