OLD | NEW |
---|---|
(Empty) | |
1 // Copyright 2014 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "cc/quads/draw_polygon.h" | |
6 | |
7 #include <vector> | |
8 | |
9 #include "cc/output/bsp_compare_result.h" | |
10 | |
11 namespace { | |
12 // This allows for some imperfection in the normal comparison when checking if | |
13 // two pieces of geometry are coplanar. | |
14 const float coplanar_dot_epsilon = 0.99f; | |
15 } // namespace | |
16 | |
17 namespace cc { | |
18 | |
19 float DrawPolygon::compare_threshold = 1.0f; | |
20 float DrawPolygon::split_threshold = 0.5f; | |
21 | |
22 DrawPolygon::DrawPolygon() { | |
23 } | |
24 | |
25 static float SignedArea(const DrawPolygon& polygon) { | |
26 gfx::Vector3dF total; | |
27 for (unsigned int i = 0; i < polygon.points.size(); i++) { | |
28 unsigned int j = (i + 1) % polygon.points.size(); | |
29 gfx::Vector3dF cross_prod = | |
30 gfx::CrossProduct(gfx::Vector3dF(polygon.points[i].x(), | |
31 polygon.points[i].y(), | |
32 polygon.points[i].z()), | |
33 gfx::Vector3dF(polygon.points[j].x(), | |
34 polygon.points[j].y(), | |
35 polygon.points[j].z())); | |
36 total = total + cross_prod; | |
Ian Vollick
2014/07/24 18:11:27
How does this do with large quads? Seems like ther
troyhildebrandt
2014/07/24 21:05:06
All of this removed.
| |
37 } | |
38 return 0.5f * std::abs(gfx::DotProduct(total, polygon.normal)); | |
39 } | |
40 | |
41 float Area(const DrawPolygon& polygon) { | |
42 return std::abs(SignedArea(polygon)); | |
43 } | |
44 | |
45 DrawPolygon::DrawPolygon(DrawQuad* original, | |
46 const std::vector<gfx::Point3F>& in_points, | |
47 int draw_order_index) | |
48 : order_index(draw_order_index), original_ref(original) { | |
49 for (unsigned int i = 0; i < in_points.size(); i++) { | |
50 points.push_back(in_points[i]); | |
51 } | |
52 | |
53 if (points.size() > 2) { | |
54 gfx::Vector3dF c12 = in_points[1] - in_points[0]; | |
55 gfx::Vector3dF c13 = in_points[2] - in_points[0]; | |
Ian Vollick
2014/07/24 18:11:27
Couldn't these two vectors be collinear? I think t
| |
56 normal = gfx::CrossProduct(c12, c13); | |
57 normal.Scale(1.0f / normal.Length()); | |
Ian Vollick
2014/07/24 18:11:28
Please check for div-by-zero. If |in_points| is fi
| |
58 } | |
59 area = Area(*this); | |
60 } | |
61 | |
62 DrawPolygon::~DrawPolygon() { | |
63 } | |
64 | |
65 scoped_ptr<DrawPolygon> DrawPolygon::CreateCopy() { | |
66 DrawPolygon* new_polygon = new DrawPolygon(); | |
67 new_polygon->order_index = order_index; | |
68 new_polygon->original_ref = original_ref; | |
69 new_polygon->points.reserve(points.size()); | |
70 new_polygon->points = points; | |
71 new_polygon->normal.set_x(normal.x()); | |
72 new_polygon->normal.set_y(normal.y()); | |
73 new_polygon->normal.set_z(normal.z()); | |
74 new_polygon->area = area; | |
75 return scoped_ptr<DrawPolygon>(new_polygon); | |
76 } | |
77 | |
78 float DrawPolygon::SignedPointDistance(const gfx::Point3F& point) const { | |
79 return gfx::DotProduct(point - points[0], normal); | |
80 } | |
81 | |
82 // Checks whether or not shape a lies on the front or back side of b, or | |
83 // whether they should be considered coplanar. If on the back side, we | |
84 // say ABeforeB because it should be drawn in that order. | |
85 // Assumes that layers are split and there are no intersecting planes. | |
86 BspCompareResult DrawPolygon::SideCompare(const DrawPolygon& a, | |
87 const DrawPolygon& b) { | |
88 // Right away let's check if they're coplanar | |
89 double dot = gfx::DotProduct(a.normal, b.normal); | |
90 float sign; | |
91 bool normal_match = false; | |
92 // This check assumes that the normals are normalized. | |
93 if (std::abs(dot) >= coplanar_dot_epsilon) { | |
94 normal_match = true; | |
95 // The normals are matching enough that we only have to test one point. | |
96 sign = gfx::DotProduct(a.points[0] - b.points[0], b.normal); | |
97 // Is it on either side of the splitter? | |
