Index: content/browser/media/capture/video_capture_oracle_unittest.cc |
diff --git a/content/browser/media/capture/video_capture_oracle_unittest.cc b/content/browser/media/capture/video_capture_oracle_unittest.cc |
index dff8e97de7fec39c7f3e0f56f2c33c7f50ab5e1b..b722490f41f289ef25669891eabc48b159745b77 100644 |
--- a/content/browser/media/capture/video_capture_oracle_unittest.cc |
+++ b/content/browser/media/capture/video_capture_oracle_unittest.cc |
@@ -4,17 +4,29 @@ |
#include "content/browser/media/capture/video_capture_oracle.h" |
+#include <cstdlib> |
+#include <utility> |
+#include <vector> |
+ |
+#include "base/logging.h" |
#include "base/strings/stringprintf.h" |
#include "base/time/time.h" |
#include "testing/gtest/include/gtest/gtest.h" |
+#include "ui/gfx/geometry/rect.h" |
namespace content { |
namespace { |
+bool AddEventAndConsiderSampling(SmoothEventSampler* sampler, |
+ base::TimeTicks event_time) { |
+ sampler->ConsiderPresentationEvent(event_time); |
+ return sampler->should_sample(); |
+} |
+ |
void SteadyStateSampleAndAdvance(base::TimeDelta vsync, |
SmoothEventSampler* sampler, |
base::TimeTicks* t) { |
- ASSERT_TRUE(sampler->AddEventAndConsiderSampling(*t)); |
+ ASSERT_TRUE(AddEventAndConsiderSampling(sampler, *t)); |
ASSERT_TRUE(sampler->HasUnrecordedEvent()); |
sampler->RecordSample(); |
ASSERT_FALSE(sampler->HasUnrecordedEvent()); |
@@ -26,17 +38,15 @@ void SteadyStateSampleAndAdvance(base::TimeDelta vsync, |
void SteadyStateNoSampleAndAdvance(base::TimeDelta vsync, |
SmoothEventSampler* sampler, |
base::TimeTicks* t) { |
- ASSERT_FALSE(sampler->AddEventAndConsiderSampling(*t)); |
+ ASSERT_FALSE(AddEventAndConsiderSampling(sampler, *t)); |
ASSERT_TRUE(sampler->HasUnrecordedEvent()); |
ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t)); |
*t += vsync; |
ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t)); |
} |
-void TimeTicksFromString(const char* string, base::TimeTicks* t) { |
- base::Time time; |
- ASSERT_TRUE(base::Time::FromString(string, &time)); |
- *t = base::TimeTicks::UnixEpoch() + (time - base::Time::UnixEpoch()); |
+base::TimeTicks InitialTestTimeTicks() { |
+ return base::TimeTicks() + base::TimeDelta::FromSeconds(1); |
miu
2014/07/31 01:25:33
I changed this because, while debugging, I noticed
ncarter (slow)
2014/08/01 23:36:39
I don't follow the problem you fixed -- how would
miu
2014/08/04 18:46:05
Sorry, I explained this the wrong way.
What I mea
|
} |
void TestRedundantCaptureStrategy(base::TimeDelta capture_period, |
@@ -48,15 +58,15 @@ void TestRedundantCaptureStrategy(base::TimeDelta capture_period, |
// Consider the first event. We want to sample that. |
ASSERT_FALSE(sampler->HasUnrecordedEvent()); |
- ASSERT_TRUE(sampler->AddEventAndConsiderSampling(*t)); |
+ ASSERT_TRUE(AddEventAndConsiderSampling(sampler, *t)); |
ASSERT_TRUE(sampler->HasUnrecordedEvent()); |
sampler->RecordSample(); |
ASSERT_FALSE(sampler->HasUnrecordedEvent()); |
- // After more than one capture period has passed without considering an event, |
- // we should repeatedly be overdue for sampling. However, once the redundant |
- // capture goal is achieved, we should no longer be overdue for sampling. |
- *t += capture_period * 4; |
+ // After more than 250 ms has passed without considering an event, we should |
+ // repeatedly be overdue for sampling. However, once the redundant capture |
+ // goal is achieved, we should no longer be overdue for sampling. |
+ *t += base::TimeDelta::FromMilliseconds(250); |
for (int i = 0; i < redundant_capture_goal; i++) { |
SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
ASSERT_FALSE(sampler->HasUnrecordedEvent()); |
@@ -69,6 +79,8 @@ void TestRedundantCaptureStrategy(base::TimeDelta capture_period, |
<< "Should not be overdue once redundant capture goal achieved."; |
} |
+} // namespace |
miu
2014/07/31 01:25:33
Note: I moved the TEST() code out of the anonymous
|
+ |
// 60Hz sampled at 30Hz should produce 30Hz. In addition, this test contains |
// much more comprehensive before/after/edge-case scenarios than the others. |
TEST(SmoothEventSamplerTest, Sample60HertzAt30Hertz) { |
@@ -77,8 +89,7 @@ TEST(SmoothEventSamplerTest, Sample60HertzAt30Hertz) { |
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 60; |
SmoothEventSampler sampler(capture_period, true, redundant_capture_goal); |
- base::TimeTicks t; |
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t); |
+ base::TimeTicks t = InitialTestTimeTicks(); |
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal, |
&sampler, &t); |
@@ -94,8 +105,8 @@ TEST(SmoothEventSamplerTest, Sample60HertzAt30Hertz) { |
// case we are adding events but not sampling them. |
for (int i = 0; i < 20; i++) { |
SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
- ASSERT_EQ(i >= 7, sampler.IsOverdueForSamplingAt(t)); |
- ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t)); |
+ ASSERT_EQ(i >= 14, sampler.IsOverdueForSamplingAt(t)); |
+ ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t)); |
ASSERT_TRUE(sampler.HasUnrecordedEvent()); |
t += vsync; |
} |
@@ -117,8 +128,7 @@ TEST(SmoothEventSamplerTest, Sample50HertzAt30Hertz) { |
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 50; |
SmoothEventSampler sampler(capture_period, true, redundant_capture_goal); |
- base::TimeTicks t; |
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t); |
+ base::TimeTicks t = InitialTestTimeTicks(); |
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal, |
&sampler, &t); |
@@ -136,10 +146,10 @@ TEST(SmoothEventSamplerTest, Sample50HertzAt30Hertz) { |
