Index: cc/quads/draw_polygon.cc |
diff --git a/cc/quads/draw_polygon.cc b/cc/quads/draw_polygon.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..79ec6cb566a7f15ca5b80cc2395b54ba01b0ab2e |
--- /dev/null |
+++ b/cc/quads/draw_polygon.cc |
@@ -0,0 +1,320 @@ |
+// Copyright 2014 The Chromium Authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#include "cc/quads/draw_polygon.h" |
+ |
+#include <vector> |
+ |
+#include "cc/output/bsp_compare_result.h" |
+ |
+namespace { |
+// This allows for some imperfection in the normal comparison when checking if |
+// two pieces of geometry are coplanar. |
+const float coplanar_dot_epsilon = 0.99f; |
+} // namespace |
+ |
+namespace cc { |
+ |
+float DrawPolygon::compare_threshold = 1.0f; |
+float DrawPolygon::split_threshold = 0.5f; |
+ |
+DrawPolygon::DrawPolygon() { |
+} |
+ |
+static float SignedArea(const DrawPolygon& polygon) { |
+ gfx::Vector3dF total; |
+ for (unsigned int i = 0; i < polygon.points.size(); i++) { |
+ unsigned int j = (i + 1) % polygon.points.size(); |
+ gfx::Vector3dF cross_prod = |
+ gfx::CrossProduct(gfx::Vector3dF(polygon.points[i].x(), |
+ polygon.points[i].y(), |
+ polygon.points[i].z()), |
+ gfx::Vector3dF(polygon.points[j].x(), |
+ polygon.points[j].y(), |
+ polygon.points[j].z())); |
+ total = total + cross_prod; |
Ian Vollick
2014/07/24 18:11:27
How does this do with large quads? Seems like ther
troyhildebrandt
2014/07/24 21:05:06
All of this removed.
|
+ } |
+ return 0.5f * std::abs(gfx::DotProduct(total, polygon.normal)); |
+} |
+ |
+float Area(const DrawPolygon& polygon) { |
+ return std::abs(SignedArea(polygon)); |
+} |
+ |
+DrawPolygon::DrawPolygon(DrawQuad* original, |
+ const std::vector<gfx::Point3F>& in_points, |
+ int draw_order_index) |
+ : order_index(draw_order_index), original_ref(original) { |
+ for (unsigned int i = 0; i < in_points.size(); i++) { |
+ points.push_back(in_points[i]); |
+ } |
+ |
+ if (points.size() > 2) { |
+ gfx::Vector3dF c12 = in_points[1] - in_points[0]; |
+ gfx::Vector3dF c13 = in_points[2] - in_points[0]; |
Ian Vollick
2014/07/24 18:11:27
Couldn't these two vectors be collinear? I think t
|
+ normal = gfx::CrossProduct(c12, c13); |
+ normal.Scale(1.0f / normal.Length()); |
Ian Vollick
2014/07/24 18:11:28
Please check for div-by-zero. If |in_points| is fi
|
+ } |
+ area = Area(*this); |
+} |
+ |
+DrawPolygon::~DrawPolygon() { |
+} |
+ |
+scoped_ptr<DrawPolygon> DrawPolygon::CreateCopy() { |
+ DrawPolygon* new_polygon = new DrawPolygon(); |
+ new_polygon->order_index = order_index; |
+ new_polygon->original_ref = original_ref; |
+ new_polygon->points.reserve(points.size()); |
+ new_polygon->points = points; |
+ new_polygon->normal.set_x(normal.x()); |
+ new_polygon->normal.set_y(normal.y()); |
+ new_polygon->normal.set_z(normal.z()); |
+ new_polygon->area = area; |
+ return scoped_ptr<DrawPolygon>(new_polygon); |
+} |
+ |
+float DrawPolygon::SignedPointDistance(const gfx::Point3F& point) const { |
+ return gfx::DotProduct(point - points[0], normal); |
+} |
+ |
+// Checks whether or not shape a lies on the front or back side of b, or |
+// whether they should be considered coplanar. If on the back side, we |
+// say ABeforeB because it should be drawn in that order. |
+// Assumes that layers are split and there are no intersecting planes. |
+BspCompareResult DrawPolygon::SideCompare(const DrawPolygon& a, |
+ const DrawPolygon& b) { |
+ // Right away let's check if they're coplanar |
+ double dot = gfx::DotProduct(a.normal, b.normal); |
+ float sign; |
+ bool normal_match = false; |
+ // This check assumes that the normals are normalized. |
+ if (std::abs(dot) >= coplanar_dot_epsilon) { |
+ normal_match = true; |
+ // The normals are matching enough that we only have to test one point. |
+ sign = gfx::DotProduct(a.points[0] - b.points[0], b.normal); |
+ // Is it on either side of the splitter? |
+ if (sign < -compare_threshold) { |
+ return BSP_BACK; |
+ } |
+ |
+ if (sign > compare_threshold) { |
+ return BSP_FRONT; |