98 if (sign < -compare_threshold) { | |
99 return BSP_BACK; | |
100 } | |
101 | |
102 if (sign > compare_threshold) { | |
103 return BSP_FRONT; | |
104 } | |
105 | |
106 // No it wasn't, so the sign of the dot product of the normals | |
107 // along with document order determines which side it goes on. | |
108 if (dot >= 0.0f) { | |
109 if (a.order_index < b.order_index) { | |
110 return BSP_COPLANAR_FRONT; | |
111 } | |
112 return BSP_COPLANAR_BACK; | |
113 } | |
114 | |
115 if (a.order_index < b.order_index) { | |
116 return BSP_COPLANAR_BACK; | |
117 } | |
118 return BSP_COPLANAR_FRONT; | |
119 } | |
120 | |
121 unsigned int pos_count = 0; | |
122 unsigned int neg_count = 0; | |
123 for (unsigned int i = 0; i < a.points.size(); i++) { | |
124 if (!normal_match || (normal_match && i > 0)) { | |
125 sign = gfx::DotProduct(a.points[i] - b.points[0], b.normal); | |
126 } | |
127 | |
128 if (sign < -compare_threshold) { | |
129 ++neg_count; | |
130 } else if (sign > compare_threshold) { | |
131 ++pos_count; | |
132 } | |
133 | |
134 if (pos_count && neg_count) { | |
135 return BSP_SPLIT; | |
136 } | |
137 } | |
138 | |
139 if (pos_count) { | |
140 return BSP_FRONT; | |
141 } | |
142 return BSP_BACK; | |
143 } | |
144 | |
145 static bool LineIntersectPlane(const gfx::Point3F& line_start, | |
146 const gfx::Point3F& line_end, | |
147 const gfx::Point3F& plane_origin, | |
148 const gfx::Vector3dF& plane_normal, | |
149 gfx::Point3F* intersection, | |
150 float distance_threshold) { | |
151 gfx::Vector3dF start_to_origin_vector = plane_origin - line_start; | |
152 gfx::Vector3dF end_to_origin_vector = plane_origin - line_end; | |
153 | |
154 double start_distance = gfx::DotProduct(start_to_origin_vector, plane_normal); | |
155 double end_distance = gfx::DotProduct(end_to_origin_vector, plane_normal); | |
156 | |
157 // The case where one vertex lies on the thick-plane and the other | |
158 // is outside of it. | |
159 if (std::abs(start_distance) < distance_threshold && | |
160 std::abs(end_distance) > distance_threshold) { | |
161 intersection->SetPoint(line_start.x(), line_start.y(), line_start.z()); | |
162 return true; | |
163 } | |
164 | |
165 // This is the case where we clearly cross the thick-plane. | |
166 if ((start_distance > distance_threshold && | |
167 end_distance < -distance_threshold) || | |
168 (start_distance < -distance_threshold && | |
169 end_distance > distance_threshold)) { | |
170 // By getting the dot product of the line segment normalized vs. the plane's | |
171 // normal, we get a value that approaches zero as the angle of the | |
172 // intersecting line becomes parallel with the plane. | |
173 // When the line segment vector is equal to the plane's normal, we have the | |
174 // most direct path to the plane, and the dot product is 1. In this case, | |
175 // the calculation below is just |start_distance| / 1, which is the trivial | |
176 // case because the line takes the most direct path to intersect with the | |
177 // plane. |start_distance| is already the shortest straight line path | |
178 // distance to the plane. | |
179 // However, as the vector that represents the direction of the line segment | |
180 // indicates that it is becoming more parallel with the surface of the plane | |
181 // and the dot product approaches 0, the path to intersection becomes much | |
182 // longer, and the division of |start_distance| by < 1 gives us the true | |
183 // distance of the start point to the plane following the vector of the line | |
184 // segment. | |
185 gfx::Vector3dF v = line_end - line_start; | |
186 v.Scale(1.f / v.Length()); | |
187 double projected_length = gfx::DotProduct(v, plane_normal); | |
188 | |
189 // The only way this will ever be true is the case where the line runs | |
190 // parallel to the surface of the plane and would never contact it, and | |
191 // this would result in a divide by zero below. | |
192 if (!projected_length) { | |
