OLD | NEW |
---|---|
1 // Copyright (c) 2013 The Chromium Authors. All rights reserved. | 1 // Copyright (c) 2013 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "content/browser/media/capture/video_capture_oracle.h" | 5 #include "content/browser/media/capture/video_capture_oracle.h" |
6 | 6 |
7 #include <cstdlib> | |
8 #include <utility> | |
9 #include <vector> | |
10 | |
11 #include "base/logging.h" | |
7 #include "base/strings/stringprintf.h" | 12 #include "base/strings/stringprintf.h" |
8 #include "base/time/time.h" | 13 #include "base/time/time.h" |
9 #include "testing/gtest/include/gtest/gtest.h" | 14 #include "testing/gtest/include/gtest/gtest.h" |
15 #include "ui/gfx/geometry/rect.h" | |
10 | 16 |
11 namespace content { | 17 namespace content { |
12 namespace { | 18 namespace { |
13 | 19 |
20 bool AddEventAndConsiderSampling(SmoothEventSampler* sampler, | |
21 base::TimeTicks event_time) { | |
22 sampler->ConsiderPresentationEvent(event_time); | |
23 return sampler->should_sample(); | |
24 } | |
25 | |
14 void SteadyStateSampleAndAdvance(base::TimeDelta vsync, | 26 void SteadyStateSampleAndAdvance(base::TimeDelta vsync, |
15 SmoothEventSampler* sampler, | 27 SmoothEventSampler* sampler, |
16 base::TimeTicks* t) { | 28 base::TimeTicks* t) { |
17 ASSERT_TRUE(sampler->AddEventAndConsiderSampling(*t)); | 29 ASSERT_TRUE(AddEventAndConsiderSampling(sampler, *t)); |
18 ASSERT_TRUE(sampler->HasUnrecordedEvent()); | 30 ASSERT_TRUE(sampler->HasUnrecordedEvent()); |
19 sampler->RecordSample(); | 31 sampler->RecordSample(); |
20 ASSERT_FALSE(sampler->HasUnrecordedEvent()); | 32 ASSERT_FALSE(sampler->HasUnrecordedEvent()); |
21 ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t)); | 33 ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t)); |
22 *t += vsync; | 34 *t += vsync; |
23 ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t)); | 35 ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t)); |
24 } | 36 } |
25 | 37 |
26 void SteadyStateNoSampleAndAdvance(base::TimeDelta vsync, | 38 void SteadyStateNoSampleAndAdvance(base::TimeDelta vsync, |
27 SmoothEventSampler* sampler, | 39 SmoothEventSampler* sampler, |
28 base::TimeTicks* t) { | 40 base::TimeTicks* t) { |
29 ASSERT_FALSE(sampler->AddEventAndConsiderSampling(*t)); | 41 ASSERT_FALSE(AddEventAndConsiderSampling(sampler, *t)); |
30 ASSERT_TRUE(sampler->HasUnrecordedEvent()); | 42 ASSERT_TRUE(sampler->HasUnrecordedEvent()); |
31 ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t)); | 43 ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t)); |
32 *t += vsync; | 44 *t += vsync; |
33 ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t)); | 45 ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t)); |
34 } | 46 } |
35 | 47 |
36 void TimeTicksFromString(const char* string, base::TimeTicks* t) { | 48 base::TimeTicks InitialTestTimeTicks() { |
37 base::Time time; | 49 return base::TimeTicks() + base::TimeDelta::FromSeconds(1); |
miu
2014/07/31 01:25:33
I changed this because, while debugging, I noticed
ncarter (slow)
2014/08/01 23:36:39
I don't follow the problem you fixed -- how would
miu
2014/08/04 18:46:05
Sorry, I explained this the wrong way.
What I mea
| |
38 ASSERT_TRUE(base::Time::FromString(string, &time)); | |
39 *t = base::TimeTicks::UnixEpoch() + (time - base::Time::UnixEpoch()); | |
40 } | 50 } |
41 | 51 |
42 void TestRedundantCaptureStrategy(base::TimeDelta capture_period, | 52 void TestRedundantCaptureStrategy(base::TimeDelta capture_period, |
43 int redundant_capture_goal, | 53 int redundant_capture_goal, |
44 SmoothEventSampler* sampler, | 54 SmoothEventSampler* sampler, |
45 base::TimeTicks* t) { | 55 base::TimeTicks* t) { |
46 // Before any events have been considered, we're overdue for sampling. | 56 // Before any events have been considered, we're overdue for sampling. |
47 ASSERT_TRUE(sampler->IsOverdueForSamplingAt(*t)); | 57 ASSERT_TRUE(sampler->IsOverdueForSamplingAt(*t)); |
48 | 58 |
49 // Consider the first event. We want to sample that. | 59 // Consider the first event. We want to sample that. |
50 ASSERT_FALSE(sampler->HasUnrecordedEvent()); | 60 ASSERT_FALSE(sampler->HasUnrecordedEvent()); |
51 ASSERT_TRUE(sampler->AddEventAndConsiderSampling(*t)); | 61 ASSERT_TRUE(AddEventAndConsiderSampling(sampler, *t)); |
52 ASSERT_TRUE(sampler->HasUnrecordedEvent()); | 62 ASSERT_TRUE(sampler->HasUnrecordedEvent()); |
53 sampler->RecordSample(); | 63 sampler->RecordSample(); |
54 ASSERT_FALSE(sampler->HasUnrecordedEvent()); | 64 ASSERT_FALSE(sampler->HasUnrecordedEvent()); |
55 | 65 |
56 // After more than one capture period has passed without considering an event, | 66 // After more than 250 ms has passed without considering an event, we should |
57 // we should repeatedly be overdue for sampling. However, once the redundant | 67 // repeatedly be overdue for sampling. However, once the redundant capture |
58 // capture goal is achieved, we should no longer be overdue for sampling. | 68 // goal is achieved, we should no longer be overdue for sampling. |
59 *t += capture_period * 4; | 69 *t += base::TimeDelta::FromMilliseconds(250); |
60 for (int i = 0; i < redundant_capture_goal; i++) { | 70 for (int i = 0; i < redundant_capture_goal; i++) { |
61 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); | 71 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
62 ASSERT_FALSE(sampler->HasUnrecordedEvent()); | 72 ASSERT_FALSE(sampler->HasUnrecordedEvent()); |
63 ASSERT_TRUE(sampler->IsOverdueForSamplingAt(*t)) | 73 ASSERT_TRUE(sampler->IsOverdueForSamplingAt(*t)) |
64 << "Should sample until redundant capture goal is hit"; | 74 << "Should sample until redundant capture goal is hit"; |
65 sampler->RecordSample(); | 75 sampler->RecordSample(); |
66 *t += capture_period; // Timer fires once every capture period. | 76 *t += capture_period; // Timer fires once every capture period. |
67 } | 77 } |
68 ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t)) | 78 ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t)) |
69 << "Should not be overdue once redundant capture goal achieved."; | 79 << "Should not be overdue once redundant capture goal achieved."; |
70 } | 80 } |
71 | 81 |
82 } // namespace | |
miu
2014/07/31 01:25:33
Note: I moved the TEST() code out of the anonymous
| |
83 | |
72 // 60Hz sampled at 30Hz should produce 30Hz. In addition, this test contains | 84 // 60Hz sampled at 30Hz should produce 30Hz. In addition, this test contains |
73 // much more comprehensive before/after/edge-case scenarios than the others. | 85 // much more comprehensive before/after/edge-case scenarios than the others. |
74 TEST(SmoothEventSamplerTest, Sample60HertzAt30Hertz) { | 86 TEST(SmoothEventSamplerTest, Sample60HertzAt30Hertz) { |
75 const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30; | 87 const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30; |
76 const int redundant_capture_goal = 200; | 88 const int redundant_capture_goal = 200; |
77 const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 60; | 89 const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 60; |
78 | 90 |
79 SmoothEventSampler sampler(capture_period, true, redundant_capture_goal); | 91 SmoothEventSampler sampler(capture_period, true, redundant_capture_goal); |
80 base::TimeTicks t; | 92 base::TimeTicks t = InitialTestTimeTicks(); |
81 TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t); | |
82 | 93 |
83 TestRedundantCaptureStrategy(capture_period, redundant_capture_goal, | 94 TestRedundantCaptureStrategy(capture_period, redundant_capture_goal, |
84 &sampler, &t); | 95 &sampler, &t); |
85 | 96 |
86 // Steady state, we should capture every other vsync, indefinitely. | 97 // Steady state, we should capture every other vsync, indefinitely. |
87 for (int i = 0; i < 100; i++) { | 98 for (int i = 0; i < 100; i++) { |
88 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); | 99 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
89 SteadyStateSampleAndAdvance(vsync, &sampler, &t); | 100 SteadyStateSampleAndAdvance(vsync, &sampler, &t); |
90 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); | 101 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); |
91 } | 102 } |
92 | 103 |
93 // Now pretend we're limited by backpressure in the pipeline. In this scenario | 104 // Now pretend we're limited by backpressure in the pipeline. In this scenario |
94 // case we are adding events but not sampling them. | 105 // case we are adding events but not sampling them. |
95 for (int i = 0; i < 20; i++) { | 106 for (int i = 0; i < 20; i++) { |
96 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); | 107 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
97 ASSERT_EQ(i >= 7, sampler.IsOverdueForSamplingAt(t)); | 108 ASSERT_EQ(i >= 14, sampler.IsOverdueForSamplingAt(t)); |