+ } |
+ |
+ // No it wasn't, so the sign of the dot product of the normals |
+ // along with document order determines which side it goes on. |
+ if (dot >= 0.0f) { |
+ if (a.order_index < b.order_index) { |
+ return BSP_COPLANAR_FRONT; |
+ } |
+ return BSP_COPLANAR_BACK; |
+ } |
+ |
+ if (a.order_index < b.order_index) { |
+ return BSP_COPLANAR_BACK; |
+ } |
+ return BSP_COPLANAR_FRONT; |
+ } |
+ |
+ unsigned int pos_count = 0; |
+ unsigned int neg_count = 0; |
+ for (unsigned int i = 0; i < a.points.size(); i++) { |
+ if (!normal_match || (normal_match && i > 0)) { |
+ sign = gfx::DotProduct(a.points[i] - b.points[0], b.normal); |
+ } |
+ |
+ if (sign < -compare_threshold) { |
+ ++neg_count; |
+ } else if (sign > compare_threshold) { |
+ ++pos_count; |
+ } |
+ |
+ if (pos_count && neg_count) { |
+ return BSP_SPLIT; |
+ } |
+ } |
+ |
+ if (pos_count) { |
+ return BSP_FRONT; |
+ } |
+ return BSP_BACK; |
+} |
+ |
+static bool LineIntersectPlane(const gfx::Point3F& line_start, |
+ const gfx::Point3F& line_end, |
+ const gfx::Point3F& plane_origin, |
+ const gfx::Vector3dF& plane_normal, |
+ gfx::Point3F* intersection, |
+ float distance_threshold) { |
+ gfx::Vector3dF start_to_origin_vector = plane_origin - line_start; |
+ gfx::Vector3dF end_to_origin_vector = plane_origin - line_end; |
+ |
+ double start_distance = gfx::DotProduct(start_to_origin_vector, plane_normal); |
+ double end_distance = gfx::DotProduct(end_to_origin_vector, plane_normal); |
+ |
+ // The case where one vertex lies on the thick-plane and the other |
+ // is outside of it. |
+ if (std::abs(start_distance) < distance_threshold && |
+ std::abs(end_distance) > distance_threshold) { |
+ intersection->SetPoint(line_start.x(), line_start.y(), line_start.z()); |
+ return true; |
+ } |
+ |
+ // This is the case where we clearly cross the thick-plane. |
+ if ((start_distance > distance_threshold && |
+ end_distance < -distance_threshold) || |
+ (start_distance < -distance_threshold && |
+ end_distance > distance_threshold)) { |
+ // By getting the dot product of the line segment normalized vs. the plane's |
+ // normal, we get a value that approaches zero as the angle of the |
+ // intersecting line becomes parallel with the plane. |
+ // When the line segment vector is equal to the plane's normal, we have the |
+ // most direct path to the plane, and the dot product is 1. In this case, |
+ // the calculation below is just |start_distance| / 1, which is the trivial |
+ // case because the line takes the most direct path to intersect with the |
+ // plane. |start_distance| is already the shortest straight line path |
+ // distance to the plane. |
+ // However, as the vector that represents the direction of the line segment |
+ // indicates that it is becoming more parallel with the surface of the plane |
+ // and the dot product approaches 0, the path to intersection becomes much |
+ // longer, and the division of |start_distance| by < 1 gives us the true |
+ // distance of the start point to the plane following the vector of the line |
+ // segment. |
+ gfx::Vector3dF v = line_end - line_start; |
+ v.Scale(1.f / v.Length()); |
+ double projected_length = gfx::DotProduct(v, plane_normal); |
+ |
+ // The only way this will ever be true is the case where the line runs |
+ // parallel to the surface of the plane and would never contact it, and |
+ // this would result in a divide by zero below. |
+ if (!projected_length) { |
+ return false; |
+ } |
+ |
+ double scale = start_distance / projected_length; |
+ intersection->SetPoint(line_start.x() + (v.x() * scale), |
+ line_start.y() + (v.y() * scale), |
+ line_start.z() + (v.z() * scale)); |
+ |
+ return true; |
+ } |
+ return false; |
+} |
+ |
+bool DrawPolygon::Split(const DrawPolygon& splitter, |
+ scoped_ptr<DrawPolygon>* front, |
+ scoped_ptr<DrawPolygon>* back) { |
+ gfx::Point3F intersections[2]; |
+ std::vector<gfx::Point3F> out_points[2]; |
+ // vertex_before stores the index of the vertex before its matching |
