Chromium Code Reviews| Index: tools/auto_bisect/math_utils.py |
| diff --git a/tools/auto_bisect/math_utils.py b/tools/auto_bisect/math_utils.py |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..c81bca64bd53f620c8393231deec3f4f01899458 |
| --- /dev/null |
| +++ b/tools/auto_bisect/math_utils.py |
| @@ -0,0 +1,120 @@ |
| +# Copyright 2014 The Chromium Authors. All rights reserved. |
| +# Use of this source code is governed by a BSD-style license that can be |
| +# found in the LICENSE file. |
| + |
| +"""General statistical or mathematical functions.""" |
| + |
| +import math |
| + |
| + |
| +def TruncatedMean(data_set, truncate_percent): |
| + """Calculates the truncated mean of a set of values. |
| + |
| + Note that this isn't just the mean of the set of values with the highest |
| + and lowest values discarded; the non-discarded values are also weighted |
| + differently depending how many values are discarded. |
| + |
| + Args: |
| + data_set: Non-empty list of values. |
| + truncate_percent: The % from the upper and lower portions of the data set |
| + to discard, expressed as a value in [0, 1]. |
| + |
| + Returns: |
| + The truncated mean as a float. |
| + |
| + Raises: |
| + TypeError: The data set was empty after discarding values. |
| + """ |
| + if len(data_set) > 2: |
| + data_set = sorted(data_set) |
| + |
| + discard_num_float = len(data_set) * truncate_percent |
| + discard_num_int = int(math.floor(discard_num_float)) |
| + kept_weight = len(data_set) - discard_num_float * 2 |
| + |
| + data_set = data_set[discard_num_int:len(data_set)-discard_num_int] |
| + |
| + weight_left = 1.0 - (discard_num_float - discard_num_int) |
| + |
| + if weight_left < 1: |
| + # If the % to discard leaves a fractional portion, need to weight those |
| + # values. |
| + unweighted_vals = data_set[1:len(data_set)-1] |
| + weighted_vals = [data_set[0], data_set[len(data_set)-1]] |
| + weighted_vals = [w * weight_left for w in weighted_vals] |
| + data_set = weighted_vals + unweighted_vals |
| + else: |
| + kept_weight = len(data_set) |
| + |
| + truncated_mean = reduce(lambda x, y: float(x) + float(y), |
| + data_set) / kept_weight |
| + |
| + return truncated_mean |
| + |
| + |
| +def Mean(values): |
| + """Calculates the arithmetic mean of a list of values.""" |
| + return TruncatedMean(values, 0.0) |
| + |
| + |
| +def StandardDeviation(values): |
| + """Calculates the sample standard deviation of the given list of values.""" |
| + if len(values) == 1: |
| + return 0.0 |
| + |
| + mean = Mean(values) |
| + differences_from_mean = [float(x) - mean for x in values] |
| + squared_differences = [float(x * x) for x in differences_from_mean] |
| + variance = sum(squared_differences) / (len(values) - 1) |
| + std_dev = math.sqrt(variance) |
| + |
| + return std_dev |
| + |
| + |
| +def RelativeChange(before, after): |
| + """Returns the relative change of before and after, relative to before. |
| + |
| + There are several different ways to define relative difference between |
| + two numbers; sometimes it is defined as relative to the smaller number, |
| + or to the mean of the two numbers. This version returns the difference |
| + relative to the first of the two numbers. |
| + |
| + Args: |
| + before: A number representing an earlier value. |
| + after: Another number, representing a later value. |
| + |
| + Returns: |
| + A non-negative floating point number; 0.1 represents a 10% change. |
| + """ |
| + if before == after: |
| + return 0.0 |
| + if before == 0: |
| + return float('nan') |
| + difference = after - before |
| + return math.fabs(difference / before) |
| + |
| + |
| +def PooledStandardError(work_sets): |
| + numerator = 0.0 |
| + denominator1 = 0.0 |
| + denominator2 = 0.0 |
| + |
| + for current_set in work_sets: |
| + std_dev = StandardDeviation(current_set) |
| + numerator += (len(current_set) - 1) * std_dev ** 2 |
| + denominator1 += len(current_set) - 1 |
| + denominator2 += 1.0 / len(current_set) |
|
prasadv
2014/07/28 21:31:17
Nit: if current_set not empty then evaluate denomi
|
| + |
| + if denominator1: |
| + return math.sqrt(numerator / denominator1) * math.sqrt(denominator2) |
| + return 0.0 |
| + |
| + |
| +# Redefining built-in 'StandardError' |
| +# pylint: disable=W0622 |
| +def StandardError(values): |
| + """Calculates the standard error of a list of values.""" |
| + if len(values) <= 1: |
| + return 0.0 |
| + std_dev = StandardDeviation(values) |
| + return std_dev / math.sqrt(len(values)) |