98 ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t)); | 109 ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t)); |
99 ASSERT_TRUE(sampler.HasUnrecordedEvent()); | 110 ASSERT_TRUE(sampler.HasUnrecordedEvent()); |
100 t += vsync; | 111 t += vsync; |
101 } | 112 } |
102 | 113 |
103 // Now suppose we can sample again. We should be back in the steady state, | 114 // Now suppose we can sample again. We should be back in the steady state, |
104 // but at a different phase. | 115 // but at a different phase. |
105 ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t)); | 116 ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t)); |
106 for (int i = 0; i < 100; i++) { | 117 for (int i = 0; i < 100; i++) { |
107 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); | 118 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
108 SteadyStateSampleAndAdvance(vsync, &sampler, &t); | 119 SteadyStateSampleAndAdvance(vsync, &sampler, &t); |
109 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); | 120 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); |
110 } | 121 } |
111 } | 122 } |
112 | 123 |
113 // 50Hz sampled at 30Hz should produce a sequence where some frames are skipped. | 124 // 50Hz sampled at 30Hz should produce a sequence where some frames are skipped. |
114 TEST(SmoothEventSamplerTest, Sample50HertzAt30Hertz) { | 125 TEST(SmoothEventSamplerTest, Sample50HertzAt30Hertz) { |
115 const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30; | 126 const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30; |
116 const int redundant_capture_goal = 2; | 127 const int redundant_capture_goal = 2; |
117 const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 50; | 128 const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 50; |
118 | 129 |
119 SmoothEventSampler sampler(capture_period, true, redundant_capture_goal); | 130 SmoothEventSampler sampler(capture_period, true, redundant_capture_goal); |
120 base::TimeTicks t; | 131 base::TimeTicks t = InitialTestTimeTicks(); |
121 TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t); | |
122 | 132 |
123 TestRedundantCaptureStrategy(capture_period, redundant_capture_goal, | 133 TestRedundantCaptureStrategy(capture_period, redundant_capture_goal, |
124 &sampler, &t); | 134 &sampler, &t); |
125 | 135 |
126 // Steady state, we should capture 1st, 2nd and 4th frames out of every five | 136 // Steady state, we should capture 1st, 2nd and 4th frames out of every five |
127 // frames, indefinitely. | 137 // frames, indefinitely. |
128 for (int i = 0; i < 100; i++) { | 138 for (int i = 0; i < 100; i++) { |
129 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); | 139 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
130 SteadyStateSampleAndAdvance(vsync, &sampler, &t); | 140 SteadyStateSampleAndAdvance(vsync, &sampler, &t); |
131 SteadyStateSampleAndAdvance(vsync, &sampler, &t); | 141 SteadyStateSampleAndAdvance(vsync, &sampler, &t); |
132 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); | 142 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); |
133 SteadyStateSampleAndAdvance(vsync, &sampler, &t); | 143 SteadyStateSampleAndAdvance(vsync, &sampler, &t); |
134 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); | 144 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); |
135 } | 145 } |
136 | 146 |
137 // Now pretend we're limited by backpressure in the pipeline. In this scenario | 147 // Now pretend we're limited by backpressure in the pipeline. In this scenario |
138 // case we are adding events but not sampling them. | 148 // case we are adding events but not sampling them. |
139 for (int i = 0; i < 12; i++) { | 149 for (int i = 0; i < 20; i++) { |
140 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); | 150 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
141 ASSERT_EQ(i >= 5, sampler.IsOverdueForSamplingAt(t)); | 151 ASSERT_EQ(i >= 11, sampler.IsOverdueForSamplingAt(t)); |
142 ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t)); | 152 ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t)); |
143 t += vsync; | 153 t += vsync; |
144 } | 154 } |
145 | 155 |
146 // Now suppose we can sample again. We should be back in the steady state | 156 // Now suppose we can sample again. We should be back in the steady state |
147 // again. | 157 // again. |
148 ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t)); | 158 ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t)); |
149 for (int i = 0; i < 100; i++) { | 159 for (int i = 0; i < 100; i++) { |
150 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); | 160 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
151 SteadyStateSampleAndAdvance(vsync, &sampler, &t); | 161 SteadyStateSampleAndAdvance(vsync, &sampler, &t); |
152 SteadyStateSampleAndAdvance(vsync, &sampler, &t); | 162 SteadyStateSampleAndAdvance(vsync, &sampler, &t); |
153 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); | 163 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); |
154 SteadyStateSampleAndAdvance(vsync, &sampler, &t); | 164 SteadyStateSampleAndAdvance(vsync, &sampler, &t); |
155 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); | 165 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); |
156 } | 166 } |
157 } | 167 } |
158 | 168 |
159 // 75Hz sampled at 30Hz should produce a sequence where some frames are skipped. | 169 // 75Hz sampled at 30Hz should produce a sequence where some frames are skipped. |
160 TEST(SmoothEventSamplerTest, Sample75HertzAt30Hertz) { | 170 TEST(SmoothEventSamplerTest, Sample75HertzAt30Hertz) { |
161 const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30; | 171 const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30; |
162 const int redundant_capture_goal = 32; | 172 const int redundant_capture_goal = 32; |
163 const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 75; | 173 const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 75; |
164 | 174 |
165 SmoothEventSampler sampler(capture_period, true, redundant_capture_goal); | 175 SmoothEventSampler sampler(capture_period, true, redundant_capture_goal); |
166 base::TimeTicks t; | 176 base::TimeTicks t = InitialTestTimeTicks(); |
167 TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t); | |
168 | 177 |
169 TestRedundantCaptureStrategy(capture_period, redundant_capture_goal, | 178 TestRedundantCaptureStrategy(capture_period, redundant_capture_goal, |
170 &sampler, &t); | 179 &sampler, &t); |
171 | 180 |
172 // Steady state, we should capture 1st and 3rd frames out of every five | 181 // Steady state, we should capture 1st and 3rd frames out of every five |
173 // frames, indefinitely. | 182 // frames, indefinitely. |
174 SteadyStateSampleAndAdvance(vsync, &sampler, &t); | 183 SteadyStateSampleAndAdvance(vsync, &sampler, &t); |
175 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); | 184 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); |
176 for (int i = 0; i < 100; i++) { | 185 for (int i = 0; i < 100; i++) { |
177 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); | 186 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
178 SteadyStateSampleAndAdvance(vsync, &sampler, &t); | 187 SteadyStateSampleAndAdvance(vsync, &sampler, &t); |
179 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); | 188 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); |
180 SteadyStateSampleAndAdvance(vsync, &sampler, &t); | 189 SteadyStateSampleAndAdvance(vsync, &sampler, &t); |
181 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); | 190 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); |
182 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); | 191 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); |
183 } | 192 } |
184 | 193 |
185 // Now pretend we're limited by backpressure in the pipeline. In this scenario | 194 // Now pretend we're limited by backpressure in the pipeline. In this scenario |
186 // case we are adding events but not sampling them. | 195 // case we are adding events but not sampling them. |
187 for (int i = 0; i < 20; i++) { | 196 for (int i = 0; i < 20; i++) { |
188 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); | 197 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
189 ASSERT_EQ(i >= 8, sampler.IsOverdueForSamplingAt(t)); | 198 ASSERT_EQ(i >= 16, sampler.IsOverdueForSamplingAt(t)); |
190 ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t)); | 199 ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t)); |
191 t += vsync; | 200 t += vsync; |
192 } | 201 } |
193 | 202 |
194 // Now suppose we can sample again. We capture the next frame, and not the one | 203 // Now suppose we can sample again. We capture the next frame, and not the one |
195 // after that, and then we're back in the steady state again. | 204 // after that, and then we're back in the steady state again. |
196 ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t)); | 205 ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t)); |
