Chromium Code Reviews| Index: cc/quads/draw_polygon.cc |
| diff --git a/cc/quads/draw_polygon.cc b/cc/quads/draw_polygon.cc |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..79ec6cb566a7f15ca5b80cc2395b54ba01b0ab2e |
| --- /dev/null |
| +++ b/cc/quads/draw_polygon.cc |
| @@ -0,0 +1,320 @@ |
| +// Copyright 2014 The Chromium Authors. All rights reserved. |
| +// Use of this source code is governed by a BSD-style license that can be |
| +// found in the LICENSE file. |
| + |
| +#include "cc/quads/draw_polygon.h" |
| + |
| +#include <vector> |
| + |
| +#include "cc/output/bsp_compare_result.h" |
| + |
| +namespace { |
| +// This allows for some imperfection in the normal comparison when checking if |
| +// two pieces of geometry are coplanar. |
| +const float coplanar_dot_epsilon = 0.99f; |
| +} // namespace |
| + |
| +namespace cc { |
| + |
| +float DrawPolygon::compare_threshold = 1.0f; |
| +float DrawPolygon::split_threshold = 0.5f; |
| + |
| +DrawPolygon::DrawPolygon() { |
| +} |
| + |
| +static float SignedArea(const DrawPolygon& polygon) { |
| + gfx::Vector3dF total; |
| + for (unsigned int i = 0; i < polygon.points.size(); i++) { |
| + unsigned int j = (i + 1) % polygon.points.size(); |
| + gfx::Vector3dF cross_prod = |
| + gfx::CrossProduct(gfx::Vector3dF(polygon.points[i].x(), |
| + polygon.points[i].y(), |
| + polygon.points[i].z()), |
| + gfx::Vector3dF(polygon.points[j].x(), |
| + polygon.points[j].y(), |
| + polygon.points[j].z())); |
| + total = total + cross_prod; |
|
Ian Vollick
2014/07/24 18:11:27
How does this do with large quads? Seems like ther
troyhildebrandt
2014/07/24 21:05:06
All of this removed.
|
| + } |
| + return 0.5f * std::abs(gfx::DotProduct(total, polygon.normal)); |
| +} |
| + |
| +float Area(const DrawPolygon& polygon) { |
| + return std::abs(SignedArea(polygon)); |
| +} |
| + |
| +DrawPolygon::DrawPolygon(DrawQuad* original, |
| + const std::vector<gfx::Point3F>& in_points, |
| + int draw_order_index) |
| + : order_index(draw_order_index), original_ref(original) { |
| + for (unsigned int i = 0; i < in_points.size(); i++) { |
| + points.push_back(in_points[i]); |
| + } |
| + |
| + if (points.size() > 2) { |
| + gfx::Vector3dF c12 = in_points[1] - in_points[0]; |
| + gfx::Vector3dF c13 = in_points[2] - in_points[0]; |
|
Ian Vollick
2014/07/24 18:11:27
Couldn't these two vectors be collinear? I think t
|
| + normal = gfx::CrossProduct(c12, c13); |
| + normal.Scale(1.0f / normal.Length()); |
|
Ian Vollick
2014/07/24 18:11:28
Please check for div-by-zero. If |in_points| is fi
|
| + } |
| + area = Area(*this); |
| +} |
| + |
| +DrawPolygon::~DrawPolygon() { |
| +} |
| + |
| +scoped_ptr<DrawPolygon> DrawPolygon::CreateCopy() { |
| + DrawPolygon* new_polygon = new DrawPolygon(); |
| + new_polygon->order_index = order_index; |
| + new_polygon->original_ref = original_ref; |
| + new_polygon->points.reserve(points.size()); |
| + new_polygon->points = points; |
| + new_polygon->normal.set_x(normal.x()); |
| + new_polygon->normal.set_y(normal.y()); |
| + new_polygon->normal.set_z(normal.z()); |
| + new_polygon->area = area; |
| + return scoped_ptr<DrawPolygon>(new_polygon); |
| +} |
| + |
| +float DrawPolygon::SignedPointDistance(const gfx::Point3F& point) const { |
| + return gfx::DotProduct(point - points[0], normal); |
| +} |
| + |
| +// Checks whether or not shape a lies on the front or back side of b, or |
| +// whether they should be considered coplanar. If on the back side, we |
| +// say ABeforeB because it should be drawn in that order. |
| +// Assumes that layers are split and there are no intersecting planes. |
| +BspCompareResult DrawPolygon::SideCompare(const DrawPolygon& a, |
| + const DrawPolygon& b) { |
| + // Right away let's check if they're coplanar |
| + double dot = gfx::DotProduct(a.normal, b.normal); |
| + float sign; |
| + bool normal_match = false; |
| + // This check assumes that the normals are normalized. |
| + if (std::abs(dot) >= coplanar_dot_epsilon) { |
| + normal_match = true; |
| + // The normals are matching enough that we only have to test one point. |
| + sign = gfx::DotProduct(a.points[0] - b.points[0], b.normal); |
| + // Is it on either side of the splitter? |
| + if (sign < -compare_threshold) { |
| + return BSP_BACK; |