// Now pretend we're limited by backpressure in the pipeline. In this scenario |
// case we are adding events but not sampling them. |
- for (int i = 0; i < 12; i++) { |
+ for (int i = 0; i < 20; i++) { |
SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
- ASSERT_EQ(i >= 5, sampler.IsOverdueForSamplingAt(t)); |
- ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t)); |
+ ASSERT_EQ(i >= 11, sampler.IsOverdueForSamplingAt(t)); |
+ ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t)); |
t += vsync; |
} |
@@ -163,8 +173,7 @@ TEST(SmoothEventSamplerTest, Sample75HertzAt30Hertz) { |
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 75; |
SmoothEventSampler sampler(capture_period, true, redundant_capture_goal); |
- base::TimeTicks t; |
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t); |
+ base::TimeTicks t = InitialTestTimeTicks(); |
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal, |
&sampler, &t); |
@@ -186,8 +195,8 @@ TEST(SmoothEventSamplerTest, Sample75HertzAt30Hertz) { |
// case we are adding events but not sampling them. |
for (int i = 0; i < 20; i++) { |
SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
- ASSERT_EQ(i >= 8, sampler.IsOverdueForSamplingAt(t)); |
- ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t)); |
+ ASSERT_EQ(i >= 16, sampler.IsOverdueForSamplingAt(t)); |
+ ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t)); |
t += vsync; |
} |
@@ -213,8 +222,7 @@ TEST(SmoothEventSamplerTest, Sample30HertzAt30Hertz) { |
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 30; |
SmoothEventSampler sampler(capture_period, true, redundant_capture_goal); |
- base::TimeTicks t; |
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t); |
+ base::TimeTicks t = InitialTestTimeTicks(); |
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal, |
&sampler, &t); |
@@ -227,10 +235,10 @@ TEST(SmoothEventSamplerTest, Sample30HertzAt30Hertz) { |
// Now pretend we're limited by backpressure in the pipeline. In this scenario |
// case we are adding events but not sampling them. |
- for (int i = 0; i < 7; i++) { |
+ for (int i = 0; i < 10; i++) { |
SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
- ASSERT_EQ(i >= 3, sampler.IsOverdueForSamplingAt(t)); |
- ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t)); |
+ ASSERT_EQ(i >= 7, sampler.IsOverdueForSamplingAt(t)); |
+ ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t)); |
t += vsync; |
} |
@@ -249,8 +257,7 @@ TEST(SmoothEventSamplerTest, Sample24HertzAt30Hertz) { |
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 24; |
SmoothEventSampler sampler(capture_period, true, redundant_capture_goal); |
- base::TimeTicks t; |
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t); |
+ base::TimeTicks t = InitialTestTimeTicks(); |
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal, |
&sampler, &t); |
@@ -263,10 +270,10 @@ TEST(SmoothEventSamplerTest, Sample24HertzAt30Hertz) { |
// Now pretend we're limited by backpressure in the pipeline. In this scenario |
// case we are adding events but not sampling them. |
- for (int i = 0; i < 7; i++) { |
+ for (int i = 0; i < 10; i++) { |
SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
- ASSERT_EQ(i >= 3, sampler.IsOverdueForSamplingAt(t)); |
- ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t)); |
+ ASSERT_EQ(i >= 6, sampler.IsOverdueForSamplingAt(t)); |
+ ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t)); |
t += vsync; |
} |
@@ -283,19 +290,18 @@ TEST(SmoothEventSamplerTest, DoubleDrawAtOneTimeStillDirties) { |
const base::TimeDelta overdue_period = base::TimeDelta::FromSeconds(1); |
SmoothEventSampler sampler(capture_period, true, 1); |
- base::TimeTicks t; |
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t); |
+ base::TimeTicks t = InitialTestTimeTicks(); |
- ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t)); |
+ ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t)); |
sampler.RecordSample(); |
ASSERT_FALSE(sampler.IsOverdueForSamplingAt(t)) |
<< "Sampled last event; should not be dirty."; |
t += overdue_period; |
// Now simulate 2 events with the same clock value. |
- ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t)); |
+ ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t)); |
sampler.RecordSample(); |
- ASSERT_FALSE(sampler.AddEventAndConsiderSampling(t)) |
+ ASSERT_FALSE(AddEventAndConsiderSampling(&sampler, t)) |
<< "Two events at same time -- expected second not to be sampled."; |
ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t + overdue_period)) |
<< "Second event should dirty the capture state."; |
@@ -308,18 +314,20 @@ TEST(SmoothEventSamplerTest, FallbackToPollingIfUpdatesUnreliable) { |
SmoothEventSampler should_not_poll(timer_interval, true, 1); |
SmoothEventSampler should_poll(timer_interval, false, 1); |
- base::TimeTicks t; |
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t); |
+ base::TimeTicks t = InitialTestTimeTicks(); |
// Do one round of the "happy case" where an event was received and |
// RecordSample() was called by the client. |
- ASSERT_TRUE(should_not_poll.AddEventAndConsiderSampling(t)); |
- ASSERT_TRUE(should_poll.AddEventAndConsiderSampling(t)); |
+ ASSERT_TRUE(AddEventAndConsiderSampling(&should_not_poll, t)); |
+ ASSERT_TRUE(AddEventAndConsiderSampling(&should_poll, t)); |
should_not_poll.RecordSample(); |
should_poll.RecordSample(); |
- // One time period ahead, neither sampler says we're overdue. |
- for (int i = 0; i < 3; i++) { |
+ // For the following time period, before 250 ms has elapsed, neither sampler |
+ // says we're overdue. |