197 SteadyStateSampleAndAdvance(vsync, &sampler, &t); | 206 SteadyStateSampleAndAdvance(vsync, &sampler, &t); |
198 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); | 207 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); |
199 for (int i = 0; i < 100; i++) { | 208 for (int i = 0; i < 100; i++) { |
200 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); | 209 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
201 SteadyStateSampleAndAdvance(vsync, &sampler, &t); | 210 SteadyStateSampleAndAdvance(vsync, &sampler, &t); |
202 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); | 211 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); |
203 SteadyStateSampleAndAdvance(vsync, &sampler, &t); | 212 SteadyStateSampleAndAdvance(vsync, &sampler, &t); |
204 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); | 213 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); |
205 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); | 214 SteadyStateNoSampleAndAdvance(vsync, &sampler, &t); |
206 } | 215 } |
207 } | 216 } |
208 | 217 |
209 // 30Hz sampled at 30Hz should produce 30Hz. | 218 // 30Hz sampled at 30Hz should produce 30Hz. |
210 TEST(SmoothEventSamplerTest, Sample30HertzAt30Hertz) { | 219 TEST(SmoothEventSamplerTest, Sample30HertzAt30Hertz) { |
211 const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30; | 220 const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30; |
212 const int redundant_capture_goal = 1; | 221 const int redundant_capture_goal = 1; |
213 const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 30; | 222 const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 30; |
214 | 223 |
215 SmoothEventSampler sampler(capture_period, true, redundant_capture_goal); | 224 SmoothEventSampler sampler(capture_period, true, redundant_capture_goal); |
216 base::TimeTicks t; | 225 base::TimeTicks t = InitialTestTimeTicks(); |
217 TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t); | |
218 | 226 |
219 TestRedundantCaptureStrategy(capture_period, redundant_capture_goal, | 227 TestRedundantCaptureStrategy(capture_period, redundant_capture_goal, |
220 &sampler, &t); | 228 &sampler, &t); |
221 | 229 |
222 // Steady state, we should capture every vsync, indefinitely. | 230 // Steady state, we should capture every vsync, indefinitely. |
223 for (int i = 0; i < 200; i++) { | 231 for (int i = 0; i < 200; i++) { |
224 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); | 232 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
225 SteadyStateSampleAndAdvance(vsync, &sampler, &t); | 233 SteadyStateSampleAndAdvance(vsync, &sampler, &t); |
226 } | 234 } |
227 | 235 |
228 // Now pretend we're limited by backpressure in the pipeline. In this scenario | 236 // Now pretend we're limited by backpressure in the pipeline. In this scenario |
229 // case we are adding events but not sampling them. | 237 // case we are adding events but not sampling them. |
230 for (int i = 0; i < 7; i++) { | 238 for (int i = 0; i < 10; i++) { |
231 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); | 239 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
232 ASSERT_EQ(i >= 3, sampler.IsOverdueForSamplingAt(t)); | 240 ASSERT_EQ(i >= 7, sampler.IsOverdueForSamplingAt(t)); |
233 ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t)); | 241 ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t)); |
234 t += vsync; | 242 t += vsync; |
235 } | 243 } |
236 | 244 |
237 // Now suppose we can sample again. We should be back in the steady state. | 245 // Now suppose we can sample again. We should be back in the steady state. |
238 ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t)); | 246 ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t)); |
239 for (int i = 0; i < 100; i++) { | 247 for (int i = 0; i < 100; i++) { |
240 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); | 248 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
241 SteadyStateSampleAndAdvance(vsync, &sampler, &t); | 249 SteadyStateSampleAndAdvance(vsync, &sampler, &t); |
242 } | 250 } |
243 } | 251 } |
244 | 252 |
245 // 24Hz sampled at 30Hz should produce 24Hz. | 253 // 24Hz sampled at 30Hz should produce 24Hz. |
246 TEST(SmoothEventSamplerTest, Sample24HertzAt30Hertz) { | 254 TEST(SmoothEventSamplerTest, Sample24HertzAt30Hertz) { |
247 const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30; | 255 const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30; |
248 const int redundant_capture_goal = 333; | 256 const int redundant_capture_goal = 333; |
249 const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 24; | 257 const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 24; |
250 | 258 |
251 SmoothEventSampler sampler(capture_period, true, redundant_capture_goal); | 259 SmoothEventSampler sampler(capture_period, true, redundant_capture_goal); |
252 base::TimeTicks t; | 260 base::TimeTicks t = InitialTestTimeTicks(); |
253 TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t); | |
254 | 261 |
255 TestRedundantCaptureStrategy(capture_period, redundant_capture_goal, | 262 TestRedundantCaptureStrategy(capture_period, redundant_capture_goal, |
256 &sampler, &t); | 263 &sampler, &t); |
257 | 264 |
258 // Steady state, we should capture every vsync, indefinitely. | 265 // Steady state, we should capture every vsync, indefinitely. |
259 for (int i = 0; i < 200; i++) { | 266 for (int i = 0; i < 200; i++) { |
260 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); | 267 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
261 SteadyStateSampleAndAdvance(vsync, &sampler, &t); | 268 SteadyStateSampleAndAdvance(vsync, &sampler, &t); |
262 } | 269 } |
263 | 270 |
264 // Now pretend we're limited by backpressure in the pipeline. In this scenario | 271 // Now pretend we're limited by backpressure in the pipeline. In this scenario |
265 // case we are adding events but not sampling them. | 272 // case we are adding events but not sampling them. |
266 for (int i = 0; i < 7; i++) { | 273 for (int i = 0; i < 10; i++) { |
267 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); | 274 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
268 ASSERT_EQ(i >= 3, sampler.IsOverdueForSamplingAt(t)); | 275 ASSERT_EQ(i >= 6, sampler.IsOverdueForSamplingAt(t)); |
269 ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t)); | 276 ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t)); |
270 t += vsync; | 277 t += vsync; |
271 } | 278 } |
272 | 279 |
273 // Now suppose we can sample again. We should be back in the steady state. | 280 // Now suppose we can sample again. We should be back in the steady state. |
274 ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t)); | 281 ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t)); |
275 for (int i = 0; i < 100; i++) { | 282 for (int i = 0; i < 100; i++) { |
276 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); | 283 SCOPED_TRACE(base::StringPrintf("Iteration %d", i)); |
277 SteadyStateSampleAndAdvance(vsync, &sampler, &t); | 284 SteadyStateSampleAndAdvance(vsync, &sampler, &t); |
278 } | 285 } |
279 } | 286 } |
280 | 287 |
281 TEST(SmoothEventSamplerTest, DoubleDrawAtOneTimeStillDirties) { | 288 TEST(SmoothEventSamplerTest, DoubleDrawAtOneTimeStillDirties) { |
282 const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30; | 289 const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30; |
283 const base::TimeDelta overdue_period = base::TimeDelta::FromSeconds(1); | 290 const base::TimeDelta overdue_period = base::TimeDelta::FromSeconds(1); |
284 | 291 |
285 SmoothEventSampler sampler(capture_period, true, 1); | 292 SmoothEventSampler sampler(capture_period, true, 1); |
286 base::TimeTicks t; | 293 base::TimeTicks t = InitialTestTimeTicks(); |
287 TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t); | |
288 | 294 |
289 ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t)); | 295 ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t)); |
290 sampler.RecordSample(); | 296 sampler.RecordSample(); |
291 ASSERT_FALSE(sampler.IsOverdueForSamplingAt(t)) | 297 ASSERT_FALSE(sampler.IsOverdueForSamplingAt(t)) |
292 << "Sampled last event; should not be dirty."; | 298 << "Sampled last event; should not be dirty."; |
293 t += overdue_period; | 299 t += overdue_period; |
294 | 300 |
295 // Now simulate 2 events with the same clock value. | 301 // Now simulate 2 events with the same clock value. |
296 ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t)); | 302 ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t)); |
297 sampler.RecordSample(); | 303 sampler.RecordSample(); |
298 ASSERT_FALSE(sampler.AddEventAndConsiderSampling(t)) | 304 ASSERT_FALSE(AddEventAndConsiderSampling(&sampler, t)) |
299 << "Two events at same time -- expected second not to be sampled."; | 305 << "Two events at same time -- expected second not to be sampled."; |
