Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(64)

Unified Diff: content/browser/media/capture/video_capture_oracle_unittest.cc

Issue 418283003: "Buttery Smooth" Tab Capture. (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: Now pixel-weighted. Lots of add'l unit tests. (rebased against ToT) Created 6 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: content/browser/media/capture/video_capture_oracle_unittest.cc
diff --git a/content/browser/media/capture/video_capture_oracle_unittest.cc b/content/browser/media/capture/video_capture_oracle_unittest.cc
index dff8e97de7fec39c7f3e0f56f2c33c7f50ab5e1b..b722490f41f289ef25669891eabc48b159745b77 100644
--- a/content/browser/media/capture/video_capture_oracle_unittest.cc
+++ b/content/browser/media/capture/video_capture_oracle_unittest.cc
@@ -4,17 +4,29 @@
#include "content/browser/media/capture/video_capture_oracle.h"
+#include <cstdlib>
+#include <utility>
+#include <vector>
+
+#include "base/logging.h"
#include "base/strings/stringprintf.h"
#include "base/time/time.h"
#include "testing/gtest/include/gtest/gtest.h"
+#include "ui/gfx/geometry/rect.h"
namespace content {
namespace {
+bool AddEventAndConsiderSampling(SmoothEventSampler* sampler,
+ base::TimeTicks event_time) {
+ sampler->ConsiderPresentationEvent(event_time);
+ return sampler->should_sample();
+}
+
void SteadyStateSampleAndAdvance(base::TimeDelta vsync,
SmoothEventSampler* sampler,
base::TimeTicks* t) {
- ASSERT_TRUE(sampler->AddEventAndConsiderSampling(*t));
+ ASSERT_TRUE(AddEventAndConsiderSampling(sampler, *t));
ASSERT_TRUE(sampler->HasUnrecordedEvent());
sampler->RecordSample();
ASSERT_FALSE(sampler->HasUnrecordedEvent());
@@ -26,17 +38,15 @@ void SteadyStateSampleAndAdvance(base::TimeDelta vsync,
void SteadyStateNoSampleAndAdvance(base::TimeDelta vsync,
SmoothEventSampler* sampler,
base::TimeTicks* t) {
- ASSERT_FALSE(sampler->AddEventAndConsiderSampling(*t));
+ ASSERT_FALSE(AddEventAndConsiderSampling(sampler, *t));
ASSERT_TRUE(sampler->HasUnrecordedEvent());
ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t));
*t += vsync;
ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t));
}
-void TimeTicksFromString(const char* string, base::TimeTicks* t) {
- base::Time time;
- ASSERT_TRUE(base::Time::FromString(string, &time));
- *t = base::TimeTicks::UnixEpoch() + (time - base::Time::UnixEpoch());
+base::TimeTicks InitialTestTimeTicks() {
+ return base::TimeTicks() + base::TimeDelta::FromSeconds(1);
miu 2014/07/31 01:25:33 I changed this because, while debugging, I noticed
ncarter (slow) 2014/08/01 23:36:39 I don't follow the problem you fixed -- how would
miu 2014/08/04 18:46:05 Sorry, I explained this the wrong way. What I mea
}
void TestRedundantCaptureStrategy(base::TimeDelta capture_period,
@@ -48,15 +58,15 @@ void TestRedundantCaptureStrategy(base::TimeDelta capture_period,
// Consider the first event. We want to sample that.
ASSERT_FALSE(sampler->HasUnrecordedEvent());
- ASSERT_TRUE(sampler->AddEventAndConsiderSampling(*t));
+ ASSERT_TRUE(AddEventAndConsiderSampling(sampler, *t));
ASSERT_TRUE(sampler->HasUnrecordedEvent());
sampler->RecordSample();
ASSERT_FALSE(sampler->HasUnrecordedEvent());
- // After more than one capture period has passed without considering an event,
- // we should repeatedly be overdue for sampling. However, once the redundant
- // capture goal is achieved, we should no longer be overdue for sampling.
- *t += capture_period * 4;
+ // After more than 250 ms has passed without considering an event, we should
+ // repeatedly be overdue for sampling. However, once the redundant capture
+ // goal is achieved, we should no longer be overdue for sampling.
+ *t += base::TimeDelta::FromMilliseconds(250);
for (int i = 0; i < redundant_capture_goal; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
ASSERT_FALSE(sampler->HasUnrecordedEvent());
@@ -69,6 +79,8 @@ void TestRedundantCaptureStrategy(base::TimeDelta capture_period,
<< "Should not be overdue once redundant capture goal achieved.";
}
+} // namespace
miu 2014/07/31 01:25:33 Note: I moved the TEST() code out of the anonymous
+
// 60Hz sampled at 30Hz should produce 30Hz. In addition, this test contains
// much more comprehensive before/after/edge-case scenarios than the others.
TEST(SmoothEventSamplerTest, Sample60HertzAt30Hertz) {
@@ -77,8 +89,7 @@ TEST(SmoothEventSamplerTest, Sample60HertzAt30Hertz) {
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 60;
SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
- base::TimeTicks t;
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
+ base::TimeTicks t = InitialTestTimeTicks();
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
&sampler, &t);
@@ -94,8 +105,8 @@ TEST(SmoothEventSamplerTest, Sample60HertzAt30Hertz) {
// case we are adding events but not sampling them.
for (int i = 0; i < 20; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
- ASSERT_EQ(i >= 7, sampler.IsOverdueForSamplingAt(t));
- ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
+ ASSERT_EQ(i >= 14, sampler.IsOverdueForSamplingAt(t));
+ ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
ASSERT_TRUE(sampler.HasUnrecordedEvent());
t += vsync;
}
@@ -117,8 +128,7 @@ TEST(SmoothEventSamplerTest, Sample50HertzAt30Hertz) {
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 50;
SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
- base::TimeTicks t;
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
+ base::TimeTicks t = InitialTestTimeTicks();
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
&sampler, &t);
@@ -136,10 +146,10 @@ TEST(SmoothEventSamplerTest, Sample50HertzAt30Hertz) {
// Now pretend we're limited by backpressure in the pipeline. In this scenario
// case we are adding events but not sampling them.