+ const int non_overdue_intervals = static_cast<int>( |
+ base::TimeDelta::FromMilliseconds(250) / timer_interval); |
+ for (int i = 0; i < non_overdue_intervals; i++) { |
t += timer_interval; |
ASSERT_FALSE(should_not_poll.IsOverdueForSamplingAt(t)) |
<< "Sampled last event; should not be dirty."; |
@@ -330,7 +338,7 @@ TEST(SmoothEventSamplerTest, FallbackToPollingIfUpdatesUnreliable) { |
// Next time period ahead, both samplers say we're overdue. The non-polling |
// sampler is returning true here because it has been configured to allow one |
// redundant capture. |
- t += timer_interval; |
+ t += timer_interval; // Step past the 250 ms threshold. |
ASSERT_TRUE(should_not_poll.IsOverdueForSamplingAt(t)) |
<< "Sampled last event; is dirty one time only to meet redundancy goal."; |
ASSERT_TRUE(should_poll.IsOverdueForSamplingAt(t)) |
@@ -356,6 +364,8 @@ TEST(SmoothEventSamplerTest, FallbackToPollingIfUpdatesUnreliable) { |
should_poll.RecordSample(); |
} |
+namespace { |
+ |
struct DataPoint { |
bool should_capture; |
double increment_ms; |
@@ -364,19 +374,20 @@ struct DataPoint { |
void ReplayCheckingSamplerDecisions(const DataPoint* data_points, |
size_t num_data_points, |
SmoothEventSampler* sampler) { |
- base::TimeTicks t; |
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t); |
+ base::TimeTicks t = InitialTestTimeTicks(); |
for (size_t i = 0; i < num_data_points; ++i) { |
t += base::TimeDelta::FromMicroseconds( |
static_cast<int64>(data_points[i].increment_ms * 1000)); |
ASSERT_EQ(data_points[i].should_capture, |
- sampler->AddEventAndConsiderSampling(t)) |
+ AddEventAndConsiderSampling(sampler, t)) |
<< "at data_points[" << i << ']'; |
if (data_points[i].should_capture) |
sampler->RecordSample(); |
} |
} |
+} // namespace |
+ |
TEST(SmoothEventSamplerTest, DrawingAt24FpsWith60HzVsyncSampledAt30Hertz) { |
// Actual capturing of timing data: Initial instability as a 24 FPS video was |
// started from a still screen, then clearly followed by steady-state. |
@@ -483,5 +494,768 @@ TEST(SmoothEventSamplerTest, DrawingAt60FpsWith60HzVsyncSampledAt30Hertz) { |
ReplayCheckingSamplerDecisions(data_points, arraysize(data_points), &sampler); |
} |
+class AnimatedContentSamplerTest : public ::testing::Test { |
+ public: |
+ AnimatedContentSamplerTest() {} |
+ virtual ~AnimatedContentSamplerTest() {} |
+ |
+ virtual void SetUp() OVERRIDE { |
+ const base::TimeDelta since_epoch = |
+ InitialTestTimeTicks() - base::TimeTicks::UnixEpoch(); |
+ rand_seed_ = abs(static_cast<int>(since_epoch.InMicroseconds())); |
+ sampler_.reset(new AnimatedContentSampler(GetMinCapturePeriod())); |
+ } |
+ |
+ protected: |
+ // Overridden by subclass for parameterized tests. |
+ virtual base::TimeDelta GetMinCapturePeriod() const { |
+ return base::TimeDelta::FromSeconds(1) / 30; |
+ } |
+ |
+ AnimatedContentSampler* sampler() const { |
+ return sampler_.get(); |
+ } |
+ |
+ int GetRandomInRange(int begin, int end) { |
+ const int len = end - begin; |
+ const int rand_offset = (len == 0) ? 0 : (NextRandomInt() % (end - begin)); |
+ return begin + rand_offset; |
+ } |
+ |
+ gfx::Rect GetRandomDamageRect() { |
+ return gfx::Rect(0, 0, GetRandomInRange(1, 100), GetRandomInRange(1, 100)); |
+ } |
+ |
+ gfx::Rect GetContentDamageRect() { |
+ // This must be distinct from anything GetRandomDamageRect() could return. |
+ return gfx::Rect(0, 0, 1280, 720); |
+ } |
+ |
+ // Directly inject an observation. Only used to test |
+ // ElectMajorityDamageRect(). |
+ void ObserveDamageRect(const gfx::Rect& damage_rect) { |
+ sampler_->observations_.push_back( |
+ AnimatedContentSampler::Observation(damage_rect, base::TimeTicks())); |
+ } |
+ |
+ gfx::Rect ElectMajorityDamageRect() const { |
+ return sampler_->ElectMajorityDamageRect(); |
+ } |
+ |
+ private: |
+ // Note: Not using base::RandInt() because it is horribly slow on debug |
+ // builds. The following is a very simple, deterministic LCG: |
+ int NextRandomInt() { |
+ rand_seed_ = (1103515245 * rand_seed_ + 12345) % (1 << 31); |
+ return rand_seed_; |
+ } |
+ |
+ int rand_seed_; |
+ scoped_ptr<AnimatedContentSampler> sampler_; |
+}; |
+ |
+TEST_F(AnimatedContentSamplerTest, ElectsNoneFromZeroDamageRects) { |
+ EXPECT_EQ(gfx::Rect(), ElectMajorityDamageRect()); |
+} |
+ |
+TEST_F(AnimatedContentSamplerTest, ElectsMajorityFromOneDamageRect) { |
+ const gfx::Rect the_one_rect(0, 0, 1, 1); |
+ ObserveDamageRect(the_one_rect); |
+ EXPECT_EQ(the_one_rect, ElectMajorityDamageRect()); |
+} |
+ |
+TEST_F(AnimatedContentSamplerTest, ElectsNoneFromTwoDamageRectsOfSameArea) { |
+ const gfx::Rect one_rect(0, 0, 1, 1); |
+ const gfx::Rect another_rect(1, 1, 1, 1); |
+ ObserveDamageRect(one_rect); |
+ ObserveDamageRect(another_rect); |
+ EXPECT_EQ(gfx::Rect(), ElectMajorityDamageRect()); |
+} |
+ |
+TEST_F(AnimatedContentSamplerTest, ElectsLargerOfTwoDamageRects_1) { |
+ const gfx::Rect one_rect(0, 0, 1, 1); |
+ const gfx::Rect another_rect(0, 0, 2, 2); |
+ ObserveDamageRect(one_rect); |
+ ObserveDamageRect(another_rect); |
+ EXPECT_EQ(another_rect, ElectMajorityDamageRect()); |
+} |
+ |
+TEST_F(AnimatedContentSamplerTest, ElectsLargerOfTwoDamageRects_2) { |
+ const gfx::Rect one_rect(0, 0, 2, 2); |
+ const gfx::Rect another_rect(0, 0, 1, 1); |
+ ObserveDamageRect(one_rect); |
+ ObserveDamageRect(another_rect); |
+ EXPECT_EQ(one_rect, ElectMajorityDamageRect()); |
+} |
+ |
+TEST_F(AnimatedContentSamplerTest, ElectsSameAsMooreDemonstration) { |
+ // A more complex sequence (from Moore's web site): Three different Rects with |
