Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 /* | |
| 2 * Copyright 2014 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 | |
|
robertphillips
2014/07/28 17:51:36
This needs a 'T' in its name to let everyone know
krajcevski
2014/07/28 18:18:31
Done.
| |
| 8 #ifndef SkTextureCompressor_Blitter_DEFINED | |
| 9 #define SkTextureCompressor_Blitter_DEFINED | |
| 10 | |
| 11 #include "SkTypes.h" | |
| 12 #include "SkBlitter.h" | |
| 13 | |
| 14 namespace SkTextureCompressor { | |
| 15 | |
| 16 // The function used to compress an A8 block. This function is expected to be | |
| 17 // used as a template argument to SkCompressedAlphaBlitter. The layout of the | |
| 18 // block is also expected to be in column-major order. | |
| 19 typedef void (*CompressA8Proc)(uint8_t* dst, const uint8_t block[]); | |
| 20 | |
| 21 // This class implements a blitter that blits directly into a buffer that will | |
| 22 // be used as an compressed alpha texture. We compute this buffer by | |
| 23 // buffering scan lines and then outputting them all at once. The number of | |
| 24 // scan lines buffered is controlled by kBlockSize | |
| 25 template<int kBlockSize, int kEncodedBlockSize, CompressA8Proc kCompressionProc> | |
| 26 class SkCompressedAlphaBlitter : public SkBlitter { | |
| 27 public: | |
| 28 SkCompressedAlphaBlitter(int width, int height, void *compressedBuffer) | |
| 29 // 0x7FFE is one minus the largest positive 16-bit int. We use it for | |
| 30 // debugging to make sure that we're properly setting the nextX distance | |
| 31 // in flushRuns(). | |
| 32 : kLongestRun(0x7FFE), kZeroAlpha(0) | |
| 33 , fNextRun(0) | |
| 34 , fWidth(width) | |
| 35 , fHeight(height) | |
| 36 , fBuffer(compressedBuffer) | |
| 37 { | |
| 38 SkASSERT((width % kBlockSize) == 0); | |
| 39 SkASSERT((height % kBlockSize) == 0); | |
| 40 } | |
| 41 | |
| 42 virtual ~SkCompressedAlphaBlitter() { this->flushRuns(); } | |
| 43 | |
| 44 // Blit a horizontal run of one or more pixels. | |
| 45 virtual void blitH(int x, int y, int width) SK_OVERRIDE { | |
| 46 // This function is intended to be called from any standard RGB | |
| 47 // buffer, so we should never encounter it. However, if some code | |
| 48 // path does end up here, then this needs to be investigated. | |
| 49 SkFAIL("Not implemented!"); | |
| 50 } | |
| 51 | |
| 52 // Blit a horizontal run of antialiased pixels; runs[] is a *sparse* | |
| 53 // zero-terminated run-length encoding of spans of constant alpha values. | |
| 54 virtual void blitAntiH(int x, int y, | |
| 55 const SkAlpha antialias[], | |
| 56 const int16_t runs[]) SK_OVERRIDE { | |
| 57 // Make sure that the new row to blit is either the first | |
| 58 // row that we're blitting, or it's exactly the next scan row | |
| 59 // since the last row that we blit. This is to ensure that when | |
| 60 // we go to flush the runs, that they are all the same four | |
| 61 // runs. | |
| 62 if (fNextRun > 0 && | |
| 63 ((x != fBufferedRuns[fNextRun-1].fX) || | |
| 64 (y-1 != fBufferedRuns[fNextRun-1].fY))) { | |
| 65 this->flushRuns(); | |
| 66 } | |
| 67 | |
| 68 // Align the rows to a block boundary. If we receive rows that | |
| 69 // are not on a block boundary, then fill in the preceding runs | |
| 70 // with zeros. We do this by producing a single RLE that says | |
| 71 // that we have 0x7FFE pixels of zero (0x7FFE = 32766). | |
| 72 const int row = y & ~3; | |
| 73 while ((row + fNextRun) < y) { | |
| 74 fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha; | |
| 75 fBufferedRuns[fNextRun].fRuns = &kLongestRun; | |
| 76 fBufferedRuns[fNextRun].fX = 0; | |
| 77 fBufferedRuns[fNextRun].fY = row + fNextRun; | |
| 78 ++fNextRun; | |
| 79 } | |
| 80 | |
| 81 // Make sure that our assumptions aren't violated... | |
| 82 SkASSERT(fNextRun == (y & 3)); | |
| 83 SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y); | |
| 84 | |
| 85 // Set the values of the next run | |
| 86 fBufferedRuns[fNextRun].fAlphas = antialias; | |
| 87 fBufferedRuns[fNextRun].fRuns = runs; | |
| 88 fBufferedRuns[fNextRun].fX = x; | |
| 89 fBufferedRuns[fNextRun].fY = y; | |
| 90 | |
| 91 // If we've output four scanlines in a row that don't violate our | |
| 92 // assumptions, then it's time to flush them... | |
|
robertphillips
2014/07/28 17:51:36
4?