- for (int i = 0; i < 12; i++) {
+ for (int i = 0; i < 20; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
- ASSERT_EQ(i >= 5, sampler.IsOverdueForSamplingAt(t));
- ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
+ ASSERT_EQ(i >= 11, sampler.IsOverdueForSamplingAt(t));
+ ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
t += vsync;
}
@@ -163,8 +173,7 @@ TEST(SmoothEventSamplerTest, Sample75HertzAt30Hertz) {
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 75;
SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
- base::TimeTicks t;
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
+ base::TimeTicks t = InitialTestTimeTicks();
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
&sampler, &t);
@@ -186,8 +195,8 @@ TEST(SmoothEventSamplerTest, Sample75HertzAt30Hertz) {
// case we are adding events but not sampling them.
for (int i = 0; i < 20; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
- ASSERT_EQ(i >= 8, sampler.IsOverdueForSamplingAt(t));
- ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
+ ASSERT_EQ(i >= 16, sampler.IsOverdueForSamplingAt(t));
+ ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
t += vsync;
}
@@ -213,8 +222,7 @@ TEST(SmoothEventSamplerTest, Sample30HertzAt30Hertz) {
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 30;
SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
- base::TimeTicks t;
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
+ base::TimeTicks t = InitialTestTimeTicks();
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
&sampler, &t);
@@ -227,10 +235,10 @@ TEST(SmoothEventSamplerTest, Sample30HertzAt30Hertz) {
// Now pretend we're limited by backpressure in the pipeline. In this scenario
// case we are adding events but not sampling them.
- for (int i = 0; i < 7; i++) {
+ for (int i = 0; i < 10; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
- ASSERT_EQ(i >= 3, sampler.IsOverdueForSamplingAt(t));
- ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
+ ASSERT_EQ(i >= 7, sampler.IsOverdueForSamplingAt(t));
+ ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
t += vsync;
}
@@ -249,8 +257,7 @@ TEST(SmoothEventSamplerTest, Sample24HertzAt30Hertz) {
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 24;
SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
- base::TimeTicks t;
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
+ base::TimeTicks t = InitialTestTimeTicks();
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
&sampler, &t);
@@ -263,10 +270,10 @@ TEST(SmoothEventSamplerTest, Sample24HertzAt30Hertz) {
// Now pretend we're limited by backpressure in the pipeline. In this scenario
// case we are adding events but not sampling them.
- for (int i = 0; i < 7; i++) {
+ for (int i = 0; i < 10; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
- ASSERT_EQ(i >= 3, sampler.IsOverdueForSamplingAt(t));
- ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
+ ASSERT_EQ(i >= 6, sampler.IsOverdueForSamplingAt(t));
+ ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
t += vsync;
}
@@ -283,19 +290,18 @@ TEST(SmoothEventSamplerTest, DoubleDrawAtOneTimeStillDirties) {
const base::TimeDelta overdue_period = base::TimeDelta::FromSeconds(1);
SmoothEventSampler sampler(capture_period, true, 1);
- base::TimeTicks t;
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
+ base::TimeTicks t = InitialTestTimeTicks();
- ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
+ ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
sampler.RecordSample();
ASSERT_FALSE(sampler.IsOverdueForSamplingAt(t))
<< "Sampled last event; should not be dirty.";
t += overdue_period;
// Now simulate 2 events with the same clock value.
- ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
+ ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
sampler.RecordSample();
- ASSERT_FALSE(sampler.AddEventAndConsiderSampling(t))
+ ASSERT_FALSE(AddEventAndConsiderSampling(&sampler, t))
<< "Two events at same time -- expected second not to be sampled.";
ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t + overdue_period))
<< "Second event should dirty the capture state.";
@@ -308,18 +314,20 @@ TEST(SmoothEventSamplerTest, FallbackToPollingIfUpdatesUnreliable) {
SmoothEventSampler should_not_poll(timer_interval, true, 1);
SmoothEventSampler should_poll(timer_interval, false, 1);
- base::TimeTicks t;
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
+ base::TimeTicks t = InitialTestTimeTicks();
// Do one round of the "happy case" where an event was received and
// RecordSample() was called by the client.
- ASSERT_TRUE(should_not_poll.AddEventAndConsiderSampling(t));
- ASSERT_TRUE(should_poll.AddEventAndConsiderSampling(t));
+ ASSERT_TRUE(AddEventAndConsiderSampling(&should_not_poll, t));
+ ASSERT_TRUE(AddEventAndConsiderSampling(&should_poll, t));
should_not_poll.RecordSample();
should_poll.RecordSample();
- // One time period ahead, neither sampler says we're overdue.
- for (int i = 0; i < 3; i++) {
+ // For the following time period, before 250 ms has elapsed, neither sampler
+ // says we're overdue.
+ const int non_overdue_intervals = static_cast<int>(
+ base::TimeDelta::FromMilliseconds(250) / timer_interval);
+ for (int i = 0; i < non_overdue_intervals; i++) {
t += timer_interval;
ASSERT_FALSE(should_not_poll.IsOverdueForSamplingAt(t))
<< "Sampled last event; should not be dirty.";
@@ -330,7 +338,7 @@ TEST(SmoothEventSamplerTest, FallbackToPollingIfUpdatesUnreliable) {
// Next time period ahead, both samplers say we're overdue. The non-polling
// sampler is returning true here because it has been configured to allow one
// redundant capture.
- t += timer_interval;
+ t += timer_interval; // Step past the 250 ms threshold.