+ // the same area, but occurring a different number of times. C should win the |
+ // vote. |
+ const gfx::Rect rect_a(0, 0, 1, 4); |
+ const gfx::Rect rect_b(1, 1, 4, 1); |
+ const gfx::Rect rect_c(2, 2, 2, 2); |
+ for (int i = 0; i < 3; ++i) |
+ ObserveDamageRect(rect_a); |
+ for (int i = 0; i < 2; ++i) |
+ ObserveDamageRect(rect_c); |
+ for (int i = 0; i < 2; ++i) |
+ ObserveDamageRect(rect_b); |
+ for (int i = 0; i < 3; ++i) |
+ ObserveDamageRect(rect_c); |
+ ObserveDamageRect(rect_b); |
+ for (int i = 0; i < 2; ++i) |
+ ObserveDamageRect(rect_c); |
+ EXPECT_EQ(rect_c, ElectMajorityDamageRect()); |
+} |
+ |
+TEST_F(AnimatedContentSamplerTest, Elects24FpsVideoInsteadOf48FpsSpinner) { |
+ // Scenario: 24 FPS 720x480 Video versus 48 FPS 96x96 "Busy Spinner" |
+ const gfx::Rect video_rect(100, 100, 720, 480); |
+ const gfx::Rect spinner_rect(360, 0, 96, 96); |
+ for (int i = 0; i < 100; ++i) { |
+ // |video_rect| occurs once for every two |spinner_rect|. Vary the order |
+ // of events between the two: |
+ ObserveDamageRect(video_rect); |
+ ObserveDamageRect(spinner_rect); |
+ ObserveDamageRect(spinner_rect); |
+ ObserveDamageRect(video_rect); |
+ ObserveDamageRect(spinner_rect); |
+ ObserveDamageRect(spinner_rect); |
+ ObserveDamageRect(spinner_rect); |
+ ObserveDamageRect(video_rect); |
+ ObserveDamageRect(spinner_rect); |
+ ObserveDamageRect(spinner_rect); |
+ ObserveDamageRect(video_rect); |
+ ObserveDamageRect(spinner_rect); |
+ } |
+ EXPECT_EQ(video_rect, ElectMajorityDamageRect()); |
+} |
+ |
+namespace { |
+ |
+// A test scenario for AnimatedContentSamplerParameterizedTest. |
+struct Scenario { |
+ base::TimeDelta vsync_interval; // Reflects compositor's update rate. |
+ base::TimeDelta min_capture_period; // Reflects maximum capture rate. |
+ base::TimeDelta content_period; // Reflects content animation rate. |
+ |
+ Scenario(base::TimeDelta v, base::TimeDelta m, base::TimeDelta c) |
+ : vsync_interval(v), min_capture_period(m), content_period(c) { |
+ CHECK(content_period >= vsync_interval) |
+ << "Bad test params: Impossible to animate faster than the compositor."; |
+ } |
+}; |
+ |
+// Value printer for Scenario. |
+::std::ostream& operator<<(::std::ostream& os, const Scenario& s) { |
+ return os << "{ vsync_interval=" << s.vsync_interval.InMicroseconds() |
+ << ", min_capture_period=" << s.min_capture_period.InMicroseconds() |
+ << ", content_period=" << s.content_period.InMicroseconds() |
+ << " }"; |
+} |
+ |
+base::TimeDelta FpsAsPeriod(int frame_rate) { |
+ return base::TimeDelta::FromSeconds(1) / frame_rate; |
+} |
+ |
} // namespace |
+ |
+class AnimatedContentSamplerParameterizedTest |
+ : public AnimatedContentSamplerTest, |
+ public ::testing::WithParamInterface<Scenario> { |
+ public: |
+ AnimatedContentSamplerParameterizedTest() |
+ : count_dropped_frames_(0), count_sampled_frames_(0) {} |
+ virtual ~AnimatedContentSamplerParameterizedTest() {} |
+ |
+ protected: |
+ typedef std::pair<gfx::Rect, base::TimeTicks> Event; |
+ |
+ virtual base::TimeDelta GetMinCapturePeriod() const OVERRIDE { |
+ return GetParam().min_capture_period; |
+ } |
+ |
+ // Generate a sequence of events from the compositor pipeline. The event |
+ // times will all be at compositor vsync boundaries. |
+ std::vector<Event> GenerateEventSequence(base::TimeTicks begin, |
+ base::TimeTicks end, |
+ bool include_content_frame_events, |
+ bool include_random_events) { |
+ DCHECK(GetParam().content_period >= GetParam().vsync_interval); |
+ base::TimeTicks next_content_time = begin - GetParam().content_period; |
+ std::vector<Event> events; |
+ for (base::TimeTicks compositor_time = begin; compositor_time < end; |
+ compositor_time += GetParam().vsync_interval) { |
+ if (include_content_frame_events && next_content_time < compositor_time) { |
+ events.push_back(Event(GetContentDamageRect(), compositor_time)); |
+ next_content_time += GetParam().content_period; |
+ } else if (include_random_events && GetRandomInRange(0, 1) == 0) { |
+ events.push_back(Event(GetRandomDamageRect(), compositor_time)); |
+ } |
+ } |
+ |
+ DCHECK(!events.empty()); |
+ return events; |
+ } |
+ |
+ // Feed |events| through the sampler, and detect whether the expected |
+ // lock-in/out transition occurs. Also, track and measure the frame drop |
+ // ratio and check it against the expected drop rate. |
+ void RunEventSequence(const std::vector<Event> events, |
+ bool was_detecting_before, |
+ bool is_detecting_after, |
+ bool simulate_pipeline_back_pressure) { |
+ gfx::Rect first_detected_region; |
+ |
+ EXPECT_EQ(was_detecting_before, sampler()->has_proposal()); |
+ bool has_detection_switched = false; |
+ ResetFrameCounters(); |
+ for (std::vector<Event>::const_iterator i = events.begin(); |
+ i != events.end(); ++i) { |
+ sampler()->ConsiderPresentationEvent(i->first, i->second); |
+ |
+ // Detect when the sampler locks in/out, and that it stays that way for |
+ // all further iterations of this loop. |
+ if (!has_detection_switched && |
+ was_detecting_before != sampler()->has_proposal()) { |
+ has_detection_switched = true; |
+ } |
+ ASSERT_EQ( |
+ has_detection_switched ? is_detecting_after : was_detecting_before, |
+ sampler()->has_proposal()); |
+ |
+ if (sampler()->has_proposal()) { |
+ // Make sure the sampler doesn't flip-flop and keep proposing sampling |
+ // based on locking into different regions. |
+ if (first_detected_region.IsEmpty()) { |
+ first_detected_region = sampler()->detected_region(); |
+ ASSERT_FALSE(first_detected_region.IsEmpty()); |
+ } else { |
+ EXPECT_EQ(first_detected_region, sampler()->detected_region()); |
