Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 # Copyright 2014 The Chromium Authors. All rights reserved. | |
| 2 # Use of this source code is governed by a BSD-style license that can be | |
| 3 # found in the LICENSE file. | |
| 4 | |
| 5 """General statistical or mathematical functions.""" | |
| 6 | |
| 7 import math | |
| 8 | |
| 9 | |
| 10 def TruncatedMean(data_set, truncate_percent): | |
| 11 """Calculates the truncated mean of a set of values. | |
| 12 | |
| 13 Note that this isn't just the mean of the set of values with the highest | |
| 14 and lowest values discarded; the non-discarded values are also weighted | |
| 15 differently depending how many values are discarded. | |
| 16 | |
| 17 Args: | |
| 18 data_set: Non-empty list of values. | |
| 19 truncate_percent: The % from the upper and lower portions of the data set | |
| 20 to discard, expressed as a value in [0, 1]. | |
| 21 | |
| 22 Returns: | |
| 23 The truncated mean as a float. | |
| 24 | |
| 25 Raises: | |
| 26 TypeError: The data set was empty after discarding values. | |
| 27 """ | |
| 28 if len(data_set) > 2: | |
| 29 data_set = sorted(data_set) | |
| 30 | |
| 31 discard_num_float = len(data_set) * truncate_percent | |
| 32 discard_num_int = int(math.floor(discard_num_float)) | |
| 33 kept_weight = len(data_set) - discard_num_float * 2 | |
| 34 | |
| 35 data_set = data_set[discard_num_int:len(data_set)-discard_num_int] | |
| 36 | |
| 37 weight_left = 1.0 - (discard_num_float - discard_num_int) | |
| 38 | |
| 39 if weight_left < 1: | |
| 40 # If the % to discard leaves a fractional portion, need to weight those | |
| 41 # values. | |
| 42 unweighted_vals = data_set[1:len(data_set)-1] | |
| 43 weighted_vals = [data_set[0], data_set[len(data_set)-1]] | |
| 44 weighted_vals = [w * weight_left for w in weighted_vals] | |
| 45 data_set = weighted_vals + unweighted_vals | |
| 46 else: | |
| 47 kept_weight = len(data_set) | |
| 48 | |
| 49 truncated_mean = reduce(lambda x, y: float(x) + float(y), | |
| 50 data_set) / kept_weight | |
| 51 | |
| 52 return truncated_mean | |
| 53 | |
| 54 | |
| 55 def Mean(values): | |
| 56 """Calculates the arithmetic mean of a list of values.""" | |
| 57 return TruncatedMean(values, 0.0) | |
| 58 | |
| 59 | |
| 60 def StandardDeviation(values): | |
| 61 """Calculates the sample standard deviation of the given list of values.""" | |
| 62 if len(values) == 1: | |
| 63 return 0.0 | |
| 64 | |
| 65 mean = Mean(values) | |
| 66 differences_from_mean = [float(x) - mean for x in values] | |
| 67 squared_differences = [float(x * x) for x in differences_from_mean] | |
| 68 variance = sum(squared_differences) / (len(values) - 1) | |
| 69 std_dev = math.sqrt(variance) | |
| 70 | |
| 71 return std_dev | |
| 72 | |
| 73 | |
| 74 def RelativeChange(before, after): | |
| 75 """Returns the relative change of before and after, relative to before. | |
| 76 | |
| 77 There are several different ways to define relative difference between | |
| 78 two numbers; sometimes it is defined as relative to the smaller number, | |
| 79 or to the mean of the two numbers. This version returns the difference | |
| 80 relative to the first of the two numbers. | |
| 81 | |
| 82 Args: | |
| 83 before: A number representing an earlier value. | |
| 84 after: Another number, representing a later value. | |
| 85 | |
| 86 Returns: | |
| 87 A non-negative floating point number; 0.1 represents a 10% change. | |
| 88 """ | |
| 89 if before == after: | |
| 90 return 0.0 | |
| 91 if before == 0: | |
| 92 return float('nan') | |
| 93 difference = after - before | |
| 94 return math.fabs(difference / before) | |
| 95 | |
| 96 | |
| 97 def PooledStandardError(work_sets): | |
| 98 numerator = 0.0 | |
| 99 denominator1 = 0.0 | |
| 100 denominator2 = 0.0 | |
| 101 | |
| 102 for current_set in work_sets: | |
| 103 std_dev = StandardDeviation(current_set) | |
| 104 numerator += (len(current_set) - 1) * std_dev ** 2 | |
| 105 denominator1 += len(current_set) - 1 | |
| 106 denominator2 += 1.0 / len(current_set) | |
|
prasadv
2014/07/28 21:31:17
Nit: if current_set not empty then evaluate denomi
| |
| 107 | |
| 108 if denominator1: | |
| 109 return math.sqrt(numerator / denominator1) * math.sqrt(denominator2) | |
| 110 return 0.0 | |
| 111 | |
| 112 | |
| 113 # Redefining built-in 'StandardError' | |
| 114 # pylint: disable=W0622 | |
| 115 def StandardError(values): | |
| 116 """Calculates the standard error of a list of values.""" | |
| 117 if len(values) <= 1: | |
| 118 return 0.0 | |
| 119 std_dev = StandardDeviation(values) | |
| 120 return std_dev / math.sqrt(len(values)) | |
| OLD | NEW |