ASSERT_TRUE(should_not_poll.IsOverdueForSamplingAt(t))
<< "Sampled last event; is dirty one time only to meet redundancy goal.";
ASSERT_TRUE(should_poll.IsOverdueForSamplingAt(t))
@@ -356,6 +364,8 @@ TEST(SmoothEventSamplerTest, FallbackToPollingIfUpdatesUnreliable) {
should_poll.RecordSample();
}
+namespace {
+
struct DataPoint {
bool should_capture;
double increment_ms;
@@ -364,19 +374,20 @@ struct DataPoint {
void ReplayCheckingSamplerDecisions(const DataPoint* data_points,
size_t num_data_points,
SmoothEventSampler* sampler) {
- base::TimeTicks t;
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
+ base::TimeTicks t = InitialTestTimeTicks();
for (size_t i = 0; i < num_data_points; ++i) {
t += base::TimeDelta::FromMicroseconds(
static_cast<int64>(data_points[i].increment_ms * 1000));
ASSERT_EQ(data_points[i].should_capture,
- sampler->AddEventAndConsiderSampling(t))
+ AddEventAndConsiderSampling(sampler, t))
<< "at data_points[" << i << ']';
if (data_points[i].should_capture)
sampler->RecordSample();
}
}
+} // namespace
+
TEST(SmoothEventSamplerTest, DrawingAt24FpsWith60HzVsyncSampledAt30Hertz) {
// Actual capturing of timing data: Initial instability as a 24 FPS video was
// started from a still screen, then clearly followed by steady-state.
@@ -483,5 +494,768 @@ TEST(SmoothEventSamplerTest, DrawingAt60FpsWith60HzVsyncSampledAt30Hertz) {
ReplayCheckingSamplerDecisions(data_points, arraysize(data_points), &sampler);
}
+class AnimatedContentSamplerTest : public ::testing::Test {
+ public:
+ AnimatedContentSamplerTest() {}
+ virtual ~AnimatedContentSamplerTest() {}
+
+ virtual void SetUp() OVERRIDE {
+ const base::TimeDelta since_epoch =
+ InitialTestTimeTicks() - base::TimeTicks::UnixEpoch();
+ rand_seed_ = abs(static_cast<int>(since_epoch.InMicroseconds()));
+ sampler_.reset(new AnimatedContentSampler(GetMinCapturePeriod()));
+ }
+
+ protected:
+ // Overridden by subclass for parameterized tests.
+ virtual base::TimeDelta GetMinCapturePeriod() const {
+ return base::TimeDelta::FromSeconds(1) / 30;
+ }
+
+ AnimatedContentSampler* sampler() const {
+ return sampler_.get();
+ }
+
+ int GetRandomInRange(int begin, int end) {
+ const int len = end - begin;
+ const int rand_offset = (len == 0) ? 0 : (NextRandomInt() % (end - begin));
+ return begin + rand_offset;
+ }
+
+ gfx::Rect GetRandomDamageRect() {
+ return gfx::Rect(0, 0, GetRandomInRange(1, 100), GetRandomInRange(1, 100));
+ }
+
+ gfx::Rect GetContentDamageRect() {
+ // This must be distinct from anything GetRandomDamageRect() could return.
+ return gfx::Rect(0, 0, 1280, 720);
+ }
+
+ // Directly inject an observation. Only used to test
+ // ElectMajorityDamageRect().
+ void ObserveDamageRect(const gfx::Rect& damage_rect) {
+ sampler_->observations_.push_back(
+ AnimatedContentSampler::Observation(damage_rect, base::TimeTicks()));
+ }
+
+ gfx::Rect ElectMajorityDamageRect() const {
+ return sampler_->ElectMajorityDamageRect();
+ }
+
+ private:
+ // Note: Not using base::RandInt() because it is horribly slow on debug
+ // builds. The following is a very simple, deterministic LCG:
+ int NextRandomInt() {
+ rand_seed_ = (1103515245 * rand_seed_ + 12345) % (1 << 31);
+ return rand_seed_;
+ }
+
+ int rand_seed_;
+ scoped_ptr<AnimatedContentSampler> sampler_;
+};
+
+TEST_F(AnimatedContentSamplerTest, ElectsNoneFromZeroDamageRects) {
+ EXPECT_EQ(gfx::Rect(), ElectMajorityDamageRect());
+}
+
+TEST_F(AnimatedContentSamplerTest, ElectsMajorityFromOneDamageRect) {
+ const gfx::Rect the_one_rect(0, 0, 1, 1);
+ ObserveDamageRect(the_one_rect);
+ EXPECT_EQ(the_one_rect, ElectMajorityDamageRect());
+}
+
+TEST_F(AnimatedContentSamplerTest, ElectsNoneFromTwoDamageRectsOfSameArea) {
+ const gfx::Rect one_rect(0, 0, 1, 1);
+ const gfx::Rect another_rect(1, 1, 1, 1);
+ ObserveDamageRect(one_rect);
+ ObserveDamageRect(another_rect);
+ EXPECT_EQ(gfx::Rect(), ElectMajorityDamageRect());
+}
+
+TEST_F(AnimatedContentSamplerTest, ElectsLargerOfTwoDamageRects_1) {
+ const gfx::Rect one_rect(0, 0, 1, 1);
+ const gfx::Rect another_rect(0, 0, 2, 2);
+ ObserveDamageRect(one_rect);
+ ObserveDamageRect(another_rect);
+ EXPECT_EQ(another_rect, ElectMajorityDamageRect());
+}
+
+TEST_F(AnimatedContentSamplerTest, ElectsLargerOfTwoDamageRects_2) {
+ const gfx::Rect one_rect(0, 0, 2, 2);
+ const gfx::Rect another_rect(0, 0, 1, 1);
+ ObserveDamageRect(one_rect);
+ ObserveDamageRect(another_rect);
+ EXPECT_EQ(one_rect, ElectMajorityDamageRect());
+}
+
+TEST_F(AnimatedContentSamplerTest, ElectsSameAsMooreDemonstration) {
+ // A more complex sequence (from Moore's web site): Three different Rects with
+ // the same area, but occurring a different number of times. C should win the
+ // vote.