+ // intersection. |
+ // i.e. vertex_before[0] stores the vertex we saw before we crossed the plane |
+ // which resulted in the line/plane intersection giving us intersections[0]. |
+ unsigned int vertex_before[2]; |
+ unsigned int points_size = points.size(); |
+ unsigned int current_intersection = 0; |
+ |
+ unsigned int current_vertex = 0; |
+ while (current_intersection < 2) { |
+ if (LineIntersectPlane(points[(current_vertex % points_size)], |
+ points[(current_vertex + 1) % points_size], |
+ splitter.points[0], |
+ splitter.normal, |
+ &intersections[current_intersection], |
+ split_threshold)) { |
+ vertex_before[current_intersection] = current_vertex % points_size; |
+ current_intersection++; |
+ // We found both intersection points so we're done already. |
+ if (current_intersection == 2) { |
+ break; |
+ } |
+ } |
+ if (current_vertex++ > points_size) { |
+ break; |
+ } |
+ } |
+ if (current_intersection < 2) { |
+ return false; |
+ } |
+ |
+ // Since we found both the intersection points, we can begin building the |
+ // vertex set for both our new polygons. |
+ unsigned int start1 = (vertex_before[0] + 1) % points_size; |
+ unsigned int start2 = (vertex_before[1] + 1) % points_size; |
+ unsigned int points_remaining = points_size; |
+ |
+ // First polygon. |
+ out_points[0].push_back(intersections[0]); |
+ for (unsigned int i = start1; i <= vertex_before[1]; i++) { |
+ out_points[0].push_back(points[i]); |
+ --points_remaining; |
+ } |
+ out_points[0].push_back(intersections[1]); |
+ |
+ // Second polygon. |
+ out_points[1].push_back(intersections[1]); |
+ unsigned int index = start2; |
+ for (unsigned int i = 0; i < points_remaining; i++) { |
+ out_points[1].push_back(points[index % points_size]); |
+ ++index; |
+ } |
+ out_points[1].push_back(intersections[0]); |
+ |
+ // Give both polygons the original splitting polygon's ID, so that they'll |
+ // still be sorted properly in co-planar instances. |
+ // Send false as last parameter for is_original because they're split. |
+ scoped_ptr<DrawPolygon> poly1( |
+ new DrawPolygon(original_ref, out_points[0], this->order_index)); |
+ scoped_ptr<DrawPolygon> poly2( |
+ new DrawPolygon(original_ref, out_points[1], this->order_index)); |
+ |
+ if (SideCompare(*poly1, splitter) == BSP_FRONT) { |
+ *front = poly1.Pass(); |
+ *back = poly2.Pass(); |
+ } else { |
+ *front = poly2.Pass(); |
+ *back = poly1.Pass(); |
+ } |
+ return true; |
+} |
+ |
+// This algorithm takes the first vertex in the polygon and uses that as a |
+// pivot point to fan out and create quads from the rest of the vertices. |
+// |offset| starts off as the second vertex, and then |op1| and |op2| indicate |
+// offset+1 and offset+2 respectively. |
+// After the first quad is created, the first vertex in the next quad is the |
+// same as all the rest, the pivot point. The second vertex in the next quad is |
+// the old |op2|, the last vertex added to the previous quad. This continues |
+// until all points are exhausted. |
+// The special case here is where there are only 3 points remaining, in which |
+// case we use the same values for vertex 3 and 4 to make a degenerate quad |
+// that represents a triangle. |
+void DrawPolygon::ToQuads2D(std::vector<gfx::QuadF>* quads) const { |
+ if (points.size() <= 2) |
+ return; |
+ |
+ gfx::PointF first(points[0].x(), points[0].y()); |
+ unsigned int offset = 1; |
+ while (offset < points.size() - 1) { |
+ unsigned int op1 = offset + 1; |
+ unsigned int op2 = offset + 2; |
+ if (op2 >= points.size()) { |
+ // It's going to be a degenerate triangle. |
+ op2 = op1; |
+ } |
+ quads->push_back( |
+ gfx::QuadF(first, |
+ gfx::PointF(points[offset].x(), points[offset].y()), |
+ gfx::PointF(points[op1].x(), points[op1].y()), |
+ gfx::PointF(points[op2].x(), points[op2].y()))); |
+ offset = op2; |
+ } |
+} |
+ |
+bool DrawPolygon::GetInverseTransform(gfx::Transform* transform) const { |
+ return original_ref->quadTransform().GetInverse(transform); |
+} |
+ |
+} // namespace cc |