| + } |
| + |
| + if (sign > compare_threshold) { |
| + return BSP_FRONT; |
| + } |
| + |
| + // No it wasn't, so the sign of the dot product of the normals |
| + // along with document order determines which side it goes on. |
| + if (dot >= 0.0f) { |
| + if (a.order_index < b.order_index) { |
| + return BSP_COPLANAR_FRONT; |
| + } |
| + return BSP_COPLANAR_BACK; |
| + } |
| + |
| + if (a.order_index < b.order_index) { |
| + return BSP_COPLANAR_BACK; |
| + } |
| + return BSP_COPLANAR_FRONT; |
| + } |
| + |
| + unsigned int pos_count = 0; |
| + unsigned int neg_count = 0; |
| + for (unsigned int i = 0; i < a.points.size(); i++) { |
| + if (!normal_match || (normal_match && i > 0)) { |
| + sign = gfx::DotProduct(a.points[i] - b.points[0], b.normal); |
| + } |
| + |
| + if (sign < -compare_threshold) { |
| + ++neg_count; |
| + } else if (sign > compare_threshold) { |
| + ++pos_count; |
| + } |
| + |
| + if (pos_count && neg_count) { |
| + return BSP_SPLIT; |
| + } |
| + } |
| + |
| + if (pos_count) { |
| + return BSP_FRONT; |
| + } |
| + return BSP_BACK; |
| +} |
| + |
| +static bool LineIntersectPlane(const gfx::Point3F& line_start, |
| + const gfx::Point3F& line_end, |
| + const gfx::Point3F& plane_origin, |
| + const gfx::Vector3dF& plane_normal, |
| + gfx::Point3F* intersection, |
| + float distance_threshold) { |
| + gfx::Vector3dF start_to_origin_vector = plane_origin - line_start; |
| + gfx::Vector3dF end_to_origin_vector = plane_origin - line_end; |
| + |
| + double start_distance = gfx::DotProduct(start_to_origin_vector, plane_normal); |
| + double end_distance = gfx::DotProduct(end_to_origin_vector, plane_normal); |
| + |
| + // The case where one vertex lies on the thick-plane and the other |
| + // is outside of it. |
| + if (std::abs(start_distance) < distance_threshold && |
| + std::abs(end_distance) > distance_threshold) { |
| + intersection->SetPoint(line_start.x(), line_start.y(), line_start.z()); |
| + return true; |
| + } |
| + |
| + // This is the case where we clearly cross the thick-plane. |
| + if ((start_distance > distance_threshold && |
| + end_distance < -distance_threshold) || |
| + (start_distance < -distance_threshold && |
| + end_distance > distance_threshold)) { |
| + // By getting the dot product of the line segment normalized vs. the plane's |
| + // normal, we get a value that approaches zero as the angle of the |
| + // intersecting line becomes parallel with the plane. |
| + // When the line segment vector is equal to the plane's normal, we have the |
| + // most direct path to the plane, and the dot product is 1. In this case, |
| + // the calculation below is just |start_distance| / 1, which is the trivial |
| + // case because the line takes the most direct path to intersect with the |
| + // plane. |start_distance| is already the shortest straight line path |
| + // distance to the plane. |
| + // However, as the vector that represents the direction of the line segment |
| + // indicates that it is becoming more parallel with the surface of the plane |
| + // and the dot product approaches 0, the path to intersection becomes much |
| + // longer, and the division of |start_distance| by < 1 gives us the true |
| + // distance of the start point to the plane following the vector of the line |
| + // segment. |
| + gfx::Vector3dF v = line_end - line_start; |
| + v.Scale(1.f / v.Length()); |
| + double projected_length = gfx::DotProduct(v, plane_normal); |
| + |
| + // The only way this will ever be true is the case where the line runs |
| + // parallel to the surface of the plane and would never contact it, and |
| + // this would result in a divide by zero below. |
| + if (!projected_length) { |
| + return false; |
| + } |
| + |
| + double scale = start_distance / projected_length; |
| + intersection->SetPoint(line_start.x() + (v.x() * scale), |
| + line_start.y() + (v.y() * scale), |
| + line_start.z() + (v.z() * scale)); |
| + |
| + return true; |
| + } |
| + return false; |
| +} |
| + |
| +bool DrawPolygon::Split(const DrawPolygon& splitter, |
| + scoped_ptr<DrawPolygon>* front, |
| + scoped_ptr<DrawPolygon>* back) { |
| + gfx::Point3F intersections[2]; |
| + std::vector<gfx::Point3F> out_points[2]; |
| + // vertex_before stores the index of the vertex before its matching |