+ const gfx::Rect rect_a(0, 0, 1, 4);
+ const gfx::Rect rect_b(1, 1, 4, 1);
+ const gfx::Rect rect_c(2, 2, 2, 2);
+ for (int i = 0; i < 3; ++i)
+ ObserveDamageRect(rect_a);
+ for (int i = 0; i < 2; ++i)
+ ObserveDamageRect(rect_c);
+ for (int i = 0; i < 2; ++i)
+ ObserveDamageRect(rect_b);
+ for (int i = 0; i < 3; ++i)
+ ObserveDamageRect(rect_c);
+ ObserveDamageRect(rect_b);
+ for (int i = 0; i < 2; ++i)
+ ObserveDamageRect(rect_c);
+ EXPECT_EQ(rect_c, ElectMajorityDamageRect());
+}
+
+TEST_F(AnimatedContentSamplerTest, Elects24FpsVideoInsteadOf48FpsSpinner) {
+ // Scenario: 24 FPS 720x480 Video versus 48 FPS 96x96 "Busy Spinner"
+ const gfx::Rect video_rect(100, 100, 720, 480);
+ const gfx::Rect spinner_rect(360, 0, 96, 96);
+ for (int i = 0; i < 100; ++i) {
+ // |video_rect| occurs once for every two |spinner_rect|. Vary the order
+ // of events between the two:
+ ObserveDamageRect(video_rect);
+ ObserveDamageRect(spinner_rect);
+ ObserveDamageRect(spinner_rect);
+ ObserveDamageRect(video_rect);
+ ObserveDamageRect(spinner_rect);
+ ObserveDamageRect(spinner_rect);
+ ObserveDamageRect(spinner_rect);
+ ObserveDamageRect(video_rect);
+ ObserveDamageRect(spinner_rect);
+ ObserveDamageRect(spinner_rect);
+ ObserveDamageRect(video_rect);
+ ObserveDamageRect(spinner_rect);
+ }
+ EXPECT_EQ(video_rect, ElectMajorityDamageRect());
+}
+
+namespace {
+
+// A test scenario for AnimatedContentSamplerParameterizedTest.
+struct Scenario {
+ base::TimeDelta vsync_interval; // Reflects compositor's update rate.
+ base::TimeDelta min_capture_period; // Reflects maximum capture rate.
+ base::TimeDelta content_period; // Reflects content animation rate.
+
+ Scenario(base::TimeDelta v, base::TimeDelta m, base::TimeDelta c)
+ : vsync_interval(v), min_capture_period(m), content_period(c) {
+ CHECK(content_period >= vsync_interval)
+ << "Bad test params: Impossible to animate faster than the compositor.";
+ }
+};
+
+// Value printer for Scenario.
+::std::ostream& operator<<(::std::ostream& os, const Scenario& s) {
+ return os << "{ vsync_interval=" << s.vsync_interval.InMicroseconds()
+ << ", min_capture_period=" << s.min_capture_period.InMicroseconds()
+ << ", content_period=" << s.content_period.InMicroseconds()
+ << " }";
+}
+
+base::TimeDelta FpsAsPeriod(int frame_rate) {
+ return base::TimeDelta::FromSeconds(1) / frame_rate;
+}
+
} // namespace
+
+class AnimatedContentSamplerParameterizedTest
+ : public AnimatedContentSamplerTest,
+ public ::testing::WithParamInterface<Scenario> {
+ public:
+ AnimatedContentSamplerParameterizedTest()
+ : count_dropped_frames_(0), count_sampled_frames_(0) {}
+ virtual ~AnimatedContentSamplerParameterizedTest() {}
+
+ protected:
+ typedef std::pair<gfx::Rect, base::TimeTicks> Event;
+
+ virtual base::TimeDelta GetMinCapturePeriod() const OVERRIDE {
+ return GetParam().min_capture_period;
+ }
+
+ // Generate a sequence of events from the compositor pipeline. The event
+ // times will all be at compositor vsync boundaries.
+ std::vector<Event> GenerateEventSequence(base::TimeTicks begin,
+ base::TimeTicks end,
+ bool include_content_frame_events,
+ bool include_random_events) {
+ DCHECK(GetParam().content_period >= GetParam().vsync_interval);
+ base::TimeTicks next_content_time = begin - GetParam().content_period;
+ std::vector<Event> events;
+ for (base::TimeTicks compositor_time = begin; compositor_time < end;
+ compositor_time += GetParam().vsync_interval) {
+ if (include_content_frame_events && next_content_time < compositor_time) {
+ events.push_back(Event(GetContentDamageRect(), compositor_time));
+ next_content_time += GetParam().content_period;
+ } else if (include_random_events && GetRandomInRange(0, 1) == 0) {
+ events.push_back(Event(GetRandomDamageRect(), compositor_time));
+ }
+ }
+
+ DCHECK(!events.empty());
+ return events;
+ }
+
+ // Feed |events| through the sampler, and detect whether the expected
+ // lock-in/out transition occurs. Also, track and measure the frame drop
+ // ratio and check it against the expected drop rate.
+ void RunEventSequence(const std::vector<Event> events,
+ bool was_detecting_before,
+ bool is_detecting_after,
+ bool simulate_pipeline_back_pressure) {
+ gfx::Rect first_detected_region;
+
+ EXPECT_EQ(was_detecting_before, sampler()->has_proposal());
+ bool has_detection_switched = false;
+ ResetFrameCounters();
+ for (std::vector<Event>::const_iterator i = events.begin();
+ i != events.end(); ++i) {
+ sampler()->ConsiderPresentationEvent(i->first, i->second);
+
+ // Detect when the sampler locks in/out, and that it stays that way for
+ // all further iterations of this loop.