+ } |
+ |
+ if (simulate_pipeline_back_pressure && GetRandomInRange(0, 2) == 0) |
+ ClientCannotSampleFrame(*i); |
+ else |
+ ClientDoesWhatSamplerProposes(*i); |
+ } else { |
+ EXPECT_FALSE(sampler()->should_sample()); |
+ if (!simulate_pipeline_back_pressure || GetRandomInRange(0, 2) == 1) |
+ sampler()->RecordSample(i->second); |
+ } |
+ } |
+ EXPECT_EQ(is_detecting_after, sampler()->has_proposal()); |
+ ExpectFrameDropRatioIsCorrect(); |
+ } |
+ |
+ void ResetFrameCounters() { |
+ count_dropped_frames_ = 0; |
+ count_sampled_frames_ = 0; |
+ } |
+ |
+ // Keep track what the sampler is proposing, and call RecordSample() if it |
+ // proposes sampling |event|. |
+ void ClientDoesWhatSamplerProposes(const Event& event) { |
+ if (sampler()->should_sample()) { |
+ EXPECT_EQ(GetContentDamageRect(), event.first); |
+ sampler()->RecordSample(sampler()->frame_timestamp()); |
+ ++count_sampled_frames_; |
+ } else if (event.first == GetContentDamageRect()) { |
+ ++count_dropped_frames_; |
+ } |
+ } |
+ |
+ // RecordSample() is not called, but for testing, keep track of what the |
+ // sampler is proposing for |event|. |
+ void ClientCannotSampleFrame(const Event& event) { |
+ if (sampler()->should_sample()) { |
+ EXPECT_EQ(GetContentDamageRect(), event.first); |
+ ++count_sampled_frames_; |
+ } else if (event.first == GetContentDamageRect()) { |
+ ++count_dropped_frames_; |
+ } |
+ } |
+ |
+ // Confirm the AnimatedContentSampler is not dropping more frames than |
+ // expected, given current test parameters. |
+ void ExpectFrameDropRatioIsCorrect() { |
+ if (count_sampled_frames_ == 0) { |
+ EXPECT_EQ(0, count_dropped_frames_); |
+ return; |
+ } |
+ const double content_framerate = |
+ 1000000.0 / GetParam().content_period.InMicroseconds(); |
+ const double capture_framerate = |
+ 1000000.0 / GetParam().min_capture_period.InMicroseconds(); |
+ const double expected_drop_rate = std::max( |
+ 0.0, (content_framerate - capture_framerate) / capture_framerate); |
+ const double actual_drop_rate = |
+ static_cast<double>(count_dropped_frames_) / count_sampled_frames_; |
+ EXPECT_NEAR(expected_drop_rate, actual_drop_rate, 0.015); |
miu
2014/07/31 01:25:33
I raised the error threshold because I lowered the
|
+ } |
+ |
+ private: |
+ // These counters only include the frames with the desired content. |
+ int count_dropped_frames_; |
+ int count_sampled_frames_; |
+}; |
+ |
+// Tests that the implementation locks in/out of frames containing stable |
+// animated content, whether or not random events are also simultaneously |
+// present. |
+TEST_P(AnimatedContentSamplerParameterizedTest, DetectsAnimatedContent) { |
+ // |begin| refers to the start of an event sequence in terms of the |
+ // Compositor's clock. |
+ base::TimeTicks begin = InitialTestTimeTicks(); |
+ |
+ // Provide random events and expect no lock-in. |
+ base::TimeTicks end = begin + base::TimeDelta::FromSeconds(5); |
+ RunEventSequence(GenerateEventSequence(begin, end, false, true), |
+ false, |
+ false, |
+ false); |
+ begin = end; |
+ |
+ // Provide content frame events with some random events mixed-in, and expect |
+ // the sampler to lock-in. |
+ end = begin + base::TimeDelta::FromSeconds(5); |
+ RunEventSequence(GenerateEventSequence(begin, end, true, true), |
+ false, |
+ true, |
+ false); |
+ begin = end; |
+ |
+ // Continue providing content frame events without the random events mixed-in |
+ // and expect the lock-in to hold. |
+ end = begin + base::TimeDelta::FromSeconds(5); |
+ RunEventSequence(GenerateEventSequence(begin, end, true, false), |
+ true, |
+ true, |
+ false); |
+ begin = end; |
+ |
+ // Continue providing just content frame events and expect the lock-in to |
+ // hold. Also simulate the capture pipeline experiencing back pressure. |
+ end = begin + base::TimeDelta::FromSeconds(20); |
+ RunEventSequence(GenerateEventSequence(begin, end, true, false), |
+ true, |
+ true, |
+ true); |
+ begin = end; |
+ |
+ // Provide a half-second of random events only, and expect the lock-in to be |
+ // broken. |
+ end = begin + base::TimeDelta::FromMilliseconds(500); |
+ RunEventSequence(GenerateEventSequence(begin, end, false, true), |
+ true, |
+ false, |
+ false); |
+ begin = end; |
+ |
+ // Now, go back to providing content frame events, and expect the sampler to |
+ // lock-in once again. |
+ end = begin + base::TimeDelta::FromSeconds(5); |
+ RunEventSequence(GenerateEventSequence(begin, end, true, false), |
+ false, |
+ true, |
+ false); |
+ begin = end; |
+} |
+ |
+// Tests that AnimatedContentSampler won't lock in to, nor flip-flop between, |
+// two animations of the same pixel change rate. VideoCaptureOracle should |
+// revert to using the SmoothEventSampler for these kinds of situations, as |
+// there is no "right answer" as to which animation to lock into. |
+TEST_P(AnimatedContentSamplerParameterizedTest, |
+ DoesNotLockInToTwoCompetingAnimations) { |
+ // Don't test when the event stream cannot indicate two separate content |
+ // animations under the current test parameters. |
+ if (GetParam().content_period < 2 * GetParam().vsync_interval) |
+ return; |
+ |
+ // Start the first animation and run for a bit, and expect the sampler to |
+ // lock-in. |
+ base::TimeTicks begin = InitialTestTimeTicks(); |
+ base::TimeTicks end = begin + base::TimeDelta::FromSeconds(5); |
+ RunEventSequence(GenerateEventSequence(begin, end, true, false), |
+ false, |
+ true, |
+ false); |
+ begin = end; |
+ |
+ // Now, keep the first animation and blend in an second animation of the same |
