Chromium Code Reviews| Index: src/utils/SkTextureCompressor_Blitter.h |
| diff --git a/src/utils/SkTextureCompressor_Blitter.h b/src/utils/SkTextureCompressor_Blitter.h |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..4331bd0d5ee8703dc2dbf32d3b9ac011f601d657 |
| --- /dev/null |
| +++ b/src/utils/SkTextureCompressor_Blitter.h |
| @@ -0,0 +1,402 @@ |
| +/* |
| + * Copyright 2014 Google Inc. |
| + * |
| + * Use of this source code is governed by a BSD-style license that can be |
| + * found in the LICENSE file. |
| + */ |
| + |
|
robertphillips
2014/07/28 17:51:36
This needs a 'T' in its name to let everyone know
krajcevski
2014/07/28 18:18:31
Done.
|
| +#ifndef SkTextureCompressor_Blitter_DEFINED |
| +#define SkTextureCompressor_Blitter_DEFINED |
| + |
| +#include "SkTypes.h" |
| +#include "SkBlitter.h" |
| + |
| +namespace SkTextureCompressor { |
| + |
| +// The function used to compress an A8 block. This function is expected to be |
| +// used as a template argument to SkCompressedAlphaBlitter. The layout of the |
| +// block is also expected to be in column-major order. |
| +typedef void (*CompressA8Proc)(uint8_t* dst, const uint8_t block[]); |
| + |
| +// This class implements a blitter that blits directly into a buffer that will |
| +// be used as an compressed alpha texture. We compute this buffer by |
| +// buffering scan lines and then outputting them all at once. The number of |
| +// scan lines buffered is controlled by kBlockSize |
| +template<int kBlockSize, int kEncodedBlockSize, CompressA8Proc kCompressionProc> |
| +class SkCompressedAlphaBlitter : public SkBlitter { |
| +public: |
| + SkCompressedAlphaBlitter(int width, int height, void *compressedBuffer) |
| + // 0x7FFE is one minus the largest positive 16-bit int. We use it for |
| + // debugging to make sure that we're properly setting the nextX distance |
| + // in flushRuns(). |
| + : kLongestRun(0x7FFE), kZeroAlpha(0) |
| + , fNextRun(0) |
| + , fWidth(width) |
| + , fHeight(height) |
| + , fBuffer(compressedBuffer) |
| + { |
| + SkASSERT((width % kBlockSize) == 0); |
| + SkASSERT((height % kBlockSize) == 0); |
| + } |
| + |
| + virtual ~SkCompressedAlphaBlitter() { this->flushRuns(); } |
| + |
| + // Blit a horizontal run of one or more pixels. |
| + virtual void blitH(int x, int y, int width) SK_OVERRIDE { |
| + // This function is intended to be called from any standard RGB |
| + // buffer, so we should never encounter it. However, if some code |
| + // path does end up here, then this needs to be investigated. |
| + SkFAIL("Not implemented!"); |
| + } |
| + |
| + // Blit a horizontal run of antialiased pixels; runs[] is a *sparse* |
| + // zero-terminated run-length encoding of spans of constant alpha values. |
| + virtual void blitAntiH(int x, int y, |
| + const SkAlpha antialias[], |
| + const int16_t runs[]) SK_OVERRIDE { |
| + // Make sure that the new row to blit is either the first |
| + // row that we're blitting, or it's exactly the next scan row |
| + // since the last row that we blit. This is to ensure that when |
| + // we go to flush the runs, that they are all the same four |
| + // runs. |
| + if (fNextRun > 0 && |
| + ((x != fBufferedRuns[fNextRun-1].fX) || |
| + (y-1 != fBufferedRuns[fNextRun-1].fY))) { |
| + this->flushRuns(); |
| + } |
| + |
| + // Align the rows to a block boundary. If we receive rows that |
| + // are not on a block boundary, then fill in the preceding runs |
| + // with zeros. We do this by producing a single RLE that says |
| + // that we have 0x7FFE pixels of zero (0x7FFE = 32766). |
| + const int row = y & ~3; |
| + while ((row + fNextRun) < y) { |
| + fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha; |
| + fBufferedRuns[fNextRun].fRuns = &kLongestRun; |
| + fBufferedRuns[fNextRun].fX = 0; |
| + fBufferedRuns[fNextRun].fY = row + fNextRun; |
| + ++fNextRun; |
| + } |
| + |
| + // Make sure that our assumptions aren't violated... |
| + SkASSERT(fNextRun == (y & 3)); |
| + SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y); |
| + |
| + // Set the values of the next run |
| + fBufferedRuns[fNextRun].fAlphas = antialias; |
| + fBufferedRuns[fNextRun].fRuns = runs; |
| + fBufferedRuns[fNextRun].fX = x; |
| + fBufferedRuns[fNextRun].fY = y; |
| + |
| + // If we've output four scanlines in a row that don't violate our |
| + // assumptions, then it's time to flush them... |
|
robertphillips
2014/07/28 17:51:36
4?