+ if (!has_detection_switched &&
+ was_detecting_before != sampler()->has_proposal()) {
+ has_detection_switched = true;
+ }
+ ASSERT_EQ(
+ has_detection_switched ? is_detecting_after : was_detecting_before,
+ sampler()->has_proposal());
+
+ if (sampler()->has_proposal()) {
+ // Make sure the sampler doesn't flip-flop and keep proposing sampling
+ // based on locking into different regions.
+ if (first_detected_region.IsEmpty()) {
+ first_detected_region = sampler()->detected_region();
+ ASSERT_FALSE(first_detected_region.IsEmpty());
+ } else {
+ EXPECT_EQ(first_detected_region, sampler()->detected_region());
+ }
+
+ if (simulate_pipeline_back_pressure && GetRandomInRange(0, 2) == 0)
+ ClientCannotSampleFrame(*i);
+ else
+ ClientDoesWhatSamplerProposes(*i);
+ } else {
+ EXPECT_FALSE(sampler()->should_sample());
+ if (!simulate_pipeline_back_pressure || GetRandomInRange(0, 2) == 1)
+ sampler()->RecordSample(i->second);
+ }
+ }
+ EXPECT_EQ(is_detecting_after, sampler()->has_proposal());
+ ExpectFrameDropRatioIsCorrect();
+ }
+
+ void ResetFrameCounters() {
+ count_dropped_frames_ = 0;
+ count_sampled_frames_ = 0;
+ }
+
+ // Keep track what the sampler is proposing, and call RecordSample() if it
+ // proposes sampling |event|.
+ void ClientDoesWhatSamplerProposes(const Event& event) {
+ if (sampler()->should_sample()) {
+ EXPECT_EQ(GetContentDamageRect(), event.first);
+ sampler()->RecordSample(sampler()->frame_timestamp());
+ ++count_sampled_frames_;
+ } else if (event.first == GetContentDamageRect()) {
+ ++count_dropped_frames_;
+ }
+ }
+
+ // RecordSample() is not called, but for testing, keep track of what the
+ // sampler is proposing for |event|.
+ void ClientCannotSampleFrame(const Event& event) {
+ if (sampler()->should_sample()) {
+ EXPECT_EQ(GetContentDamageRect(), event.first);
+ ++count_sampled_frames_;
+ } else if (event.first == GetContentDamageRect()) {
+ ++count_dropped_frames_;
+ }
+ }
+
+ // Confirm the AnimatedContentSampler is not dropping more frames than
+ // expected, given current test parameters.
+ void ExpectFrameDropRatioIsCorrect() {
+ if (count_sampled_frames_ == 0) {
+ EXPECT_EQ(0, count_dropped_frames_);
+ return;
+ }
+ const double content_framerate =
+ 1000000.0 / GetParam().content_period.InMicroseconds();
+ const double capture_framerate =
+ 1000000.0 / GetParam().min_capture_period.InMicroseconds();
+ const double expected_drop_rate = std::max(
+ 0.0, (content_framerate - capture_framerate) / capture_framerate);
+ const double actual_drop_rate =
+ static_cast<double>(count_dropped_frames_) / count_sampled_frames_;
+ EXPECT_NEAR(expected_drop_rate, actual_drop_rate, 0.015);
miu 2014/07/31 01:25:33 I raised the error threshold because I lowered the
+ }
+
+ private:
+ // These counters only include the frames with the desired content.
+ int count_dropped_frames_;
+ int count_sampled_frames_;
+};
+
+// Tests that the implementation locks in/out of frames containing stable
+// animated content, whether or not random events are also simultaneously
+// present.
+TEST_P(AnimatedContentSamplerParameterizedTest, DetectsAnimatedContent) {
+ // |begin| refers to the start of an event sequence in terms of the
+ // Compositor's clock.
+ base::TimeTicks begin = InitialTestTimeTicks();
+
+ // Provide random events and expect no lock-in.
+ base::TimeTicks end = begin + base::TimeDelta::FromSeconds(5);
+ RunEventSequence(GenerateEventSequence(begin, end, false, true),
+ false,
+ false,
+ false);
+ begin = end;
+
+ // Provide content frame events with some random events mixed-in, and expect
+ // the sampler to lock-in.
+ end = begin + base::TimeDelta::FromSeconds(5);
+ RunEventSequence(GenerateEventSequence(begin, end, true, true),
+ false,
+ true,
+ false);
+ begin = end;
+
+ // Continue providing content frame events without the random events mixed-in
+ // and expect the lock-in to hold.
+ end = begin + base::TimeDelta::FromSeconds(5);
+ RunEventSequence(GenerateEventSequence(begin, end, true, false),
+ true,
+ true,
+ false);
+ begin = end;
+
+ // Continue providing just content frame events and expect the lock-in to
+ // hold. Also simulate the capture pipeline experiencing back pressure.
+ end = begin + base::TimeDelta::FromSeconds(20);
+ RunEventSequence(GenerateEventSequence(begin, end, true, false),
+ true,
+ true,
+ true);
+ begin = end;
+
+ // Provide a half-second of random events only, and expect the lock-in to be
+ // broken.
+ end = begin + base::TimeDelta::FromMilliseconds(500);
+ RunEventSequence(GenerateEventSequence(begin, end, false, true),
+ true,
+ false,
+ false);
+ begin = end;
+
+ // Now, go back to providing content frame events, and expect the sampler to
+ // lock-in once again.
+ end = begin + base::TimeDelta::FromSeconds(5);
+ RunEventSequence(GenerateEventSequence(begin, end, true, false),
+ false,
+ true,
+ false);
+ begin = end;
+}
+
+// Tests that AnimatedContentSampler won't lock in to, nor flip-flop between,
+// two animations of the same pixel change rate. VideoCaptureOracle should
+// revert to using the SmoothEventSampler for these kinds of situations, as
+// there is no "right answer" as to which animation to lock into.
+TEST_P(AnimatedContentSamplerParameterizedTest,
+ DoesNotLockInToTwoCompetingAnimations) {
+ // Don't test when the event stream cannot indicate two separate content
+ // animations under the current test parameters.