300 ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t + overdue_period)) | 306 ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t + overdue_period)) |
301 << "Second event should dirty the capture state."; | 307 << "Second event should dirty the capture state."; |
302 sampler.RecordSample(); | 308 sampler.RecordSample(); |
303 ASSERT_FALSE(sampler.IsOverdueForSamplingAt(t + overdue_period)); | 309 ASSERT_FALSE(sampler.IsOverdueForSamplingAt(t + overdue_period)); |
304 } | 310 } |
305 | 311 |
306 TEST(SmoothEventSamplerTest, FallbackToPollingIfUpdatesUnreliable) { | 312 TEST(SmoothEventSamplerTest, FallbackToPollingIfUpdatesUnreliable) { |
307 const base::TimeDelta timer_interval = base::TimeDelta::FromSeconds(1) / 30; | 313 const base::TimeDelta timer_interval = base::TimeDelta::FromSeconds(1) / 30; |
308 | 314 |
309 SmoothEventSampler should_not_poll(timer_interval, true, 1); | 315 SmoothEventSampler should_not_poll(timer_interval, true, 1); |
310 SmoothEventSampler should_poll(timer_interval, false, 1); | 316 SmoothEventSampler should_poll(timer_interval, false, 1); |
311 base::TimeTicks t; | 317 base::TimeTicks t = InitialTestTimeTicks(); |
312 TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t); | |
313 | 318 |
314 // Do one round of the "happy case" where an event was received and | 319 // Do one round of the "happy case" where an event was received and |
315 // RecordSample() was called by the client. | 320 // RecordSample() was called by the client. |
316 ASSERT_TRUE(should_not_poll.AddEventAndConsiderSampling(t)); | 321 ASSERT_TRUE(AddEventAndConsiderSampling(&should_not_poll, t)); |
317 ASSERT_TRUE(should_poll.AddEventAndConsiderSampling(t)); | 322 ASSERT_TRUE(AddEventAndConsiderSampling(&should_poll, t)); |
318 should_not_poll.RecordSample(); | 323 should_not_poll.RecordSample(); |
319 should_poll.RecordSample(); | 324 should_poll.RecordSample(); |
320 | 325 |
321 // One time period ahead, neither sampler says we're overdue. | 326 // For the following time period, before 250 ms has elapsed, neither sampler |
322 for (int i = 0; i < 3; i++) { | 327 // says we're overdue. |
328 const int non_overdue_intervals = static_cast<int>( | |
329 base::TimeDelta::FromMilliseconds(250) / timer_interval); | |
330 for (int i = 0; i < non_overdue_intervals; i++) { | |
323 t += timer_interval; | 331 t += timer_interval; |
324 ASSERT_FALSE(should_not_poll.IsOverdueForSamplingAt(t)) | 332 ASSERT_FALSE(should_not_poll.IsOverdueForSamplingAt(t)) |
325 << "Sampled last event; should not be dirty."; | 333 << "Sampled last event; should not be dirty."; |
326 ASSERT_FALSE(should_poll.IsOverdueForSamplingAt(t)) | 334 ASSERT_FALSE(should_poll.IsOverdueForSamplingAt(t)) |
327 << "Dirty interval has not elapsed yet."; | 335 << "Dirty interval has not elapsed yet."; |
328 } | 336 } |
329 | 337 |
330 // Next time period ahead, both samplers say we're overdue. The non-polling | 338 // Next time period ahead, both samplers say we're overdue. The non-polling |
331 // sampler is returning true here because it has been configured to allow one | 339 // sampler is returning true here because it has been configured to allow one |
332 // redundant capture. | 340 // redundant capture. |
333 t += timer_interval; | 341 t += timer_interval; // Step past the 250 ms threshold. |
334 ASSERT_TRUE(should_not_poll.IsOverdueForSamplingAt(t)) | 342 ASSERT_TRUE(should_not_poll.IsOverdueForSamplingAt(t)) |
335 << "Sampled last event; is dirty one time only to meet redundancy goal."; | 343 << "Sampled last event; is dirty one time only to meet redundancy goal."; |
336 ASSERT_TRUE(should_poll.IsOverdueForSamplingAt(t)) | 344 ASSERT_TRUE(should_poll.IsOverdueForSamplingAt(t)) |
337 << "If updates are unreliable, must fall back to polling when idle."; | 345 << "If updates are unreliable, must fall back to polling when idle."; |
338 should_not_poll.RecordSample(); | 346 should_not_poll.RecordSample(); |
339 should_poll.RecordSample(); | 347 should_poll.RecordSample(); |
340 | 348 |
341 // Forever more, the non-polling sampler returns false while the polling one | 349 // Forever more, the non-polling sampler returns false while the polling one |
342 // returns true. | 350 // returns true. |
343 for (int i = 0; i < 100; ++i) { | 351 for (int i = 0; i < 100; ++i) { |
344 t += timer_interval; | 352 t += timer_interval; |
345 ASSERT_FALSE(should_not_poll.IsOverdueForSamplingAt(t)) | 353 ASSERT_FALSE(should_not_poll.IsOverdueForSamplingAt(t)) |
346 << "Sampled last event; should not be dirty."; | 354 << "Sampled last event; should not be dirty."; |
347 ASSERT_TRUE(should_poll.IsOverdueForSamplingAt(t)) | 355 ASSERT_TRUE(should_poll.IsOverdueForSamplingAt(t)) |
348 << "If updates are unreliable, must fall back to polling when idle."; | 356 << "If updates are unreliable, must fall back to polling when idle."; |
349 should_poll.RecordSample(); | 357 should_poll.RecordSample(); |
350 } | 358 } |
351 t += timer_interval / 3; | 359 t += timer_interval / 3; |
352 ASSERT_FALSE(should_not_poll.IsOverdueForSamplingAt(t)) | 360 ASSERT_FALSE(should_not_poll.IsOverdueForSamplingAt(t)) |
353 << "Sampled last event; should not be dirty."; | 361 << "Sampled last event; should not be dirty."; |
354 ASSERT_TRUE(should_poll.IsOverdueForSamplingAt(t)) | 362 ASSERT_TRUE(should_poll.IsOverdueForSamplingAt(t)) |
355 << "If updates are unreliable, must fall back to polling when idle."; | 363 << "If updates are unreliable, must fall back to polling when idle."; |
356 should_poll.RecordSample(); | 364 should_poll.RecordSample(); |
357 } | 365 } |
358 | 366 |
367 namespace { | |
368 | |
359 struct DataPoint { | 369 struct DataPoint { |
360 bool should_capture; | 370 bool should_capture; |
361 double increment_ms; | 371 double increment_ms; |
362 }; | 372 }; |
363 | 373 |
364 void ReplayCheckingSamplerDecisions(const DataPoint* data_points, | 374 void ReplayCheckingSamplerDecisions(const DataPoint* data_points, |
365 size_t num_data_points, | 375 size_t num_data_points, |
366 SmoothEventSampler* sampler) { | 376 SmoothEventSampler* sampler) { |
367 base::TimeTicks t; | 377 base::TimeTicks t = InitialTestTimeTicks(); |
368 TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t); | |
369 for (size_t i = 0; i < num_data_points; ++i) { | 378 for (size_t i = 0; i < num_data_points; ++i) { |
370 t += base::TimeDelta::FromMicroseconds( | 379 t += base::TimeDelta::FromMicroseconds( |
371 static_cast<int64>(data_points[i].increment_ms * 1000)); | 380 static_cast<int64>(data_points[i].increment_ms * 1000)); |
372 ASSERT_EQ(data_points[i].should_capture, | 381 ASSERT_EQ(data_points[i].should_capture, |
373 sampler->AddEventAndConsiderSampling(t)) | 382 AddEventAndConsiderSampling(sampler, t)) |
374 << "at data_points[" << i << ']'; | 383 << "at data_points[" << i << ']'; |
375 if (data_points[i].should_capture) | 384 if (data_points[i].should_capture) |
376 sampler->RecordSample(); | 385 sampler->RecordSample(); |
377 } | 386 } |
378 } | 387 } |
379 | 388 |
389 } // namespace | |
390 | |
380 TEST(SmoothEventSamplerTest, DrawingAt24FpsWith60HzVsyncSampledAt30Hertz) { | 391 TEST(SmoothEventSamplerTest, DrawingAt24FpsWith60HzVsyncSampledAt30Hertz) { |
381 // Actual capturing of timing data: Initial instability as a 24 FPS video was | 392 // Actual capturing of timing data: Initial instability as a 24 FPS video was |
382 // started from a still screen, then clearly followed by steady-state. | 393 // started from a still screen, then clearly followed by steady-state. |
383 static const DataPoint data_points[] = { | 394 static const DataPoint data_points[] = { |
384 { true, 1437.93 }, { true, 150.484 }, { true, 217.362 }, { true, 50.161 }, | 395 { true, 1437.93 }, { true, 150.484 }, { true, 217.362 }, { true, 50.161 }, |
385 { true, 33.44 }, { false, 0 }, { true, 16.721 }, { true, 66.88 }, | 396 { true, 33.44 }, { false, 0 }, { true, 16.721 }, { true, 66.88 }, |
386 { true, 50.161 }, { false, 0 }, { false, 0 }, { true, 50.16 }, | 397 { true, 50.161 }, { false, 0 }, { false, 0 }, { true, 50.16 }, |
387 { true, 33.441 }, { true, 16.72 }, { false, 16.72 }, { true, 117.041 }, | 398 { true, 33.441 }, { true, 16.72 }, { false, 16.72 }, { true, 117.041 }, |
388 { true, 16.72 }, { false, 16.72 }, { true, 50.161 }, { true, 50.16 }, | 399 { true, 16.72 }, { false, 16.72 }, { true, 50.161 }, { true, 50.16 }, |
389 { true, 33.441 }, { true, 33.44 }, { true, 33.44 }, { true, 16.72 }, | 400 { true, 33.441 }, { true, 33.44 }, { true, 33.44 }, { true, 16.72 }, |
(...skipping 86 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
476 { true, 33.441 }, { false, 0 }, { true, 33.44 }, { false, 16.72 }, | 487 { true, 33.441 }, { false, 0 }, { true, 33.44 }, { false, 16.72 }, |