krajcevski
2014/07/28 18:18:31
Done.
|
| + if (4 == ++fNextRun) { |
| + this->flushRuns(); |
| + } |
| + } |
| + |
| + // Blit a vertical run of pixels with a constant alpha value. |
| + virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE { |
| + // This function is currently not implemented. It is not explicitly |
| + // required by the contract, but if at some time a code path runs into |
| + // this function (which is entirely possible), it needs to be implemented. |
| + // |
| + // TODO (krajcevski): |
| + // This function will be most easily implemented in one of two ways: |
| + // 1. Buffer each vertical column value and then construct a list |
| + // of alpha values and output all of the blocks at once. This only |
| + // requires a write to the compressed buffer |
| + // 2. Replace the indices of each block with the proper indices based |
| + // on the alpha value. This requires a read and write of the compressed |
| + // buffer, but much less overhead. |
| + SkFAIL("Not implemented!"); |
| + } |
| + |
| + // Blit a solid rectangle one or more pixels wide. |
| + virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE { |
| + // Analogous to blitRow, this function is intended for RGB targets |
| + // and should never be called by this blitter. Any calls to this function |
| + // are probably a bug and should be investigated. |
| + SkFAIL("Not implemented!"); |
| + } |
| + |
| + // Blit a rectangle with one alpha-blended column on the left, |
| + // width (zero or more) opaque pixels, and one alpha-blended column |
| + // on the right. The result will always be at least two pixels wide. |
| + virtual void blitAntiRect(int x, int y, int width, int height, |
| + SkAlpha leftAlpha, SkAlpha rightAlpha) SK_OVERRIDE { |
| + // This function is currently not implemented. It is not explicitly |
| + // required by the contract, but if at some time a code path runs into |
| + // this function (which is entirely possible), it needs to be implemented. |
| + // |
| + // TODO (krajcevski): |
| + // This function will be most easily implemented as follows: |
| + // 1. If width/height are smaller than a block, then update the |
| + // indices of the affected blocks. |
| + // 2. If width/height are larger than a block, then construct a 9-patch |
| + // of block encodings that represent the rectangle, and write them |
| + // to the compressed buffer as necessary. Whether or not the blocks |
| + // are overwritten by zeros or just their indices are updated is up |
| + // to debate. |
| + SkFAIL("Not implemented!"); |
| + } |
| + |
| + // Blit a pattern of pixels defined by a rectangle-clipped mask; |
| + // typically used for text. |
| + virtual void blitMask(const SkMask&, const SkIRect& clip) SK_OVERRIDE { |
| + // This function is currently not implemented. It is not explicitly |
| + // required by the contract, but if at some time a code path runs into |
| + // this function (which is entirely possible), it needs to be implemented. |
| + // |
| + // TODO (krajcevski): |
| + // This function will be most easily implemented in the same way as |
| + // blitAntiRect above. |
| + SkFAIL("Not implemented!"); |
| + } |
| + |
| + // If the blitter just sets a single value for each pixel, return the |
| + // bitmap it draws into, and assign value. If not, return NULL and ignore |
| + // the value parameter. |
| + virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) SK_OVERRIDE { |
| + return NULL; |
| + } |
| + |
| + /** |
| + * Compressed texture blitters only really work correctly if they get |
|
robertphillips
2014/07/28 17:51:36
four?
krajcevski
2014/07/28 18:18:31
Done.