+ if (GetParam().content_period < 2 * GetParam().vsync_interval)
+ return;
+
+ // Start the first animation and run for a bit, and expect the sampler to
+ // lock-in.
+ base::TimeTicks begin = InitialTestTimeTicks();
+ base::TimeTicks end = begin + base::TimeDelta::FromSeconds(5);
+ RunEventSequence(GenerateEventSequence(begin, end, true, false),
+ false,
+ true,
+ false);
+ begin = end;
+
+ // Now, keep the first animation and blend in an second animation of the same
+ // size and frame rate, but at a different position. This will should cause
+ // the sampler to enter an "undetected" state since it's unclear which
+ // animation should be locked into.
+ end = begin + base::TimeDelta::FromSeconds(20);
+ std::vector<Event> first_animation_events =
+ GenerateEventSequence(begin, end, true, false);
+ gfx::Rect second_animation_rect(
+ gfx::Point(0, GetContentDamageRect().height()),
+ GetContentDamageRect().size());
+ std::vector<Event> both_animations_events;
+ base::TimeDelta second_animation_offset = GetParam().vsync_interval;
+ for (std::vector<Event>::const_iterator i = first_animation_events.begin();
+ i != first_animation_events.end(); ++i) {
+ both_animations_events.push_back(*i);
+ both_animations_events.push_back(
+ Event(second_animation_rect, i->second + second_animation_offset));
+ }
+ RunEventSequence(both_animations_events, true, false, false);
+ begin = end;
+
+ // Now, run just the first animation, and expect the sampler to lock-in once
+ // again.
+ end = begin + base::TimeDelta::FromSeconds(5);
+ RunEventSequence(GenerateEventSequence(begin, end, true, false),
+ false,
+ true,
+ false);
+ begin = end;
+
+ // Now, blend in the second animation again, but it has half the frame rate of
+ // the first animation and damage Rects with twice the area. This will should
+ // cause the sampler to enter an "undetected" state again. This tests that
+ // pixel-weighting is being accounted for in the sampler's logic.
+ end = begin + base::TimeDelta::FromSeconds(20);
+ first_animation_events = GenerateEventSequence(begin, end, true, false);
+ second_animation_rect.set_width(second_animation_rect.width() * 2);
+ both_animations_events.clear();
+ bool include_second_animation_frame = true;
+ for (std::vector<Event>::const_iterator i = first_animation_events.begin();
+ i != first_animation_events.end(); ++i) {
+ both_animations_events.push_back(*i);
+ if (include_second_animation_frame) {
+ both_animations_events.push_back(
+ Event(second_animation_rect, i->second + second_animation_offset));
+ }
+ include_second_animation_frame = !include_second_animation_frame;
+ }
+ RunEventSequence(both_animations_events, true, false, false);
+ begin = end;
+}
+
+// Tests that the frame timestamps are smooth; meaning, that when run through a
+// simulated compositor, each frame is held displayed for the right number of
+// v-sync intervals.
+TEST_P(AnimatedContentSamplerParameterizedTest, FrameTimestampsAreSmooth) {
+ // Generate 30 seconds of animated content events, run the events through
+ // AnimatedContentSampler, and record all frame timestamps being proposed
+ // once lock-in is continuous.
+ base::TimeTicks begin = InitialTestTimeTicks();
+ std::vector<Event> events = GenerateEventSequence(
+ begin,
+ begin + base::TimeDelta::FromSeconds(20),
+ true,
+ false);
+ typedef std::vector<base::TimeTicks> Timestamps;
+ Timestamps frame_timestamps;
+ for (std::vector<Event>::const_iterator i = events.begin(); i != events.end();
+ ++i) {
+ sampler()->ConsiderPresentationEvent(i->first, i->second);
+ if (sampler()->has_proposal()) {
+ if (sampler()->should_sample()) {
+ frame_timestamps.push_back(sampler()->frame_timestamp());
+ sampler()->RecordSample(sampler()->frame_timestamp());
+ }
+ } else {
+ frame_timestamps.clear(); // Reset until continuous lock-in.
+ }
+ }
+ ASSERT_LE(2u, frame_timestamps.size());
+
+ // Iterate through the |frame_timestamps|, building a histogram counting the
+ // number of times each frame was displayed k times. For example, 10 frames
+ // of 30 Hz content on a 60 Hz v-sync interval should result in
+ // display_counts[2] == 10. Quit early if any one frame was obviously
+ // repeated too many times.
+ const int64 max_expected_repeats_per_frame = 1 +
+ std::max(GetParam().min_capture_period, GetParam().content_period) /
+ GetParam().vsync_interval;
+ std::vector<size_t> display_counts(max_expected_repeats_per_frame + 1, 0);
+ base::TimeTicks last_present_time = frame_timestamps.front();
+ for (Timestamps::const_iterator i = frame_timestamps.begin() + 1;
+ i != frame_timestamps.end(); ++i) {
+ const size_t num_vsync_intervals = static_cast<size_t>(
+ (*i - last_present_time) / GetParam().vsync_interval);
+ ASSERT_LT(0u, num_vsync_intervals);
+ ASSERT_GT(display_counts.size(), num_vsync_intervals); // Quit early.
+ ++display_counts[num_vsync_intervals];
+ last_present_time += num_vsync_intervals * GetParam().vsync_interval;
+ }
+
+ // Analyze the histogram for an expected result pattern. If the frame
+ // timestamps are smooth, there should only be one or two buckets with
+ // non-zero counts and they should be next to each other. Because the clock
+ // precision for the event_times provided to the sampler is very granular
+ // (i.e., the vsync_interval), it's okay if other buckets have a tiny "stray"
+ // count in this test.