krajcevski
2014/07/28 18:18:31
Done.
| |
| 93 if (4 == ++fNextRun) { | |
| 94 this->flushRuns(); | |
| 95 } | |
| 96 } | |
| 97 | |
| 98 // Blit a vertical run of pixels with a constant alpha value. | |
| 99 virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE { | |
| 100 // This function is currently not implemented. It is not explicitly | |
| 101 // required by the contract, but if at some time a code path runs into | |
| 102 // this function (which is entirely possible), it needs to be implemente d. | |
| 103 // | |
| 104 // TODO (krajcevski): | |
| 105 // This function will be most easily implemented in one of two ways: | |
| 106 // 1. Buffer each vertical column value and then construct a list | |
| 107 // of alpha values and output all of the blocks at once. This only | |
| 108 // requires a write to the compressed buffer | |
| 109 // 2. Replace the indices of each block with the proper indices based | |
| 110 // on the alpha value. This requires a read and write of the compress ed | |
| 111 // buffer, but much less overhead. | |
| 112 SkFAIL("Not implemented!"); | |
| 113 } | |
| 114 | |
| 115 // Blit a solid rectangle one or more pixels wide. | |
| 116 virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE { | |
| 117 // Analogous to blitRow, this function is intended for RGB targets | |
| 118 // and should never be called by this blitter. Any calls to this functio n | |
| 119 // are probably a bug and should be investigated. | |
| 120 SkFAIL("Not implemented!"); | |
| 121 } | |
| 122 | |
| 123 // Blit a rectangle with one alpha-blended column on the left, | |
| 124 // width (zero or more) opaque pixels, and one alpha-blended column | |
| 125 // on the right. The result will always be at least two pixels wide. | |
| 126 virtual void blitAntiRect(int x, int y, int width, int height, | |
| 127 SkAlpha leftAlpha, SkAlpha rightAlpha) SK_OVERRIDE { | |
| 128 // This function is currently not implemented. It is not explicitly | |
| 129 // required by the contract, but if at some time a code path runs into | |
| 130 // this function (which is entirely possible), it needs to be implemente d. | |
| 131 // | |
| 132 // TODO (krajcevski): | |
| 133 // This function will be most easily implemented as follows: | |
| 134 // 1. If width/height are smaller than a block, then update the | |
| 135 // indices of the affected blocks. | |
| 136 // 2. If width/height are larger than a block, then construct a 9-patch | |
| 137 // of block encodings that represent the rectangle, and write them | |
| 138 // to the compressed buffer as necessary. Whether or not the blocks | |
| 139 // are overwritten by zeros or just their indices are updated is up | |
| 140 // to debate. | |
| 141 SkFAIL("Not implemented!"); | |
| 142 } | |
| 143 | |
| 144 // Blit a pattern of pixels defined by a rectangle-clipped mask; | |
| 145 // typically used for text. | |
| 146 virtual void blitMask(const SkMask&, const SkIRect& clip) SK_OVERRIDE { | |
| 147 // This function is currently not implemented. It is not explicitly | |
| 148 // required by the contract, but if at some time a code path runs into | |
| 149 // this function (which is entirely possible), it needs to be implemente d. | |
| 150 // | |
| 151 // TODO (krajcevski): | |
| 152 // This function will be most easily implemented in the same way as | |
| 153 // blitAntiRect above. | |
| 154 SkFAIL("Not implemented!"); | |
| 155 } | |
| 156 | |
| 157 // If the blitter just sets a single value for each pixel, return the | |
| 158 // bitmap it draws into, and assign value. If not, return NULL and ignore | |
| 159 // the value parameter. | |
| 160 virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) SK_OVERRIDE { | |
| 161 return NULL; | |
| 162 } | |
| 163 | |
| 164 /** | |
| 165 * Compressed texture blitters only really work correctly if they get | |
|
robertphillips
2014/07/28 17:51:36
four?