|
| + * four blocks at a time. That being said, this blitter tries it's best |
| + * to preserve semantics if blitAntiH doesn't get called in too many |
| + * weird ways... |
| + */ |
| + virtual int requestRowsPreserved() const { return kBlockSize; } |
| + |
| +private: |
| + static const int kPixelsPerBlock = kBlockSize * kBlockSize; |
| + |
| + // The longest possible run of pixels that this blitter will receive. |
| + // This is initialized in the constructor to 0x7FFE, which is one less |
| + // than the largest positive 16-bit integer. We make sure that it's one |
| + // less for debugging purposes. We also don't make this variable static |
| + // in order to make sure that we can construct a valid pointer to it. |
| + const int16_t kLongestRun; |
| + |
| + // Usually used in conjunction with kLongestRun. This is initialized to |
| + // zero. |
| + const SkAlpha kZeroAlpha; |
| + |
| + // This is the information that we buffer whenever we're asked to blit |
| + // a row with this blitter. |
| + struct BufferedRun { |
| + const SkAlpha* fAlphas; |
| + const int16_t* fRuns; |
| + int fX, fY; |
| + } fBufferedRuns[kBlockSize]; |
| + |
| + // The next row [0, kBlockSize) that we need to blit. |
| + int fNextRun; |
| + |
| + // The width and height of the image that we're blitting |
| + const int fWidth; |
| + const int fHeight; |
| + |
| + // The compressed buffer that we're blitting into. It is assumed that the buffer |
| + // is large enough to store a compressed image of size fWidth*fHeight. |
| + void* const fBuffer; |
| + |
| + // Various utility functions |
| + int blocksWide() const { return fWidth / kBlockSize; } |
| + int blocksTall() const { return fHeight / kBlockSize; } |
| + int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; } |
| + |
| + // Returns the block index for the block containing pixel (x, y). Block |
| + // indices start at zero and proceed in raster order. |
| + int getBlockOffset(int x, int y) const { |
| + SkASSERT(x < fWidth); |
| + SkASSERT(y < fHeight); |
| + const int blockCol = x / kBlockSize; |
| + const int blockRow = y / kBlockSize; |
| + return blockRow * this->blocksWide() + blockCol; |
| + } |
| + |
| + // Returns a pointer to the block containing pixel (x, y) |
| + uint8_t *getBlock(int x, int y) const { |
| + uint8_t* ptr = reinterpret_cast<uint8_t*>(fBuffer); |
| + return ptr + kEncodedBlockSize*this->getBlockOffset(x, y); |
| + } |
| + |
|
robertphillips
2014/07/28 17:51:37
blockColN ?
krajcevski
2014/07/28 18:18:30
Done.
|
| + // Updates the block whose columns are stored in blockColN. curAlphai is expected |
| + // to store, as an integer, the four alpha values that will be placed within each |
| + // of the columns in the range [col, col+colsLeft). |
| + typedef uint32_t Column[kBlockSize/4]; |
| + typedef uint32_t Block[kBlockSize][kBlockSize/4]; |
| + inline void updateBlockColumns(Block block, const int col, |
| + const int colsLeft, const Column curAlphai) { |
| + SkASSERT(NULL != block); |
| + SkASSERT(col + colsLeft <= 4); |
| + |
| + for (int i = col; i < (col + colsLeft); ++i) { |
| + memcpy(block[i], curAlphai, sizeof(Column)); |
| + } |
| + } |
| + |
| + // The following function writes the buffered runs to compressed blocks. |
| + // If fNextRun < kBlockSize, then we fill the runs that we haven't buffered with |
| + // the constant zero buffer. |
| + void flushRuns() { |
| + // If we don't have any runs, then just return. |
| + if (0 == fNextRun) { |
| + return; |
| + } |
| + |
| +#ifndef NDEBUG |
| + // Make sure that if we have any runs, they all match |
| + for (int i = 1; i < fNextRun; ++i) { |
| + SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1); |
| + SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX); |
| + } |
| +#endif |
| + |
|
robertphillips
2014/07/28 17:51:36
don't ?
krajcevski
2014/07/28 18:18:31
Done.
|
| + // If we dont have as many runs as we have rows, fill in the remaining |
| + // runs with constant zeros. |
| + for (int i = fNextRun; i < kBlockSize; ++i) { |
| + fBufferedRuns[i].fY = fBufferedRuns[0].fY + i; |
| + fBufferedRuns[i].fX = fBufferedRuns[0].fX; |
| + fBufferedRuns[i].fAlphas = &kZeroAlpha; |
| + fBufferedRuns[i].fRuns = &kLongestRun; |
| + } |
| + |
| + // Make sure that our assumptions aren't violated. |
| + SkASSERT(fNextRun > 0 && fNextRun <= kBlockSize); |
| + SkASSERT((fBufferedRuns[0].fY % kBlockSize) == 0); |
| + |
| + // The following logic walks kBlockSize rows at a time and outputs compressed |
| + // blocks to the buffer passed into the constructor. |
| + // We do the following: |
| + // |
| + // c1 c2 c3 c4 |
| + // ----------------------------------------------------------------------- |
| + // ... | | | | | ----> fBufferedRuns[0] |
| + // ----------------------------------------------------------------------- |
| + // ... | | | | | ----> fBufferedRuns[1] |
| + // ----------------------------------------------------------------------- |
| + // ... | | | | | ----> fBufferedRuns[2] |
| + // ----------------------------------------------------------------------- |
| + // ... | | | | | ----> fBufferedRuns[3] |
| + // ----------------------------------------------------------------------- |
| + // |
| + // curX -- the macro X value that we've gotten to. |
| + // c[kBlockSize] -- the buffers that represent the columns of the current block |
| + // that we're operating on |
| + // curAlphaColumn -- buffer containing the column of alpha values from fBufferedRuns. |
| + // nextX -- for each run, the next point at which we need to update curAlphaColumn |
| + // after the value of curX. |
| + // finalX -- the minimum of all the nextX values. |
| + // |
| + // curX advances to finalX outputting any blocks that it passes along |
| + // the way. Since finalX will not change when we reach the end of a |
| + // run, the termination criteria will be whenever curX == finalX at the |
| + // end of a loop. |
| + |
| + // Setup: |
|
robertphillips
2014/07/28 17:51:37
put sk_bzero's on their own line ?