+ size_t highest_count = 0;
+ size_t second_highest_count = 0;
+ for (size_t repeats = 1; repeats < display_counts.size(); ++repeats) {
+ DVLOG(1) << "display_counts[" << repeats << "] is "
+ << display_counts[repeats];
+ if (display_counts[repeats] >= highest_count) {
+ second_highest_count = highest_count;
+ highest_count = display_counts[repeats];
+ } else if (display_counts[repeats] > second_highest_count) {
+ second_highest_count = display_counts[repeats];
+ }
+ }
+ size_t stray_count_remaining =
+ (frame_timestamps.size() - 1) - (highest_count + second_highest_count);
+ // Expect no more than 0.75% of frames fall outside the two main buckets.
+ EXPECT_GT(frame_timestamps.size() * 75 / 10000, stray_count_remaining);
+ for (size_t repeats = 1; repeats < display_counts.size() - 1; ++repeats) {
+ if (display_counts[repeats] == highest_count) {
+ EXPECT_EQ(second_highest_count, display_counts[repeats + 1]);
+ ++repeats;
+ } else if (display_counts[repeats] == second_highest_count) {
+ EXPECT_EQ(highest_count, display_counts[repeats + 1]);
+ ++repeats;
+ } else {
+ EXPECT_GE(stray_count_remaining, display_counts[repeats]);
+ stray_count_remaining -= display_counts[repeats];
+ }
+ }
+}
+
+// Tests that frame timestamps are "lightly pushed" back towards the original
+// presentation event times, which tells us the AnimatedContentSampler can
+// account for sources of timestamp drift and correct the drift.
+TEST_P(AnimatedContentSamplerParameterizedTest,
+ FrameTimestampsConvergeTowardsEventTimes) {
+ const int max_drift_increment_millis = 3;
+
+ // Generate a full minute of events.
+ const base::TimeTicks begin = InitialTestTimeTicks();
+ const base::TimeTicks end = begin + base::TimeDelta::FromMinutes(1);
+ std::vector<Event> events = GenerateEventSequence(begin, end, true, false);
+
+ // Modify the event sequence so that 1-3 ms of additional drift is suddenly
+ // present every 100 events. This is meant to simulate that, external to
+ // AnimatedContentSampler, the video hardware vsync timebase is being
+ // refreshed and is showing severe drift from the system clock.
+ base::TimeDelta accumulated_drift;
+ for (size_t i = 1; i < events.size(); ++i) {
+ if (i % 100 == 0) {
+ accumulated_drift += base::TimeDelta::FromMilliseconds(
+ GetRandomInRange(1, max_drift_increment_millis + 1));
+ }
+ events[i].second += accumulated_drift;
+ }
+
+ // Run all the events through the sampler and track the last rewritten frame
+ // timestamp.
+ base::TimeTicks last_frame_timestamp;
+ for (std::vector<Event>::const_iterator i = events.begin(); i != events.end();
+ ++i) {
+ sampler()->ConsiderPresentationEvent(i->first, i->second);
+ if (sampler()->should_sample())
+ last_frame_timestamp = sampler()->frame_timestamp();
+ }
+
+ // If drift was accounted for, the |last_frame_timestamp| should be close to
+ // the last event's timestamp.
+ const base::TimeDelta total_error =
+ events.back().second - last_frame_timestamp;
+ const base::TimeDelta max_acceptable_error = GetParam().min_capture_period +
+ base::TimeDelta::FromMilliseconds(max_drift_increment_millis);
+ EXPECT_NEAR(0.0,
+ total_error.InMicroseconds(),
+ max_acceptable_error.InMicroseconds());
+}
+
+INSTANTIATE_TEST_CASE_P(
+ ,
+ AnimatedContentSamplerParameterizedTest,
+ ::testing::Values(
+ // Typical frame rate content: Compositor runs at 60 Hz, capture at 30
+ // Hz, and content video animates at 30, 25, or 24 Hz.
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(30)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(25)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(24)),
+
+ // High frame rate content that leverages the Compositor's
+ // capabilities, but capture is still at 30 Hz.
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(60)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(50)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(48)),
+
+ // High frame rate content that leverages the Compositor's
+ // capabilities, and capture is also a buttery 60 Hz.
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(60), FpsAsPeriod(60)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(60), FpsAsPeriod(50)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(60), FpsAsPeriod(48)),
+
+ // On some platforms, the Compositor runs at 50 Hz.
+ Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(30)),
+ Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(25)),
+ Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(24)),
+ Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(50)),
+ Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(48)),
+
+ // Stable, but non-standard content frame rates.
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(16)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(20)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(23)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(26)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(27)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(28)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(29)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(31)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(32)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(33))));
+
+// Tests that VideoCaptureOracle filters out events whose timestamps are
+// decreasing.
+TEST(VideoCaptureOracleTest, EnforcesEventTimeMonotonicity) {
+ const base::TimeDelta min_capture_period =
+ base::TimeDelta::FromSeconds(1) / 30;
+ const gfx::Rect damage_rect(0, 0, 1280, 720);
+ const base::TimeDelta event_increment = min_capture_period * 2;
+
+ VideoCaptureOracle oracle(min_capture_period, true);
+
+ base::TimeTicks t = InitialTestTimeTicks();
+ for (int i = 0; i < 10; ++i) {
+ t += event_increment;
+ ASSERT_TRUE(oracle.ObserveEventAndDecideCapture(
+ VideoCaptureOracle::kCompositorUpdate,
+ damage_rect, t));
+ }
+
+ base::TimeTicks furthest_event_time = t;
+ for (int i = 0; i < 10; ++i) {
+ t -= event_increment;
+ ASSERT_FALSE(oracle.ObserveEventAndDecideCapture(
+ VideoCaptureOracle::kCompositorUpdate,
+ damage_rect, t));
+ }
+
+ t = furthest_event_time;
+ for (int i = 0; i < 10; ++i) {
+ t += event_increment;
+ ASSERT_TRUE(oracle.ObserveEventAndDecideCapture(
+ VideoCaptureOracle::kCompositorUpdate,
+ damage_rect, t));
+ }
+}
+
+// Tests that VideoCaptureOracle is enforcing the requirement that captured
+// frames are delivered in order. Otherwise, downstream consumers could be
+// tripped-up by out-of-order frames or frame timestamps.