krajcevski
2014/07/28 18:18:31
Done.
| |
| 166 * four blocks at a time. That being said, this blitter tries it's best | |
| 167 * to preserve semantics if blitAntiH doesn't get called in too many | |
| 168 * weird ways... | |
| 169 */ | |
| 170 virtual int requestRowsPreserved() const { return kBlockSize; } | |
| 171 | |
| 172 private: | |
| 173 static const int kPixelsPerBlock = kBlockSize * kBlockSize; | |
| 174 | |
| 175 // The longest possible run of pixels that this blitter will receive. | |
| 176 // This is initialized in the constructor to 0x7FFE, which is one less | |
| 177 // than the largest positive 16-bit integer. We make sure that it's one | |
| 178 // less for debugging purposes. We also don't make this variable static | |
| 179 // in order to make sure that we can construct a valid pointer to it. | |
| 180 const int16_t kLongestRun; | |
| 181 | |
| 182 // Usually used in conjunction with kLongestRun. This is initialized to | |
| 183 // zero. | |
| 184 const SkAlpha kZeroAlpha; | |
| 185 | |
| 186 // This is the information that we buffer whenever we're asked to blit | |
| 187 // a row with this blitter. | |
| 188 struct BufferedRun { | |
| 189 const SkAlpha* fAlphas; | |
| 190 const int16_t* fRuns; | |
| 191 int fX, fY; | |
| 192 } fBufferedRuns[kBlockSize]; | |
| 193 | |
| 194 // The next row [0, kBlockSize) that we need to blit. | |
| 195 int fNextRun; | |
| 196 | |
| 197 // The width and height of the image that we're blitting | |
| 198 const int fWidth; | |
| 199 const int fHeight; | |
| 200 | |
| 201 // The compressed buffer that we're blitting into. It is assumed that the bu ffer | |
| 202 // is large enough to store a compressed image of size fWidth*fHeight. | |
| 203 void* const fBuffer; | |
| 204 | |
| 205 // Various utility functions | |
| 206 int blocksWide() const { return fWidth / kBlockSize; } | |
| 207 int blocksTall() const { return fHeight / kBlockSize; } | |
| 208 int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; } | |
| 209 | |
| 210 // Returns the block index for the block containing pixel (x, y). Block | |
| 211 // indices start at zero and proceed in raster order. | |
| 212 int getBlockOffset(int x, int y) const { | |
| 213 SkASSERT(x < fWidth); | |
| 214 SkASSERT(y < fHeight); | |
| 215 const int blockCol = x / kBlockSize; | |
| 216 const int blockRow = y / kBlockSize; | |
| 217 return blockRow * this->blocksWide() + blockCol; | |
| 218 } | |
| 219 | |
| 220 // Returns a pointer to the block containing pixel (x, y) | |
| 221 uint8_t *getBlock(int x, int y) const { | |
| 222 uint8_t* ptr = reinterpret_cast<uint8_t*>(fBuffer); | |
| 223 return ptr + kEncodedBlockSize*this->getBlockOffset(x, y); | |
| 224 } | |
| 225 | |
|
robertphillips
2014/07/28 17:51:37
blockColN ?
krajcevski
2014/07/28 18:18:30
Done.
| |
| 226 // Updates the block whose columns are stored in blockColN. curAlphai is exp ected | |
| 227 // to store, as an integer, the four alpha values that will be placed within each | |
| 228 // of the columns in the range [col, col+colsLeft). | |
| 229 typedef uint32_t Column[kBlockSize/4]; | |
| 230 typedef uint32_t Block[kBlockSize][kBlockSize/4]; | |
| 231 inline void updateBlockColumns(Block block, const int col, | |
| 232 const int colsLeft, const Column curAlphai) { | |
| 233 SkASSERT(NULL != block); | |
| 234 SkASSERT(col + colsLeft <= 4); | |
| 235 | |
| 236 for (int i = col; i < (col + colsLeft); ++i) { | |
| 237 memcpy(block[i], curAlphai, sizeof(Column)); | |
| 238 } | |
| 239 } | |
| 240 | |
| 241 // The following function writes the buffered runs to compressed blocks. | |
| 242 // If fNextRun < kBlockSize, then we fill the runs that we haven't buffered with | |
| 243 // the constant zero buffer. | |
| 244 void flushRuns() { | |
| 245 // If we don't have any runs, then just return. | |
| 246 if (0 == fNextRun) { | |
| 247 return; | |
| 248 } | |
| 249 | |
| 250 #ifndef NDEBUG | |
| 251 // Make sure that if we have any runs, they all match | |
| 252 for (int i = 1; i < fNextRun; ++i) { | |
| 253 SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1); | |
| 254 SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX); | |
| 255 } | |
| 256 #endif | |
| 257 | |
|
robertphillips
2014/07/28 17:51:36
don't ?