krajcevski
2014/07/28 18:18:30
Done.
|
| + Block block; sk_bzero(block, sizeof(block)); |
| + Column curAlphaColumn; sk_bzero(curAlphaColumn, sizeof(curAlphaColumn)); |
| + |
| + SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn); |
| + |
| + int nextX[kBlockSize]; |
| + for (int i = 0; i < kBlockSize; ++i) { |
| + nextX[i] = 0x7FFFFF; |
| + } |
| + |
| + uint8_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY); |
| + |
| + // Populate the first set of runs and figure out how far we need to |
| + // advance on the first step |
| + int curX = 0; |
| + int finalX = 0xFFFFF; |
| + for (int i = 0; i < kBlockSize; ++i) { |
| + nextX[i] = *(fBufferedRuns[i].fRuns); |
| + curAlpha[i] = *(fBufferedRuns[i].fAlphas); |
| + |
| + finalX = SkMin32(nextX[i], finalX); |
| + } |
| + |
| + // Make sure that we have a valid right-bound X value |
| + SkASSERT(finalX < 0xFFFFF); |
| + |
| + // Run the blitter... |
| + while (curX != finalX) { |
| + SkASSERT(finalX >= curX); |
| + |
| + // Do we need to populate the rest of the block? |
| + if ((finalX - (kBlockSize*(curX / kBlockSize))) >= kBlockSize) { |
| + const int col = curX % kBlockSize; |
| + const int colsLeft = kBlockSize - col; |
| + SkASSERT(curX + colsLeft <= finalX); |
| + |
| + this->updateBlockColumns(block, col, colsLeft, curAlphaColumn); |
| + |
| + // Write this block |
|
robertphillips
2014/07/28 17:51:37
The 'k' prefix is usually reserved for comments. I
krajcevski
2014/07/28 18:18:31
Done.
|
| + kCompressionProc(outPtr, reinterpret_cast<uint8_t*>(block)); |
| + outPtr += kEncodedBlockSize; |
| + curX += colsLeft; |
| + } |
| + |
| + // If we can advance even further, then just keep memsetting the block |
| + if ((finalX - curX) >= kBlockSize) { |
| + SkASSERT((curX % kBlockSize) == 0); |
| + |
| + const int col = 0; |
| + const int colsLeft = kBlockSize; |
| + |
| + this->updateBlockColumns(block, col, colsLeft, curAlphaColumn); |
| + |
| + // While we can keep advancing, just keep writing the block. |
| + uint8_t lastBlock[kEncodedBlockSize]; |
| + kCompressionProc(lastBlock, reinterpret_cast<uint8_t*>(block)); |
| + while((finalX - curX) >= kBlockSize) { |
| + memcpy(outPtr, lastBlock, kEncodedBlockSize); |
| + outPtr += kEncodedBlockSize; |
| + curX += kBlockSize; |
| + } |
| + } |
| + |
| + // If we haven't advanced within the block then do so. |
| + if (curX < finalX) { |
| + const int col = curX % kBlockSize; |
| + const int colsLeft = finalX - curX; |
| + |
| + this->updateBlockColumns(block, col, colsLeft, curAlphaColumn); |
| + curX += colsLeft; |
| + } |
| + |
| + SkASSERT(curX == finalX); |
| + |
| + // Figure out what the next advancement is... |
| + for (int i = 0; i < kBlockSize; ++i) { |
| + if (nextX[i] == finalX) { |
| + const int16_t run = *(fBufferedRuns[i].fRuns); |
| + fBufferedRuns[i].fRuns += run; |
| + fBufferedRuns[i].fAlphas += run; |
| + curAlpha[i] = *(fBufferedRuns[i].fAlphas); |
| + nextX[i] += *(fBufferedRuns[i].fRuns); |
| + } |
| + } |
| + |
| + finalX = 0xFFFFF; |
| + for (int i = 0; i < kBlockSize; ++i) { |
| + finalX = SkMin32(nextX[i], finalX); |
| + } |
| + } |
| + |
| + // If we didn't land on a block boundary, output the block... |
| + if ((curX % kBlockSize) > 1) { |
| + kCompressionProc(outPtr, reinterpret_cast<uint8_t*>(block)); |
| + } |
| + |
| + fNextRun = 0; |
| + } |
| +}; |
| + |
| +} // namespace SkTextureCompressor |
| + |
| +#endif // SkTextureCompressor_Blitter_DEFINED |