+ // size and frame rate, but at a different position. This will should cause |
+ // the sampler to enter an "undetected" state since it's unclear which |
+ // animation should be locked into. |
+ end = begin + base::TimeDelta::FromSeconds(20); |
+ std::vector<Event> first_animation_events = |
+ GenerateEventSequence(begin, end, true, false); |
+ gfx::Rect second_animation_rect( |
+ gfx::Point(0, GetContentDamageRect().height()), |
+ GetContentDamageRect().size()); |
+ std::vector<Event> both_animations_events; |
+ base::TimeDelta second_animation_offset = GetParam().vsync_interval; |
+ for (std::vector<Event>::const_iterator i = first_animation_events.begin(); |
+ i != first_animation_events.end(); ++i) { |
+ both_animations_events.push_back(*i); |
+ both_animations_events.push_back( |
+ Event(second_animation_rect, i->second + second_animation_offset)); |
+ } |
+ RunEventSequence(both_animations_events, true, false, false); |
+ begin = end; |
+ |
+ // Now, run just the first animation, and expect the sampler to lock-in once |
+ // again. |
+ end = begin + base::TimeDelta::FromSeconds(5); |
+ RunEventSequence(GenerateEventSequence(begin, end, true, false), |
+ false, |
+ true, |
+ false); |
+ begin = end; |
+ |
+ // Now, blend in the second animation again, but it has half the frame rate of |
+ // the first animation and damage Rects with twice the area. This will should |
+ // cause the sampler to enter an "undetected" state again. This tests that |
+ // pixel-weighting is being accounted for in the sampler's logic. |
+ end = begin + base::TimeDelta::FromSeconds(20); |
+ first_animation_events = GenerateEventSequence(begin, end, true, false); |
+ second_animation_rect.set_width(second_animation_rect.width() * 2); |
+ both_animations_events.clear(); |
+ bool include_second_animation_frame = true; |
+ for (std::vector<Event>::const_iterator i = first_animation_events.begin(); |
+ i != first_animation_events.end(); ++i) { |
+ both_animations_events.push_back(*i); |
+ if (include_second_animation_frame) { |
+ both_animations_events.push_back( |
+ Event(second_animation_rect, i->second + second_animation_offset)); |
+ } |
+ include_second_animation_frame = !include_second_animation_frame; |
+ } |
+ RunEventSequence(both_animations_events, true, false, false); |
+ begin = end; |
+} |
+ |
+// Tests that the frame timestamps are smooth; meaning, that when run through a |
+// simulated compositor, each frame is held displayed for the right number of |
+// v-sync intervals. |
+TEST_P(AnimatedContentSamplerParameterizedTest, FrameTimestampsAreSmooth) { |
+ // Generate 30 seconds of animated content events, run the events through |
+ // AnimatedContentSampler, and record all frame timestamps being proposed |
+ // once lock-in is continuous. |
+ base::TimeTicks begin = InitialTestTimeTicks(); |
+ std::vector<Event> events = GenerateEventSequence( |
+ begin, |
+ begin + base::TimeDelta::FromSeconds(20), |
+ true, |
+ false); |
+ typedef std::vector<base::TimeTicks> Timestamps; |
+ Timestamps frame_timestamps; |
+ for (std::vector<Event>::const_iterator i = events.begin(); i != events.end(); |
+ ++i) { |
+ sampler()->ConsiderPresentationEvent(i->first, i->second); |
+ if (sampler()->has_proposal()) { |
+ if (sampler()->should_sample()) { |
+ frame_timestamps.push_back(sampler()->frame_timestamp()); |
+ sampler()->RecordSample(sampler()->frame_timestamp()); |
+ } |
+ } else { |
+ frame_timestamps.clear(); // Reset until continuous lock-in. |
+ } |
+ } |
+ ASSERT_LE(2u, frame_timestamps.size()); |
+ |
+ // Iterate through the |frame_timestamps|, building a histogram counting the |
+ // number of times each frame was displayed k times. For example, 10 frames |
+ // of 30 Hz content on a 60 Hz v-sync interval should result in |
+ // display_counts[2] == 10. Quit early if any one frame was obviously |
+ // repeated too many times. |
+ const int64 max_expected_repeats_per_frame = 1 + |
+ std::max(GetParam().min_capture_period, GetParam().content_period) / |
+ GetParam().vsync_interval; |
+ std::vector<size_t> display_counts(max_expected_repeats_per_frame + 1, 0); |
+ base::TimeTicks last_present_time = frame_timestamps.front(); |
+ for (Timestamps::const_iterator i = frame_timestamps.begin() + 1; |
+ i != frame_timestamps.end(); ++i) { |
+ const size_t num_vsync_intervals = static_cast<size_t>( |
+ (*i - last_present_time) / GetParam().vsync_interval); |
+ ASSERT_LT(0u, num_vsync_intervals); |
+ ASSERT_GT(display_counts.size(), num_vsync_intervals); // Quit early. |
+ ++display_counts[num_vsync_intervals]; |
+ last_present_time += num_vsync_intervals * GetParam().vsync_interval; |
+ } |
+ |
+ // Analyze the histogram for an expected result pattern. If the frame |
+ // timestamps are smooth, there should only be one or two buckets with |
+ // non-zero counts and they should be next to each other. Because the clock |
+ // precision for the event_times provided to the sampler is very granular |
+ // (i.e., the vsync_interval), it's okay if other buckets have a tiny "stray" |
+ // count in this test. |
+ size_t highest_count = 0; |
+ size_t second_highest_count = 0; |
+ for (size_t repeats = 1; repeats < display_counts.size(); ++repeats) { |
+ DVLOG(1) << "display_counts[" << repeats << "] is " |
+ << display_counts[repeats]; |
+ if (display_counts[repeats] >= highest_count) { |
+ second_highest_count = highest_count; |
+ highest_count = display_counts[repeats]; |
+ } else if (display_counts[repeats] > second_highest_count) { |
+ second_highest_count = display_counts[repeats]; |
+ } |
+ } |