krajcevski
2014/07/28 18:18:31
Done.
| |
| 258 // If we dont have as many runs as we have rows, fill in the remaining | |
| 259 // runs with constant zeros. | |
| 260 for (int i = fNextRun; i < kBlockSize; ++i) { | |
| 261 fBufferedRuns[i].fY = fBufferedRuns[0].fY + i; | |
| 262 fBufferedRuns[i].fX = fBufferedRuns[0].fX; | |
| 263 fBufferedRuns[i].fAlphas = &kZeroAlpha; | |
| 264 fBufferedRuns[i].fRuns = &kLongestRun; | |
| 265 } | |
| 266 | |
| 267 // Make sure that our assumptions aren't violated. | |
| 268 SkASSERT(fNextRun > 0 && fNextRun <= kBlockSize); | |
| 269 SkASSERT((fBufferedRuns[0].fY % kBlockSize) == 0); | |
| 270 | |
| 271 // The following logic walks kBlockSize rows at a time and outputs compr essed | |
| 272 // blocks to the buffer passed into the constructor. | |
| 273 // We do the following: | |
| 274 // | |
| 275 // c1 c2 c3 c4 | |
| 276 // --------------------------------------------------------------------- -- | |
| 277 // ... | | | | | ----> fBufferedRuns[0] | |
| 278 // --------------------------------------------------------------------- -- | |
| 279 // ... | | | | | ----> fBufferedRuns[1] | |
| 280 // --------------------------------------------------------------------- -- | |
| 281 // ... | | | | | ----> fBufferedRuns[2] | |
| 282 // --------------------------------------------------------------------- -- | |
| 283 // ... | | | | | ----> fBufferedRuns[3] | |
| 284 // --------------------------------------------------------------------- -- | |
| 285 // | |
| 286 // curX -- the macro X value that we've gotten to. | |
| 287 // c[kBlockSize] -- the buffers that represent the columns of the curren t block | |
| 288 // that we're operating on | |
| 289 // curAlphaColumn -- buffer containing the column of alpha values from f BufferedRuns. | |
| 290 // nextX -- for each run, the next point at which we need to update curA lphaColumn | |
| 291 // after the value of curX. | |
| 292 // finalX -- the minimum of all the nextX values. | |
| 293 // | |
| 294 // curX advances to finalX outputting any blocks that it passes along | |
| 295 // the way. Since finalX will not change when we reach the end of a | |
| 296 // run, the termination criteria will be whenever curX == finalX at the | |
| 297 // end of a loop. | |
| 298 | |
| 299 // Setup: | |
|
robertphillips
2014/07/28 17:51:37
put sk_bzero's on their own line ?
krajcevski
2014/07/28 18:18:30
Done.