+TEST(VideoCaptureOracleTest, EnforcesFramesDeliveredInOrder) {
+ const base::TimeDelta min_capture_period =
+ base::TimeDelta::FromSeconds(1) / 30;
+ const gfx::Rect damage_rect(0, 0, 1280, 720);
+ const base::TimeDelta event_increment = min_capture_period * 2;
+
+ VideoCaptureOracle oracle(min_capture_period, true);
+
+ // Most basic scenario: Frames delivered one at a time, with no additional
+ // captures in-between deliveries.
+ base::TimeTicks t = InitialTestTimeTicks();
+ int last_frame_number;
+ base::TimeTicks ignored;
+ for (int i = 0; i < 10; ++i) {
+ t += event_increment;
+ ASSERT_TRUE(oracle.ObserveEventAndDecideCapture(
+ VideoCaptureOracle::kCompositorUpdate,
+ damage_rect, t));
+ last_frame_number = oracle.RecordCapture();
+ ASSERT_TRUE(oracle.CompleteCapture(last_frame_number, &ignored));
+ }
+
+ // Basic pipelined scenario: More than one frame in-flight at delivery points.
+ for (int i = 0; i < 50; ++i) {
+ const int num_in_flight = 1 + i % 3;
+ for (int j = 0; j < num_in_flight; ++j) {
+ t += event_increment;
+ ASSERT_TRUE(oracle.ObserveEventAndDecideCapture(
+ VideoCaptureOracle::kCompositorUpdate,
+ damage_rect, t));
+ last_frame_number = oracle.RecordCapture();
+ }
+ for (int j = num_in_flight - 1; j >= 0; --j) {
+ ASSERT_TRUE(oracle.CompleteCapture(last_frame_number - j, &ignored));
+ }
+ }
+
+ // Pipelined scenario with out-of-order delivery attempts rejected.
+ for (int i = 0; i < 50; ++i) {
+ const int num_in_flight = 1 + i % 3;
+ for (int j = 0; j < num_in_flight; ++j) {
+ t += event_increment;
+ ASSERT_TRUE(oracle.ObserveEventAndDecideCapture(
+ VideoCaptureOracle::kCompositorUpdate,
+ damage_rect, t));
+ last_frame_number = oracle.RecordCapture();
+ }
+ ASSERT_TRUE(oracle.CompleteCapture(last_frame_number, &ignored));
+ for (int j = 1; j < num_in_flight; ++j) {
+ ASSERT_FALSE(oracle.CompleteCapture(last_frame_number - j, &ignored));
+ }
+ }
+}
+
+// Tests that VideoCaptureOracle transitions between using its two samplers in a
+// way that does not introduce severe jank, pauses, etc.
+TEST(VideoCaptureOracleTest, TransitionsSmoothlyBetweenSamplers) {
+ const base::TimeDelta min_capture_period =
+ base::TimeDelta::FromSeconds(1) / 30;
+ const gfx::Rect animation_damage_rect(0, 0, 1280, 720);
+ const base::TimeDelta event_increment = min_capture_period * 2;
+
+ VideoCaptureOracle oracle(min_capture_period, true);
+
+ // Run sequences of animation events and non-animation events through the
+ // oracle. As the oracle transitions between each sampler, make sure the
+ // frame timestamps won't trip-up downstream consumers.
+ base::TimeTicks t = InitialTestTimeTicks();
+ base::TimeTicks last_frame_timestamp;
+ for (int i = 0; i < 1000; ++i) {
+ t += event_increment;
+
+ // For every 100 events, provide 50 that will cause the
+ // AnimatedContentSampler to lock-in, followed by 50 that will cause it to
+ // lock-out (i.e., the oracle will use the SmoothEventSampler instead).
+ const bool provide_animated_content_event =
+ (i % 100) >= 25 && (i % 100) < 75;
+
+ // Only the few events that trigger the lock-out transition should be
+ // dropped, because the AnimatedContentSampler doesn't yet realize the
+ // animation ended. Otherwise, the oracle should always decide to sample
+ // because one of its samplers says to.
+ const bool require_oracle_says_sample = (i % 100) < 75 || (i % 100) >= 78;
+ const bool oracle_says_sample = oracle.ObserveEventAndDecideCapture(
+ VideoCaptureOracle::kCompositorUpdate,
+ provide_animated_content_event ? animation_damage_rect : gfx::Rect(),
+ t);
+ if (require_oracle_says_sample)
+ ASSERT_TRUE(oracle_says_sample);
+ if (!oracle_says_sample)
+ continue;
+
+ const int frame_number = oracle.RecordCapture();
+
+ base::TimeTicks frame_timestamp;
+ ASSERT_TRUE(oracle.CompleteCapture(frame_number, &frame_timestamp));
+ ASSERT_FALSE(frame_timestamp.is_null());
+ if (!last_frame_timestamp.is_null()) {
+ const base::TimeDelta delta = frame_timestamp - last_frame_timestamp;
+ EXPECT_LE(event_increment.InMicroseconds(), delta.InMicroseconds());
+ // Right after the AnimatedContentSampler lock-out transition, there were
+ // a few frames dropped, so allow a gap in the timestamps. Otherwise, the
+ // delta between frame timestamps should never be more than 2X the
+ // |event_increment|.
+ const base::TimeDelta max_acceptable_delta = (i % 100) == 78 ?
+ event_increment * 5 : event_increment * 2;
+ EXPECT_GE(max_acceptable_delta.InMicroseconds(), delta.InMicroseconds());
+ }
+ last_frame_timestamp = frame_timestamp;
+ }
+}
+
} // namespace content

Powered by Google App Engine
This is Rietveld 408576698