+ size_t stray_count_remaining = |
+ (frame_timestamps.size() - 1) - (highest_count + second_highest_count); |
+ // Expect no more than 0.75% of frames fall outside the two main buckets. |
+ EXPECT_GT(frame_timestamps.size() * 75 / 10000, stray_count_remaining); |
+ for (size_t repeats = 1; repeats < display_counts.size() - 1; ++repeats) { |
+ if (display_counts[repeats] == highest_count) { |
+ EXPECT_EQ(second_highest_count, display_counts[repeats + 1]); |
+ ++repeats; |
+ } else if (display_counts[repeats] == second_highest_count) { |
+ EXPECT_EQ(highest_count, display_counts[repeats + 1]); |
+ ++repeats; |
+ } else { |
+ EXPECT_GE(stray_count_remaining, display_counts[repeats]); |
+ stray_count_remaining -= display_counts[repeats]; |
+ } |
+ } |
+} |
+ |
+// Tests that frame timestamps are "lightly pushed" back towards the original |
+// presentation event times, which tells us the AnimatedContentSampler can |
+// account for sources of timestamp drift and correct the drift. |
+TEST_P(AnimatedContentSamplerParameterizedTest, |
+ FrameTimestampsConvergeTowardsEventTimes) { |
+ const int max_drift_increment_millis = 3; |
+ |
+ // Generate a full minute of events. |
+ const base::TimeTicks begin = InitialTestTimeTicks(); |
+ const base::TimeTicks end = begin + base::TimeDelta::FromMinutes(1); |
+ std::vector<Event> events = GenerateEventSequence(begin, end, true, false); |
+ |
+ // Modify the event sequence so that 1-3 ms of additional drift is suddenly |
+ // present every 100 events. This is meant to simulate that, external to |
+ // AnimatedContentSampler, the video hardware vsync timebase is being |
+ // refreshed and is showing severe drift from the system clock. |
+ base::TimeDelta accumulated_drift; |
+ for (size_t i = 1; i < events.size(); ++i) { |
+ if (i % 100 == 0) { |
+ accumulated_drift += base::TimeDelta::FromMilliseconds( |
+ GetRandomInRange(1, max_drift_increment_millis + 1)); |
+ } |
+ events[i].second += accumulated_drift; |
+ } |
+ |
+ // Run all the events through the sampler and track the last rewritten frame |
+ // timestamp. |
+ base::TimeTicks last_frame_timestamp; |
+ for (std::vector<Event>::const_iterator i = events.begin(); i != events.end(); |
+ ++i) { |
+ sampler()->ConsiderPresentationEvent(i->first, i->second); |
+ if (sampler()->should_sample()) |
+ last_frame_timestamp = sampler()->frame_timestamp(); |
+ } |
+ |
+ // If drift was accounted for, the |last_frame_timestamp| should be close to |
+ // the last event's timestamp. |
+ const base::TimeDelta total_error = |
+ events.back().second - last_frame_timestamp; |
+ const base::TimeDelta max_acceptable_error = GetParam().min_capture_period + |
+ base::TimeDelta::FromMilliseconds(max_drift_increment_millis); |
+ EXPECT_NEAR(0.0, |
+ total_error.InMicroseconds(), |
+ max_acceptable_error.InMicroseconds()); |
+} |
+ |
+INSTANTIATE_TEST_CASE_P( |
+ , |
+ AnimatedContentSamplerParameterizedTest, |
+ ::testing::Values( |
+ // Typical frame rate content: Compositor runs at 60 Hz, capture at 30 |
+ // Hz, and content video animates at 30, 25, or 24 Hz. |
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(30)), |
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(25)), |
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(24)), |
+ |
+ // High frame rate content that leverages the Compositor's |
+ // capabilities, but capture is still at 30 Hz. |
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(60)), |
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(50)), |
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(48)), |
+ |
+ // High frame rate content that leverages the Compositor's |
+ // capabilities, and capture is also a buttery 60 Hz. |
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(60), FpsAsPeriod(60)), |
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(60), FpsAsPeriod(50)), |
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(60), FpsAsPeriod(48)), |
+ |
+ // On some platforms, the Compositor runs at 50 Hz. |
+ Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(30)), |
+ Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(25)), |
+ Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(24)), |
+ Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(50)), |
+ Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(48)), |
+ |
+ // Stable, but non-standard content frame rates. |
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(16)), |
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(20)), |
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(23)), |
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(26)), |
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(27)), |
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(28)), |
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(29)), |
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(31)), |
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(32)), |
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(33)))); |
+ |
+// Tests that VideoCaptureOracle filters out events whose timestamps are |
+// decreasing. |
+TEST(VideoCaptureOracleTest, EnforcesEventTimeMonotonicity) { |
+ const base::TimeDelta min_capture_period = |
+ base::TimeDelta::FromSeconds(1) / 30; |
+ const gfx::Rect damage_rect(0, 0, 1280, 720); |
+ const base::TimeDelta event_increment = min_capture_period * 2; |
+ |
+ VideoCaptureOracle oracle(min_capture_period, true); |
+ |
+ base::TimeTicks t = InitialTestTimeTicks(); |
+ for (int i = 0; i < 10; ++i) { |
+ t += event_increment; |
+ ASSERT_TRUE(oracle.ObserveEventAndDecideCapture( |