| |
| 300 Block block; sk_bzero(block, sizeof(block)); | |
| 301 Column curAlphaColumn; sk_bzero(curAlphaColumn, sizeof(curAlphaColumn)); | |
| 302 | |
| 303 SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn); | |
| 304 | |
| 305 int nextX[kBlockSize]; | |
| 306 for (int i = 0; i < kBlockSize; ++i) { | |
| 307 nextX[i] = 0x7FFFFF; | |
| 308 } | |
| 309 | |
| 310 uint8_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].f Y); | |
| 311 | |
| 312 // Populate the first set of runs and figure out how far we need to | |
| 313 // advance on the first step | |
| 314 int curX = 0; | |
| 315 int finalX = 0xFFFFF; | |
| 316 for (int i = 0; i < kBlockSize; ++i) { | |
| 317 nextX[i] = *(fBufferedRuns[i].fRuns); | |
| 318 curAlpha[i] = *(fBufferedRuns[i].fAlphas); | |
| 319 | |
| 320 finalX = SkMin32(nextX[i], finalX); | |
| 321 } | |
| 322 | |
| 323 // Make sure that we have a valid right-bound X value | |
| 324 SkASSERT(finalX < 0xFFFFF); | |
| 325 | |
| 326 // Run the blitter... | |
| 327 while (curX != finalX) { | |
| 328 SkASSERT(finalX >= curX); | |
| 329 | |
| 330 // Do we need to populate the rest of the block? | |
| 331 if ((finalX - (kBlockSize*(curX / kBlockSize))) >= kBlockSize) { | |
| 332 const int col = curX % kBlockSize; | |
| 333 const int colsLeft = kBlockSize - col; | |
| 334 SkASSERT(curX + colsLeft <= finalX); | |
| 335 | |
| 336 this->updateBlockColumns(block, col, colsLeft, curAlphaColumn); | |
| 337 | |
| 338 // Write this block | |
|
robertphillips
2014/07/28 17:51:37
The 'k' prefix is usually reserved for comments. I
krajcevski
2014/07/28 18:18:31
Done.
| |
| 339 kCompressionProc(outPtr, reinterpret_cast<uint8_t*>(block)); | |
| 340 outPtr += kEncodedBlockSize; | |
| 341 curX += colsLeft; | |
| 342 } | |
| 343 | |
| 344 // If we can advance even further, then just keep memsetting the blo ck | |
| 345 if ((finalX - curX) >= kBlockSize) { | |
| 346 SkASSERT((curX % kBlockSize) == 0); | |
| 347 | |
| 348 const int col = 0; | |
| 349 const int colsLeft = kBlockSize; | |
| 350 | |
| 351 this->updateBlockColumns(block, col, colsLeft, curAlphaColumn); | |
| 352 | |
| 353 // While we can keep advancing, just keep writing the block. | |
| 354 uint8_t lastBlock[kEncodedBlockSize]; | |
| 355 kCompressionProc(lastBlock, reinterpret_cast<uint8_t*>(block)); | |
| 356 while((finalX - curX) >= kBlockSize) { | |
| 357 memcpy(outPtr, lastBlock, kEncodedBlockSize); | |
| 358 outPtr += kEncodedBlockSize; | |
| 359 curX += kBlockSize; | |
| 360 } | |
| 361 } | |
| 362 | |
| 363 // If we haven't advanced within the block then do so. | |
| 364 if (curX < finalX) { | |
| 365 const int col = curX % kBlockSize; | |
| 366 const int colsLeft = finalX - curX; | |
| 367 | |
| 368 this->updateBlockColumns(block, col, colsLeft, curAlphaColumn); | |
| 369 curX += colsLeft; | |
| 370 } | |
| 371 | |
| 372 SkASSERT(curX == finalX); | |
| 373 | |
| 374 // Figure out what the next advancement is... | |
| 375 for (int i = 0; i < kBlockSize; ++i) { | |
| 376 if (nextX[i] == finalX) { | |
| 377 const int16_t run = *(fBufferedRuns[i].fRuns); | |
| 378 fBufferedRuns[i].fRuns += run; | |
| 379 fBufferedRuns[i].fAlphas += run; | |
| 380 curAlpha[i] = *(fBufferedRuns[i].fAlphas); | |
| 381 nextX[i] += *(fBufferedRuns[i].fRuns); | |
| 382 } | |
| 383 } | |
| 384 | |
| 385 finalX = 0xFFFFF; | |
| 386 for (int i = 0; i < kBlockSize; ++i) { | |
| 387 finalX = SkMin32(nextX[i], finalX); | |
| 388 } | |
| 389 } | |
| 390 | |
| 391 // If we didn't land on a block boundary, output the block... | |
| 392 if ((curX % kBlockSize) > 1) { | |
| 393 kCompressionProc(outPtr, reinterpret_cast<uint8_t*>(block)); | |
| 394 } | |
| 395 | |
| 396 fNextRun = 0; | |
| 397 } | |
| 398 }; | |
| 399 | |
| 400 } // namespace SkTextureCompressor | |
| 401 | |
| 402 #endif // SkTextureCompressor_Blitter_DEFINED | |
| OLD | NEW |