477 { true, 33.44 }, { false, 0 }, { true, 16.721 }, { true, 50.161 }, | 488 { true, 33.44 }, { false, 0 }, { true, 16.721 }, { true, 50.161 }, |
478 { false, 0 }, { true, 16.72 }, { true, 33.44 }, { false, 0 }, | 489 { false, 0 }, { true, 16.72 }, { true, 33.44 }, { false, 0 }, |
479 { true, 33.441 }, { false, 16.72 }, { true, 16.72 }, { true, 50.16 } | 490 { true, 33.441 }, { false, 16.72 }, { true, 16.72 }, { true, 50.16 } |
480 }; | 491 }; |
481 | 492 |
482 SmoothEventSampler sampler(base::TimeDelta::FromSeconds(1) / 30, true, 3); | 493 SmoothEventSampler sampler(base::TimeDelta::FromSeconds(1) / 30, true, 3); |
483 ReplayCheckingSamplerDecisions(data_points, arraysize(data_points), &sampler); | 494 ReplayCheckingSamplerDecisions(data_points, arraysize(data_points), &sampler); |
484 } | 495 } |
485 | 496 |
497 class AnimatedContentSamplerTest : public ::testing::Test { | |
498 public: | |
499 AnimatedContentSamplerTest() {} | |
500 virtual ~AnimatedContentSamplerTest() {} | |
501 | |
502 virtual void SetUp() OVERRIDE { | |
503 const base::TimeDelta since_epoch = | |
504 InitialTestTimeTicks() - base::TimeTicks::UnixEpoch(); | |
505 rand_seed_ = abs(static_cast<int>(since_epoch.InMicroseconds())); | |
506 sampler_.reset(new AnimatedContentSampler(GetMinCapturePeriod())); | |
507 } | |
508 | |
509 protected: | |
510 // Overridden by subclass for parameterized tests. | |
511 virtual base::TimeDelta GetMinCapturePeriod() const { | |
512 return base::TimeDelta::FromSeconds(1) / 30; | |
513 } | |
514 | |
515 AnimatedContentSampler* sampler() const { | |
516 return sampler_.get(); | |
517 } | |
518 | |
519 int GetRandomInRange(int begin, int end) { | |
520 const int len = end - begin; | |
521 const int rand_offset = (len == 0) ? 0 : (NextRandomInt() % (end - begin)); | |
522 return begin + rand_offset; | |
523 } | |
524 | |
525 gfx::Rect GetRandomDamageRect() { | |
526 return gfx::Rect(0, 0, GetRandomInRange(1, 100), GetRandomInRange(1, 100)); | |
527 } | |
528 | |
529 gfx::Rect GetContentDamageRect() { | |
530 // This must be distinct from anything GetRandomDamageRect() could return. | |
531 return gfx::Rect(0, 0, 1280, 720); | |
532 } | |
533 | |
534 // Directly inject an observation. Only used to test | |
535 // ElectMajorityDamageRect(). | |
536 void ObserveDamageRect(const gfx::Rect& damage_rect) { | |
537 sampler_->observations_.push_back( | |
538 AnimatedContentSampler::Observation(damage_rect, base::TimeTicks())); | |
539 } | |
540 | |
541 gfx::Rect ElectMajorityDamageRect() const { | |
542 return sampler_->ElectMajorityDamageRect(); | |
543 } | |
544 | |
545 private: | |
546 // Note: Not using base::RandInt() because it is horribly slow on debug | |
547 // builds. The following is a very simple, deterministic LCG: | |
548 int NextRandomInt() { | |
549 rand_seed_ = (1103515245 * rand_seed_ + 12345) % (1 << 31); | |
550 return rand_seed_; | |
551 } | |
552 | |
553 int rand_seed_; | |
554 scoped_ptr<AnimatedContentSampler> sampler_; | |
555 }; | |
556 | |
557 TEST_F(AnimatedContentSamplerTest, ElectsNoneFromZeroDamageRects) { | |
558 EXPECT_EQ(gfx::Rect(), ElectMajorityDamageRect()); | |
559 } | |
560 | |
561 TEST_F(AnimatedContentSamplerTest, ElectsMajorityFromOneDamageRect) { | |
562 const gfx::Rect the_one_rect(0, 0, 1, 1); | |
563 ObserveDamageRect(the_one_rect); | |
564 EXPECT_EQ(the_one_rect, ElectMajorityDamageRect()); | |
565 } | |
566 | |
567 TEST_F(AnimatedContentSamplerTest, ElectsNoneFromTwoDamageRectsOfSameArea) { | |
568 const gfx::Rect one_rect(0, 0, 1, 1); | |
569 const gfx::Rect another_rect(1, 1, 1, 1); | |
570 ObserveDamageRect(one_rect); | |
571 ObserveDamageRect(another_rect); | |
572 EXPECT_EQ(gfx::Rect(), ElectMajorityDamageRect()); | |
573 } | |
574 | |
575 TEST_F(AnimatedContentSamplerTest, ElectsLargerOfTwoDamageRects_1) { | |
576 const gfx::Rect one_rect(0, 0, 1, 1); | |
577 const gfx::Rect another_rect(0, 0, 2, 2); | |
578 ObserveDamageRect(one_rect); | |
579 ObserveDamageRect(another_rect); | |
580 EXPECT_EQ(another_rect, ElectMajorityDamageRect()); | |
581 } | |
582 | |
583 TEST_F(AnimatedContentSamplerTest, ElectsLargerOfTwoDamageRects_2) { | |
584 const gfx::Rect one_rect(0, 0, 2, 2); | |
585 const gfx::Rect another_rect(0, 0, 1, 1); | |
586 ObserveDamageRect(one_rect); | |
587 ObserveDamageRect(another_rect); | |
588 EXPECT_EQ(one_rect, ElectMajorityDamageRect()); | |
589 } | |
590 | |
591 TEST_F(AnimatedContentSamplerTest, ElectsSameAsMooreDemonstration) { | |
592 // A more complex sequence (from Moore's web site): Three different Rects with | |
593 // the same area, but occurring a different number of times. C should win the | |
594 // vote. | |
595 const gfx::Rect rect_a(0, 0, 1, 4); | |
596 const gfx::Rect rect_b(1, 1, 4, 1); | |
597 const gfx::Rect rect_c(2, 2, 2, 2); | |
598 for (int i = 0; i < 3; ++i) | |
599 ObserveDamageRect(rect_a); | |
600 for (int i = 0; i < 2; ++i) | |
601 ObserveDamageRect(rect_c); | |
602 for (int i = 0; i < 2; ++i) | |
603 ObserveDamageRect(rect_b); | |
604 for (int i = 0; i < 3; ++i) | |
605 ObserveDamageRect(rect_c); | |
606 ObserveDamageRect(rect_b); | |
607 for (int i = 0; i < 2; ++i) | |
608 ObserveDamageRect(rect_c); | |
609 EXPECT_EQ(rect_c, ElectMajorityDamageRect()); | |
610 } | |
611 | |
612 TEST_F(AnimatedContentSamplerTest, Elects24FpsVideoInsteadOf48FpsSpinner) { | |
613 // Scenario: 24 FPS 720x480 Video versus 48 FPS 96x96 "Busy Spinner" | |
614 const gfx::Rect video_rect(100, 100, 720, 480); | |
615 const gfx::Rect spinner_rect(360, 0, 96, 96); | |
616 for (int i = 0; i < 100; ++i) { | |
617 // |video_rect| occurs once for every two |spinner_rect|. Vary the order | |
618 // of events between the two: | |
619 ObserveDamageRect(video_rect); | |
620 ObserveDamageRect(spinner_rect); | |
621 ObserveDamageRect(spinner_rect); | |
622 ObserveDamageRect(video_rect); | |
623 ObserveDamageRect(spinner_rect); | |
624 ObserveDamageRect(spinner_rect); | |
625 ObserveDamageRect(spinner_rect); | |
626 ObserveDamageRect(video_rect); | |
627 ObserveDamageRect(spinner_rect); | |
628 ObserveDamageRect(spinner_rect); | |
629 ObserveDamageRect(video_rect); | |
630 ObserveDamageRect(spinner_rect); | |
631 } | |
632 EXPECT_EQ(video_rect, ElectMajorityDamageRect()); | |
633 } | |
634 | |
635 namespace { | |
636 | |
637 // A test scenario for AnimatedContentSamplerParameterizedTest. | |
638 struct Scenario { | |
639 base::TimeDelta vsync_interval; // Reflects compositor's update rate. | |
640 base::TimeDelta min_capture_period; // Reflects maximum capture rate. | |
641 base::TimeDelta content_period; // Reflects content animation rate. | |
642 | |
643 Scenario(base::TimeDelta v, base::TimeDelta m, base::TimeDelta c) | |
644 : vsync_interval(v), min_capture_period(m), content_period(c) { | |
645 CHECK(content_period >= vsync_interval) | |
646 << "Bad test params: Impossible to animate faster than the compositor."; | |
647 } | |
648 }; | |
649 | |
650 // Value printer for Scenario. | |
651 ::std::ostream& operator<<(::std::ostream& os, const Scenario& s) { | |
652 return os << "{ vsync_interval=" << s.vsync_interval.InMicroseconds() | |
653 << ", min_capture_period=" << s.min_capture_period.InMicroseconds() | |
654 << ", content_period=" << s.content_period.InMicroseconds() | |
655 << " }"; | |
656 } | |
657 | |
658 base::TimeDelta FpsAsPeriod(int frame_rate) { | |
659 return base::TimeDelta::FromSeconds(1) / frame_rate; | |
660 } | |
661 | |
486 } // namespace | 662 } // namespace |
663 | |
664 class AnimatedContentSamplerParameterizedTest | |
665 : public AnimatedContentSamplerTest, | |
666 public ::testing::WithParamInterface<Scenario> { | |
667 public: | |
668 AnimatedContentSamplerParameterizedTest() | |
669 : count_dropped_frames_(0), count_sampled_frames_(0) {} | |
670 virtual ~AnimatedContentSamplerParameterizedTest() {} | |
671 | |
672 protected: | |
673 typedef std::pair<gfx::Rect, base::TimeTicks> Event; | |
674 | |
675 virtual base::TimeDelta GetMinCapturePeriod() const OVERRIDE { | |
676 return GetParam().min_capture_period; | |
677 } | |
678 | |
679 // Generate a sequence of events from the compositor pipeline. The event | |
680 // times will all be at compositor vsync boundaries. | |
681 std::vector<Event> GenerateEventSequence(base::TimeTicks begin, | |
682 base::TimeTicks end, | |
683 bool include_content_frame_events, | |
684 bool include_random_events) { | |
685 DCHECK(GetParam().content_period >= GetParam().vsync_interval); | |
686 base::TimeTicks next_content_time = begin - GetParam().content_period; | |
687 std::vector<Event> events; | |
688 for (base::TimeTicks compositor_time = begin; compositor_time < end; | |
689 compositor_time += GetParam().vsync_interval) { | |
690 if (include_content_frame_events && next_content_time < compositor_time) { | |
691 events.push_back(Event(GetContentDamageRect(), compositor_time)); | |
692 next_content_time += GetParam().content_period; | |