+ VideoCaptureOracle::kCompositorUpdate, |
+ damage_rect, t)); |
+ } |
+ |
+ base::TimeTicks furthest_event_time = t; |
+ for (int i = 0; i < 10; ++i) { |
+ t -= event_increment; |
+ ASSERT_FALSE(oracle.ObserveEventAndDecideCapture( |
+ VideoCaptureOracle::kCompositorUpdate, |
+ damage_rect, t)); |
+ } |
+ |
+ t = furthest_event_time; |
+ for (int i = 0; i < 10; ++i) { |
+ t += event_increment; |
+ ASSERT_TRUE(oracle.ObserveEventAndDecideCapture( |
+ VideoCaptureOracle::kCompositorUpdate, |
+ damage_rect, t)); |
+ } |
+} |
+ |
+// Tests that VideoCaptureOracle is enforcing the requirement that captured |
+// frames are delivered in order. Otherwise, downstream consumers could be |
+// tripped-up by out-of-order frames or frame timestamps. |
+TEST(VideoCaptureOracleTest, EnforcesFramesDeliveredInOrder) { |
+ const base::TimeDelta min_capture_period = |
+ base::TimeDelta::FromSeconds(1) / 30; |
+ const gfx::Rect damage_rect(0, 0, 1280, 720); |
+ const base::TimeDelta event_increment = min_capture_period * 2; |
+ |
+ VideoCaptureOracle oracle(min_capture_period, true); |
+ |
+ // Most basic scenario: Frames delivered one at a time, with no additional |
+ // captures in-between deliveries. |
+ base::TimeTicks t = InitialTestTimeTicks(); |
+ int last_frame_number; |
+ base::TimeTicks ignored; |
+ for (int i = 0; i < 10; ++i) { |
+ t += event_increment; |
+ ASSERT_TRUE(oracle.ObserveEventAndDecideCapture( |
+ VideoCaptureOracle::kCompositorUpdate, |
+ damage_rect, t)); |
+ last_frame_number = oracle.RecordCapture(); |
+ ASSERT_TRUE(oracle.CompleteCapture(last_frame_number, &ignored)); |
+ } |
+ |
+ // Basic pipelined scenario: More than one frame in-flight at delivery points. |
+ for (int i = 0; i < 50; ++i) { |
+ const int num_in_flight = 1 + i % 3; |
+ for (int j = 0; j < num_in_flight; ++j) { |
+ t += event_increment; |
+ ASSERT_TRUE(oracle.ObserveEventAndDecideCapture( |
+ VideoCaptureOracle::kCompositorUpdate, |
+ damage_rect, t)); |
+ last_frame_number = oracle.RecordCapture(); |
+ } |
+ for (int j = num_in_flight - 1; j >= 0; --j) { |
+ ASSERT_TRUE(oracle.CompleteCapture(last_frame_number - j, &ignored)); |
+ } |
+ } |
+ |
+ // Pipelined scenario with out-of-order delivery attempts rejected. |
+ for (int i = 0; i < 50; ++i) { |
+ const int num_in_flight = 1 + i % 3; |
+ for (int j = 0; j < num_in_flight; ++j) { |
+ t += event_increment; |
+ ASSERT_TRUE(oracle.ObserveEventAndDecideCapture( |
+ VideoCaptureOracle::kCompositorUpdate, |
+ damage_rect, t)); |
+ last_frame_number = oracle.RecordCapture(); |
+ } |
+ ASSERT_TRUE(oracle.CompleteCapture(last_frame_number, &ignored)); |
+ for (int j = 1; j < num_in_flight; ++j) { |
+ ASSERT_FALSE(oracle.CompleteCapture(last_frame_number - j, &ignored)); |
+ } |
+ } |
+} |
+ |
+// Tests that VideoCaptureOracle transitions between using its two samplers in a |
+// way that does not introduce severe jank, pauses, etc. |
+TEST(VideoCaptureOracleTest, TransitionsSmoothlyBetweenSamplers) { |
+ const base::TimeDelta min_capture_period = |
+ base::TimeDelta::FromSeconds(1) / 30; |
+ const gfx::Rect animation_damage_rect(0, 0, 1280, 720); |
+ const base::TimeDelta event_increment = min_capture_period * 2; |
+ |
+ VideoCaptureOracle oracle(min_capture_period, true); |
+ |
+ // Run sequences of animation events and non-animation events through the |
+ // oracle. As the oracle transitions between each sampler, make sure the |
+ // frame timestamps won't trip-up downstream consumers. |
+ base::TimeTicks t = InitialTestTimeTicks(); |
+ base::TimeTicks last_frame_timestamp; |
+ for (int i = 0; i < 1000; ++i) { |
+ t += event_increment; |
+ |
+ // For every 100 events, provide 50 that will cause the |
+ // AnimatedContentSampler to lock-in, followed by 50 that will cause it to |
+ // lock-out (i.e., the oracle will use the SmoothEventSampler instead). |
+ const bool provide_animated_content_event = |
+ (i % 100) >= 25 && (i % 100) < 75; |
+ |
+ // Only the few events that trigger the lock-out transition should be |
+ // dropped, because the AnimatedContentSampler doesn't yet realize the |
+ // animation ended. Otherwise, the oracle should always decide to sample |
+ // because one of its samplers says to. |
+ const bool require_oracle_says_sample = (i % 100) < 75 || (i % 100) >= 78; |
+ const bool oracle_says_sample = oracle.ObserveEventAndDecideCapture( |
+ VideoCaptureOracle::kCompositorUpdate, |
+ provide_animated_content_event ? animation_damage_rect : gfx::Rect(), |
+ t); |
+ if (require_oracle_says_sample) |
+ ASSERT_TRUE(oracle_says_sample); |
+ if (!oracle_says_sample) |
+ continue; |
+ |
+ const int frame_number = oracle.RecordCapture(); |
+ |
+ base::TimeTicks frame_timestamp; |
+ ASSERT_TRUE(oracle.CompleteCapture(frame_number, &frame_timestamp)); |
+ ASSERT_FALSE(frame_timestamp.is_null()); |
+ if (!last_frame_timestamp.is_null()) { |
+ const base::TimeDelta delta = frame_timestamp - last_frame_timestamp; |
+ EXPECT_LE(event_increment.InMicroseconds(), delta.InMicroseconds()); |
+ // Right after the AnimatedContentSampler lock-out transition, there were |
+ // a few frames dropped, so allow a gap in the timestamps. Otherwise, the |
+ // delta between frame timestamps should never be more than 2X the |
+ // |event_increment|. |
+ const base::TimeDelta max_acceptable_delta = (i % 100) == 78 ? |
+ event_increment * 5 : event_increment * 2; |
+ EXPECT_GE(max_acceptable_delta.InMicroseconds(), delta.InMicroseconds()); |
+ } |
+ last_frame_timestamp = frame_timestamp; |
+ } |
+} |
+ |
} // namespace content |