| + // intersection. |
| + // i.e. vertex_before[0] stores the vertex we saw before we crossed the plane |
| + // which resulted in the line/plane intersection giving us intersections[0]. |
| + unsigned int vertex_before[2]; |
| + unsigned int points_size = points.size(); |
| + unsigned int current_intersection = 0; |
| + |
| + unsigned int current_vertex = 0; |
| + while (current_intersection < 2) { |
| + if (LineIntersectPlane(points[(current_vertex % points_size)], |
| + points[(current_vertex + 1) % points_size], |
| + splitter.points[0], |
| + splitter.normal, |
| + &intersections[current_intersection], |
| + split_threshold)) { |
| + vertex_before[current_intersection] = current_vertex % points_size; |
| + current_intersection++; |
| + // We found both intersection points so we're done already. |
| + if (current_intersection == 2) { |
| + break; |
| + } |
| + } |
| + if (current_vertex++ > points_size) { |
| + break; |
| + } |
| + } |
| + if (current_intersection < 2) { |
| + return false; |
| + } |
| + |
| + // Since we found both the intersection points, we can begin building the |
| + // vertex set for both our new polygons. |
| + unsigned int start1 = (vertex_before[0] + 1) % points_size; |
| + unsigned int start2 = (vertex_before[1] + 1) % points_size; |
| + unsigned int points_remaining = points_size; |
| + |
| + // First polygon. |
| + out_points[0].push_back(intersections[0]); |
| + for (unsigned int i = start1; i <= vertex_before[1]; i++) { |
| + out_points[0].push_back(points[i]); |
| + --points_remaining; |
| + } |
| + out_points[0].push_back(intersections[1]); |
| + |
| + // Second polygon. |
| + out_points[1].push_back(intersections[1]); |
| + unsigned int index = start2; |
| + for (unsigned int i = 0; i < points_remaining; i++) { |
| + out_points[1].push_back(points[index % points_size]); |
| + ++index; |
| + } |
| + out_points[1].push_back(intersections[0]); |
| + |
| + // Give both polygons the original splitting polygon's ID, so that they'll |
| + // still be sorted properly in co-planar instances. |
| + // Send false as last parameter for is_original because they're split. |
| + scoped_ptr<DrawPolygon> poly1( |
| + new DrawPolygon(original_ref, out_points[0], this->order_index)); |
| + scoped_ptr<DrawPolygon> poly2( |
| + new DrawPolygon(original_ref, out_points[1], this->order_index)); |
| + |
| + if (SideCompare(*poly1, splitter) == BSP_FRONT) { |
| + *front = poly1.Pass(); |
| + *back = poly2.Pass(); |
| + } else { |
| + *front = poly2.Pass(); |
| + *back = poly1.Pass(); |
| + } |
| + return true; |
| +} |
| + |
| +// This algorithm takes the first vertex in the polygon and uses that as a |
| +// pivot point to fan out and create quads from the rest of the vertices. |
| +// |offset| starts off as the second vertex, and then |op1| and |op2| indicate |
| +// offset+1 and offset+2 respectively. |
| +// After the first quad is created, the first vertex in the next quad is the |
| +// same as all the rest, the pivot point. The second vertex in the next quad is |
| +// the old |op2|, the last vertex added to the previous quad. This continues |
| +// until all points are exhausted. |
| +// The special case here is where there are only 3 points remaining, in which |
| +// case we use the same values for vertex 3 and 4 to make a degenerate quad |
| +// that represents a triangle. |
| +void DrawPolygon::ToQuads2D(std::vector<gfx::QuadF>* quads) const { |
| + if (points.size() <= 2) |
| + return; |
| + |
| + gfx::PointF first(points[0].x(), points[0].y()); |
| + unsigned int offset = 1; |
| + while (offset < points.size() - 1) { |
| + unsigned int op1 = offset + 1; |
| + unsigned int op2 = offset + 2; |
| + if (op2 >= points.size()) { |
| + // It's going to be a degenerate triangle. |
| + op2 = op1; |
| + } |
| + quads->push_back( |
| + gfx::QuadF(first, |
| + gfx::PointF(points[offset].x(), points[offset].y()), |
| + gfx::PointF(points[op1].x(), points[op1].y()), |
| + gfx::PointF(points[op2].x(), points[op2].y()))); |
| + offset = op2; |
| + } |
| +} |
| + |
| +bool DrawPolygon::GetInverseTransform(gfx::Transform* transform) const { |
| + return original_ref->quadTransform().GetInverse(transform); |
| +} |
| + |
| +} // namespace cc |