693 } else if (include_random_events && GetRandomInRange(0, 1) == 0) { | |
694 events.push_back(Event(GetRandomDamageRect(), compositor_time)); | |
695 } | |
696 } | |
697 | |
698 DCHECK(!events.empty()); | |
699 return events; | |
700 } | |
701 | |
702 // Feed |events| through the sampler, and detect whether the expected | |
703 // lock-in/out transition occurs. Also, track and measure the frame drop | |
704 // ratio and check it against the expected drop rate. | |
705 void RunEventSequence(const std::vector<Event> events, | |
706 bool was_detecting_before, | |
707 bool is_detecting_after, | |
708 bool simulate_pipeline_back_pressure) { | |
709 gfx::Rect first_detected_region; | |
710 | |
711 EXPECT_EQ(was_detecting_before, sampler()->has_proposal()); | |
712 bool has_detection_switched = false; | |
713 ResetFrameCounters(); | |
714 for (std::vector<Event>::const_iterator i = events.begin(); | |
715 i != events.end(); ++i) { | |
716 sampler()->ConsiderPresentationEvent(i->first, i->second); | |
717 | |
718 // Detect when the sampler locks in/out, and that it stays that way for | |
719 // all further iterations of this loop. | |
720 if (!has_detection_switched && | |
721 was_detecting_before != sampler()->has_proposal()) { | |
722 has_detection_switched = true; | |
723 } | |
724 ASSERT_EQ( | |
725 has_detection_switched ? is_detecting_after : was_detecting_before, | |
726 sampler()->has_proposal()); | |
727 | |
728 if (sampler()->has_proposal()) { | |
729 // Make sure the sampler doesn't flip-flop and keep proposing sampling | |
730 // based on locking into different regions. | |
731 if (first_detected_region.IsEmpty()) { | |
732 first_detected_region = sampler()->detected_region(); | |
733 ASSERT_FALSE(first_detected_region.IsEmpty()); | |
734 } else { | |
735 EXPECT_EQ(first_detected_region, sampler()->detected_region()); | |
736 } | |
737 | |
738 if (simulate_pipeline_back_pressure && GetRandomInRange(0, 2) == 0) | |
739 ClientCannotSampleFrame(*i); | |
740 else | |
741 ClientDoesWhatSamplerProposes(*i); | |
742 } else { | |
743 EXPECT_FALSE(sampler()->should_sample()); | |
744 if (!simulate_pipeline_back_pressure || GetRandomInRange(0, 2) == 1) | |
745 sampler()->RecordSample(i->second); | |
746 } | |
747 } | |
748 EXPECT_EQ(is_detecting_after, sampler()->has_proposal()); | |
749 ExpectFrameDropRatioIsCorrect(); | |
750 } | |
751 | |
752 void ResetFrameCounters() { | |
753 count_dropped_frames_ = 0; | |
754 count_sampled_frames_ = 0; | |
755 } | |
756 | |
757 // Keep track what the sampler is proposing, and call RecordSample() if it | |
758 // proposes sampling |event|. | |
759 void ClientDoesWhatSamplerProposes(const Event& event) { | |
760 if (sampler()->should_sample()) { | |
761 EXPECT_EQ(GetContentDamageRect(), event.first); | |
762 sampler()->RecordSample(sampler()->frame_timestamp()); | |
763 ++count_sampled_frames_; | |
764 } else if (event.first == GetContentDamageRect()) { | |
765 ++count_dropped_frames_; | |
766 } | |
767 } | |
768 | |
769 // RecordSample() is not called, but for testing, keep track of what the | |
770 // sampler is proposing for |event|. | |
771 void ClientCannotSampleFrame(const Event& event) { | |
772 if (sampler()->should_sample()) { | |
773 EXPECT_EQ(GetContentDamageRect(), event.first); | |
774 ++count_sampled_frames_; | |
775 } else if (event.first == GetContentDamageRect()) { | |
776 ++count_dropped_frames_; | |
777 } | |
778 } | |
779 | |
780 // Confirm the AnimatedContentSampler is not dropping more frames than | |
781 // expected, given current test parameters. | |
782 void ExpectFrameDropRatioIsCorrect() { | |
783 if (count_sampled_frames_ == 0) { | |
784 EXPECT_EQ(0, count_dropped_frames_); | |
785 return; | |
786 } | |
787 const double content_framerate = | |
788 1000000.0 / GetParam().content_period.InMicroseconds(); | |
789 const double capture_framerate = | |
790 1000000.0 / GetParam().min_capture_period.InMicroseconds(); | |
791 const double expected_drop_rate = std::max( | |
792 0.0, (content_framerate - capture_framerate) / capture_framerate); | |
793 const double actual_drop_rate = | |
794 static_cast<double>(count_dropped_frames_) / count_sampled_frames_; | |
795 EXPECT_NEAR(expected_drop_rate, actual_drop_rate, 0.015); | |
miu
2014/07/31 01:25:33
I raised the error threshold because I lowered the
| |
796 } | |
797 | |
798 private: | |
799 // These counters only include the frames with the desired content. | |
800 int count_dropped_frames_; | |
801 int count_sampled_frames_; | |
802 }; | |
803 | |
804 // Tests that the implementation locks in/out of frames containing stable | |
805 // animated content, whether or not random events are also simultaneously | |
806 // present. | |
807 TEST_P(AnimatedContentSamplerParameterizedTest, DetectsAnimatedContent) { | |
808 // |begin| refers to the start of an event sequence in terms of the | |
809 // Compositor's clock. | |
810 base::TimeTicks begin = InitialTestTimeTicks(); | |
811 | |
812 // Provide random events and expect no lock-in. | |
813 base::TimeTicks end = begin + base::TimeDelta::FromSeconds(5); | |
814 RunEventSequence(GenerateEventSequence(begin, end, false, true), | |
815 false, | |
816 false, | |
817 false); | |
818 begin = end; | |
819 | |
820 // Provide content frame events with some random events mixed-in, and expect | |
821 // the sampler to lock-in. | |
822 end = begin + base::TimeDelta::FromSeconds(5); | |
823 RunEventSequence(GenerateEventSequence(begin, end, true, true), | |
824 false, | |
825 true, | |
826 false); | |
827 begin = end; | |
828 | |
829 // Continue providing content frame events without the random events mixed-in | |
830 // and expect the lock-in to hold. | |
831 end = begin + base::TimeDelta::FromSeconds(5); | |
832 RunEventSequence(GenerateEventSequence(begin, end, true, false), | |
833 true, | |
834 true, | |
835 false); | |
836 begin = end; | |
837 | |
838 // Continue providing just content frame events and expect the lock-in to | |
839 // hold. Also simulate the capture pipeline experiencing back pressure. | |
840 end = begin + base::TimeDelta::FromSeconds(20); | |
841 RunEventSequence(GenerateEventSequence(begin, end, true, false), | |
842 true, | |
843 true, | |
844 true); | |
845 begin = end; | |
846 | |
847 // Provide a half-second of random events only, and expect the lock-in to be | |
848 // broken. | |
849 end = begin + base::TimeDelta::FromMilliseconds(500); | |
850 RunEventSequence(GenerateEventSequence(begin, end, false, true), | |
851 true, | |
852 false, | |
853 false); | |
854 begin = end; | |
855 | |
856 // Now, go back to providing content frame events, and expect the sampler to | |
857 // lock-in once again. | |
858 end = begin + base::TimeDelta::FromSeconds(5); | |
859 RunEventSequence(GenerateEventSequence(begin, end, true, false), | |
860 false, | |
861 true, | |
862 false); | |
863 begin = end; | |
864 } | |
865 | |
866 // Tests that AnimatedContentSampler won't lock in to, nor flip-flop between, | |
867 // two animations of the same pixel change rate. VideoCaptureOracle should | |
868 // revert to using the SmoothEventSampler for these kinds of situations, as | |
869 // there is no "right answer" as to which animation to lock into. | |
870 TEST_P(AnimatedContentSamplerParameterizedTest, | |
871 DoesNotLockInToTwoCompetingAnimations) { | |
872 // Don't test when the event stream cannot indicate two separate content | |
873 // animations under the current test parameters. | |
874 if (GetParam().content_period < 2 * GetParam().vsync_interval) | |
875 return; | |
876 | |
877 // Start the first animation and run for a bit, and expect the sampler to | |
878 // lock-in. | |
879 base::TimeTicks begin = InitialTestTimeTicks(); | |
880 base::TimeTicks end = begin + base::TimeDelta::FromSeconds(5); | |
881 RunEventSequence(GenerateEventSequence(begin, end, true, false), | |
882 false, | |
883 true, | |
884 false); | |
885 begin = end; | |
886 | |
887 // Now, keep the first animation and blend in an second animation of the same | |
888 // size and frame rate, but at a different position. This will should cause | |
889 // the sampler to enter an "undetected" state since it's unclear which | |
890 // animation should be locked into. | |
891 end = begin + base::TimeDelta::FromSeconds(20); | |
892 std::vector<Event> first_animation_events = | |
893 GenerateEventSequence(begin, end, true, false); | |
894 gfx::Rect second_animation_rect( | |
895 gfx::Point(0, GetContentDamageRect().height()), | |
896 GetContentDamageRect().size()); | |
897 std::vector<Event> both_animations_events; | |
898 base::TimeDelta second_animation_offset = GetParam().vsync_interval; | |
899 for (std::vector<Event>::const_iterator i = first_animation_events.begin(); | |
900 i != first_animation_events.end(); ++i) { | |
901 both_animations_events.push_back(*i); | |
902 both_animations_events.push_back( | |
903 Event(second_animation_rect, i->second + second_animation_offset)); | |
904 } | |
905 RunEventSequence(both_animations_events, true, false, false); | |
906 begin = end; | |
907 | |
908 // Now, run just the first animation, and expect the sampler to lock-in once | |
909 // again. | |
910 end = begin + base::TimeDelta::FromSeconds(5); | |
911 RunEventSequence(GenerateEventSequence(begin, end, true, false), | |
912 false, | |
913 true, | |
914 false); | |
915 begin = end; | |
916 | |
917 // Now, blend in the second animation again, but it has half the frame rate of | |
918 // the first animation and damage Rects with twice the area. This will should | |
919 // cause the sampler to enter an "undetected" state again. This tests that | |
920 // pixel-weighting is being accounted for in the sampler's logic. | |
921 end = begin + base::TimeDelta::FromSeconds(20); | |
922 first_animation_events = GenerateEventSequence(begin, end, true, false); | |
923 second_animation_rect.set_width(second_animation_rect.width() * 2); | |
924 both_animations_events.clear(); | |
925 bool include_second_animation_frame = true; | |
926 for (std::vector<Event>::const_iterator i = first_animation_events.begin(); | |
927 i != first_animation_events.end(); ++i) { | |
928 both_animations_events.push_back(*i); | |
929 if (include_second_animation_frame) { | |
930 both_animations_events.push_back( | |
931 Event(second_animation_rect, i->second + second_animation_offset)); | |
932 } | |
933 include_second_animation_frame = !include_second_animation_frame; | |
934 } | |
935 RunEventSequence(both_animations_events, true, false, false); | |
936 begin = end; | |
937 } | |
938 | |
939 // Tests that the frame timestamps are smooth; meaning, that when run through a | |
940 // simulated compositor, each frame is held displayed for the right number of | |
941 // v-sync intervals. | |
942 TEST_P(AnimatedContentSamplerParameterizedTest, FrameTimestampsAreSmooth) { | |
943 // Generate 30 seconds of animated content events, run the events through | |
944 // AnimatedContentSampler, and record all frame timestamps being proposed | |
945 // once lock-in is continuous. | |
946 base::TimeTicks begin = InitialTestTimeTicks(); | |
947 std::vector<Event> events = GenerateEventSequence( | |
948 begin, | |
949 begin + base::TimeDelta::FromSeconds(20), | |
950 true, | |
951 false); | |
952 typedef std::vector<base::TimeTicks> Timestamps; | |
953 Timestamps frame_timestamps; | |
954 for (std::vector<Event>::const_iterator i = events.begin(); i != events.end(); | |
955 ++i) { | |
956 sampler()->ConsiderPresentationEvent(i->first, i->second); | |
957 if (sampler()->has_proposal()) { | |
958 if (sampler()->should_sample()) { | |
959 frame_timestamps.push_back(sampler()->frame_timestamp()); | |
960 sampler()->RecordSample(sampler()->frame_timestamp()); | |
961 } | |
962 } else { | |
963 frame_timestamps.clear(); // Reset until continuous lock-in. | |
964 } | |
965 } | |
966 ASSERT_LE(2u, frame_timestamps.size()); | |
967 | |
968 // Iterate through the |frame_timestamps|, building a histogram counting the | |
969 // number of times each frame was displayed k times. For example, 10 frames | |
970 // of 30 Hz content on a 60 Hz v-sync interval should result in | |
971 // display_counts[2] == 10. Quit early if any one frame was obviously | |
972 // repeated too many times. | |
973 const int64 max_expected_repeats_per_frame = 1 + | |
974 std::max(GetParam().min_capture_period, GetParam().content_period) / | |
975 GetParam().vsync_interval; | |
976 std::vector<size_t> display_counts(max_expected_repeats_per_frame + 1, 0); | |
977 base::TimeTicks last_present_time = frame_timestamps.front(); | |
978 for (Timestamps::const_iterator i = frame_timestamps.begin() + 1; | |
979 i != frame_timestamps.end(); ++i) { | |
980 const size_t num_vsync_intervals = static_cast<size_t>( | |
981 (*i - last_present_time) / GetParam().vsync_interval); | |
982 ASSERT_LT(0u, num_vsync_intervals); | |
983 ASSERT_GT(display_counts.size(), num_vsync_intervals); // Quit early. | |
984 ++display_counts[num_vsync_intervals]; | |
985 last_present_time += num_vsync_intervals * GetParam().vsync_interval; | |
986 } | |
987 | |
988 // Analyze the histogram for an expected result pattern. If the frame | |
989 // timestamps are smooth, there should only be one or two buckets with | |
990 // non-zero counts and they should be next to each other. Because the clock | |
991 // precision for the event_times provided to the sampler is very granular | |
992 // (i.e., the vsync_interval), it's okay if other buckets have a tiny "stray" | |
993 // count in this test. | |
994 size_t highest_count = 0; | |
995 size_t second_highest_count = 0; | |
996 for (size_t repeats = 1; repeats < display_counts.size(); ++repeats) { | |
997 DVLOG(1) << "display_counts[" << repeats << "] is " | |
998 << display_counts[repeats]; | |
999 if (display_counts[repeats] >= highest_count) { | |
1000 second_highest_count = highest_count; | |
1001 highest_count = display_counts[repeats]; | |
1002 } else if (display_counts[repeats] > second_highest_count) { | |
1003 second_highest_count = display_counts[repeats]; | |
1004 } | |
1005 } | |
1006 size_t stray_count_remaining = | |
1007 (frame_timestamps.size() - 1) - (highest_count + second_highest_count); | |
1008 // Expect no more than 0.75% of frames fall outside the two main buckets. | |
1009 EXPECT_GT(frame_timestamps.size() * 75 / 10000, stray_count_remaining); | |
1010 for (size_t repeats = 1; repeats < display_counts.size() - 1; ++repeats) { | |
1011 if (display_counts[repeats] == highest_count) { | |
1012 EXPECT_EQ(second_highest_count, display_counts[repeats + 1]); | |
1013 ++repeats; | |
1014 } else if (display_counts[repeats] == second_highest_count) { | |
1015 EXPECT_EQ(highest_count, display_counts[repeats + 1]); | |
1016 ++repeats; | |
1017 } else { | |
1018 EXPECT_GE(stray_count_remaining, display_counts[repeats]); | |
1019 stray_count_remaining -= display_counts[repeats]; | |
1020 } | |
1021 } | |
1022 } | |
1023 | |
1024 // Tests that frame timestamps are "lightly pushed" back towards the original | |
1025 // presentation event times, which tells us the AnimatedContentSampler can | |
1026 // account for sources of timestamp drift and correct the drift. | |
1027 TEST_P(AnimatedContentSamplerParameterizedTest, | |
1028 FrameTimestampsConvergeTowardsEventTimes) { | |
1029 const int max_drift_increment_millis = 3; | |
1030 | |
1031 // Generate a full minute of events. | |
1032 const base::TimeTicks begin = InitialTestTimeTicks(); | |
1033 const base::TimeTicks end = begin + base::TimeDelta::FromMinutes(1); | |
1034 std::vector<Event> events = GenerateEventSequence(begin, end, true, false); | |
1035 | |
1036 // Modify the event sequence so that 1-3 ms of additional drift is suddenly | |
1037 // present every 100 events. This is meant to simulate that, external to | |
1038 // AnimatedContentSampler, the video hardware vsync timebase is being | |
1039 // refreshed and is showing severe drift from the system clock. | |
1040 base::TimeDelta accumulated_drift; | |
1041 for (size_t i = 1; i < events.size(); ++i) { | |
1042 if (i % 100 == 0) { | |
1043 accumulated_drift += base::TimeDelta::FromMilliseconds( | |
1044 GetRandomInRange(1, max_drift_increment_millis + 1)); | |
1045 } | |
1046 events[i].second += accumulated_drift; | |
1047 } | |
1048 | |
1049 // Run all the events through the sampler and track the last rewritten frame | |
1050 // timestamp. | |
1051 base::TimeTicks last_frame_timestamp; | |
1052 for (std::vector<Event>::const_iterator i = events.begin(); i != events.end(); | |
1053 ++i) { | |
1054 sampler()->ConsiderPresentationEvent(i->first, i->second); | |
1055 if (sampler()->should_sample()) | |
1056 last_frame_timestamp = sampler()->frame_timestamp(); | |
1057 } | |
1058 | |
1059 // If drift was accounted for, the |last_frame_timestamp| should be close to | |
1060 // the last event's timestamp. | |
1061 const base::TimeDelta total_error = | |
1062 events.back().second - last_frame_timestamp; | |
1063 const base::TimeDelta max_acceptable_error = GetParam().min_capture_period + | |
1064 base::TimeDelta::FromMilliseconds(max_drift_increment_millis); | |
1065 EXPECT_NEAR(0.0, | |
1066 total_error.InMicroseconds(), | |
1067 max_acceptable_error.InMicroseconds()); | |
1068 } | |
1069 | |
1070 INSTANTIATE_TEST_CASE_P( | |
1071 , | |
1072 AnimatedContentSamplerParameterizedTest, | |
1073 ::testing::Values( | |
1074 // Typical frame rate content: Compositor runs at 60 Hz, capture at 30 | |
1075 // Hz, and content video animates at 30, 25, or 24 Hz. | |
1076 Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(30)), | |
1077 Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(25)), | |
1078 Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(24)), | |
1079 | |
1080 // High frame rate content that leverages the Compositor's | |
1081 // capabilities, but capture is still at 30 Hz. | |
1082 Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(60)), | |
1083 Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(50)), | |
1084 Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(48)), | |
1085 | |
1086 // High frame rate content that leverages the Compositor's | |
1087 // capabilities, and capture is also a buttery 60 Hz. | |
1088 Scenario(FpsAsPeriod(60), FpsAsPeriod(60), FpsAsPeriod(60)), | |
1089 Scenario(FpsAsPeriod(60), FpsAsPeriod(60), FpsAsPeriod(50)), | |
1090 Scenario(FpsAsPeriod(60), FpsAsPeriod(60), FpsAsPeriod(48)), | |
1091 | |
1092 // On some platforms, the Compositor runs at 50 Hz. | |
1093 Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(30)), | |
1094 Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(25)), | |
1095 Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(24)), | |
1096 Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(50)), | |
1097 Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(48)), | |
1098 | |
1099 // Stable, but non-standard content frame rates. | |
1100 Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(16)), | |
1101 Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(20)), | |
1102 Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(23)), | |
1103 Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(26)), | |
1104 Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(27)), | |
1105 Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(28)), | |
1106 Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(29)), | |
1107 Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(31)), | |
1108 Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(32)), | |
1109 Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(33)))); | |
1110 | |
1111 // Tests that VideoCaptureOracle filters out events whose timestamps are | |
1112 // decreasing. | |
1113 TEST(VideoCaptureOracleTest, EnforcesEventTimeMonotonicity) { | |
1114 const base::TimeDelta min_capture_period = | |
1115 base::TimeDelta::FromSeconds(1) / 30; | |
1116 const gfx::Rect damage_rect(0, 0, 1280, 720); | |
1117 const base::TimeDelta event_increment = min_capture_period * 2; | |
1118 | |
1119 VideoCaptureOracle oracle(min_capture_period, true); | |
1120 | |
1121 base::TimeTicks t = InitialTestTimeTicks(); | |
1122 for (int i = 0; i < 10; ++i) { | |
1123 t += event_increment; | |
1124 ASSERT_TRUE(oracle.ObserveEventAndDecideCapture( | |
1125 VideoCaptureOracle::kCompositorUpdate, | |
1126 damage_rect, t)); | |
1127 } | |
1128 | |
1129 base::TimeTicks furthest_event_time = t; | |
1130 for (int i = 0; i < 10; ++i) { | |
1131 t -= event_increment; | |
1132 ASSERT_FALSE(oracle.ObserveEventAndDecideCapture( | |
1133 VideoCaptureOracle::kCompositorUpdate, | |
1134 damage_rect, t)); | |
1135 } | |
1136 | |
1137 t = furthest_event_time; | |
1138 for (int i = 0; i < 10; ++i) { | |
1139 t += event_increment; | |
1140 ASSERT_TRUE(oracle.ObserveEventAndDecideCapture( | |
1141 VideoCaptureOracle::kCompositorUpdate, | |
1142 damage_rect, t)); | |
1143 } | |
1144 } | |
1145 | |
1146 // Tests that VideoCaptureOracle is enforcing the requirement that captured | |
1147 // frames are delivered in order. Otherwise, downstream consumers could be | |
1148 // tripped-up by out-of-order frames or frame timestamps. | |
1149 TEST(VideoCaptureOracleTest, EnforcesFramesDeliveredInOrder) { | |
1150 const base::TimeDelta min_capture_period = | |
1151 base::TimeDelta::FromSeconds(1) / 30; | |
1152 const gfx::Rect damage_rect(0, 0, 1280, 720); | |
1153 const base::TimeDelta event_increment = min_capture_period * 2; | |
1154 | |
1155 VideoCaptureOracle oracle(min_capture_period, true); | |
1156 | |
1157 // Most basic scenario: Frames delivered one at a time, with no additional | |
1158 // captures in-between deliveries. | |
1159 base::TimeTicks t = InitialTestTimeTicks(); | |
1160 int last_frame_number; | |
1161 base::TimeTicks ignored; | |
1162 for (int i = 0; i < 10; ++i) { | |
1163 t += event_increment; | |
1164 ASSERT_TRUE(oracle.ObserveEventAndDecideCapture( | |
1165 VideoCaptureOracle::kCompositorUpdate, | |
1166 damage_rect, t)); | |
1167 last_frame_number = oracle.RecordCapture(); | |
1168 ASSERT_TRUE(oracle.CompleteCapture(last_frame_number, &ignored)); | |
1169 } | |
1170 | |
1171 // Basic pipelined scenario: More than one frame in-flight at delivery points. | |
1172 for (int i = 0; i < 50; ++i) { | |
1173 const int num_in_flight = 1 + i % 3; | |
1174 for (int j = 0; j < num_in_flight; ++j) { | |
1175 t += event_increment; | |
1176 ASSERT_TRUE(oracle.ObserveEventAndDecideCapture( | |
1177 VideoCaptureOracle::kCompositorUpdate, | |
1178 damage_rect, t)); | |
1179 last_frame_number = oracle.RecordCapture(); | |
1180 } | |
1181 for (int j = num_in_flight - 1; j >= 0; --j) { | |
1182 ASSERT_TRUE(oracle.CompleteCapture(last_frame_number - j, &ignored)); | |
1183 } | |
1184 } | |
1185 | |
1186 // Pipelined scenario with out-of-order delivery attempts rejected. | |
1187 for (int i = 0; i < 50; ++i) { | |
1188 const int num_in_flight = 1 + i % 3; | |
1189 for (int j = 0; j < num_in_flight; ++j) { | |
1190 t += event_increment; | |
1191 ASSERT_TRUE(oracle.ObserveEventAndDecideCapture( | |
1192 VideoCaptureOracle::kCompositorUpdate, | |
1193 damage_rect, t)); | |
1194 last_frame_number = oracle.RecordCapture(); | |
1195 } | |
1196 ASSERT_TRUE(oracle.CompleteCapture(last_frame_number, &ignored)); | |
1197 for (int j = 1; j < num_in_flight; ++j) { | |
1198 ASSERT_FALSE(oracle.CompleteCapture(last_frame_number - j, &ignored)); | |
1199 } | |
1200 } | |
1201 } | |
1202 | |
1203 // Tests that VideoCaptureOracle transitions between using its two samplers in a | |
1204 // way that does not introduce severe jank, pauses, etc. | |
1205 TEST(VideoCaptureOracleTest, TransitionsSmoothlyBetweenSamplers) { | |
1206 const base::TimeDelta min_capture_period = | |
1207 base::TimeDelta::FromSeconds(1) / 30; | |
1208 const gfx::Rect animation_damage_rect(0, 0, 1280, 720); | |
1209 const base::TimeDelta event_increment = min_capture_period * 2; | |
1210 | |
1211 VideoCaptureOracle oracle(min_capture_period, true); | |
1212 | |
1213 // Run sequences of animation events and non-animation events through the | |
1214 // oracle. As the oracle transitions between each sampler, make sure the | |
1215 // frame timestamps won't trip-up downstream consumers. | |
1216 base::TimeTicks t = InitialTestTimeTicks(); | |
1217 base::TimeTicks last_frame_timestamp; | |
1218 for (int i = 0; i < 1000; ++i) { | |
1219 t += event_increment; | |
1220 | |
1221 // For every 100 events, provide 50 that will cause the | |
1222 // AnimatedContentSampler to lock-in, followed by 50 that will cause it to | |
1223 // lock-out (i.e., the oracle will use the SmoothEventSampler instead). | |
1224 const bool provide_animated_content_event = | |
1225 (i % 100) >= 25 && (i % 100) < 75; | |
1226 | |
1227 // Only the few events that trigger the lock-out transition should be | |
1228 // dropped, because the AnimatedContentSampler doesn't yet realize the | |
1229 // animation ended. Otherwise, the oracle should always decide to sample | |
1230 // because one of its samplers says to. | |
1231 const bool require_oracle_says_sample = (i % 100) < 75 || (i % 100) >= 78; | |
1232 const bool oracle_says_sample = oracle.ObserveEventAndDecideCapture( | |
1233 VideoCaptureOracle::kCompositorUpdate, | |
1234 provide_animated_content_event ? animation_damage_rect : gfx::Rect(), | |
1235 t); | |
1236 if (require_oracle_says_sample) | |
1237 ASSERT_TRUE(oracle_says_sample); | |
1238 if (!oracle_says_sample) | |
1239 continue; | |
1240 | |
1241 const int frame_number = oracle.RecordCapture(); | |
1242 | |
1243 base::TimeTicks frame_timestamp; | |
1244 ASSERT_TRUE(oracle.CompleteCapture(frame_number, &frame_timestamp)); | |
1245 ASSERT_FALSE(frame_timestamp.is_null()); | |
1246 if (!last_frame_timestamp.is_null()) { | |
1247 const base::TimeDelta delta = frame_timestamp - last_frame_timestamp; | |
1248 EXPECT_LE(event_increment.InMicroseconds(), delta.InMicroseconds()); | |
1249 // Right after the AnimatedContentSampler lock-out transition, there were | |
1250 // a few frames dropped, so allow a gap in the timestamps. Otherwise, the | |
1251 // delta between frame timestamps should never be more than 2X the | |
1252 // |event_increment|. | |
1253 const base::TimeDelta max_acceptable_delta = (i % 100) == 78 ? | |
1254 event_increment * 5 : event_increment * 2; | |
1255 EXPECT_GE(max_acceptable_delta.InMicroseconds(), delta.InMicroseconds()); | |
1256 } | |
1257 last_frame_timestamp = frame_timestamp; | |
1258 } | |
1259 } | |
1260 | |
487 } // namespace content | 1261 } // namespace content |
OLD | NEW |