193 return false; | |
194 } | |
195 | |
196 double scale = start_distance / projected_length; | |
197 intersection->SetPoint(line_start.x() + (v.x() * scale), | |
198 line_start.y() + (v.y() * scale), | |
199 line_start.z() + (v.z() * scale)); | |
200 | |
201 return true; | |
202 } | |
203 return false; | |
204 } | |
205 | |
206 bool DrawPolygon::Split(const DrawPolygon& splitter, | |
207 scoped_ptr<DrawPolygon>* front, | |
208 scoped_ptr<DrawPolygon>* back) { | |
209 gfx::Point3F intersections[2]; | |
210 std::vector<gfx::Point3F> out_points[2]; | |
211 // vertex_before stores the index of the vertex before its matching | |
212 // intersection. | |
213 // i.e. vertex_before[0] stores the vertex we saw before we crossed the plane | |
214 // which resulted in the line/plane intersection giving us intersections[0]. | |
215 unsigned int vertex_before[2]; | |
216 unsigned int points_size = points.size(); | |
217 unsigned int current_intersection = 0; | |
218 | |
219 unsigned int current_vertex = 0; | |
220 while (current_intersection < 2) { | |
221 if (LineIntersectPlane(points[(current_vertex % points_size)], | |
222 points[(current_vertex + 1) % points_size], | |
223 splitter.points[0], | |
224 splitter.normal, | |
225 &intersections[current_intersection], | |
226 split_threshold)) { | |
227 vertex_before[current_intersection] = current_vertex % points_size; | |
228 current_intersection++; | |
229 // We found both intersection points so we're done already. | |
230 if (current_intersection == 2) { | |
231 break; | |
232 } | |
233 } | |
234 if (current_vertex++ > points_size) { | |
235 break; | |
236 } | |
237 } | |
238 if (current_intersection < 2) { | |
239 return false; | |
240 } | |
241 | |
242 // Since we found both the intersection points, we can begin building the | |
243 // vertex set for both our new polygons. | |
244 unsigned int start1 = (vertex_before[0] + 1) % points_size; | |
245 unsigned int start2 = (vertex_before[1] + 1) % points_size; | |
246 unsigned int points_remaining = points_size; | |
247 | |
248 // First polygon. | |
249 out_points[0].push_back(intersections[0]); | |
250 for (unsigned int i = start1; i <= vertex_before[1]; i++) { | |
251 out_points[0].push_back(points[i]); | |
252 --points_remaining; | |
253 } | |
254 out_points[0].push_back(intersections[1]); | |
255 | |
256 // Second polygon. | |
257 out_points[1].push_back(intersections[1]); | |
258 unsigned int index = start2; | |
259 for (unsigned int i = 0; i < points_remaining; i++) { | |
260 out_points[1].push_back(points[index % points_size]); | |
261 ++index; | |
262 } | |
263 out_points[1].push_back(intersections[0]); | |
264 | |
265 // Give both polygons the original splitting polygon's ID, so that they'll | |
266 // still be sorted properly in co-planar instances. | |
267 // Send false as last parameter for is_original because they're split. | |
268 scoped_ptr<DrawPolygon> poly1( | |
269 new DrawPolygon(original_ref, out_points[0], this->order_index)); | |
270 scoped_ptr<DrawPolygon> poly2( | |
271 new DrawPolygon(original_ref, out_points[1], this->order_index)); | |
272 | |
273 if (SideCompare(*poly1, splitter) == BSP_FRONT) { | |
274 *front = poly1.Pass(); | |
275 *back = poly2.Pass(); | |
276 } else { | |
277 *front = poly2.Pass(); | |
278 *back = poly1.Pass(); | |
279 } | |
280 return true; | |
281 } | |
282 | |
283 // This algorithm takes the first vertex in the polygon and uses that as a | |
284 // pivot point to fan out and create quads from the rest of the vertices. | |
285 // |offset| starts off as the second vertex, and then |op1| and |op2| indicate | |
286 // offset+1 and offset+2 respectively. | |
287 // After the first quad is created, the first vertex in the next quad is the | |
288 // same as all the rest, the pivot point. The second vertex in the next quad is | |
289 // the old |op2|, the last vertex added to the previous quad. This continues | |
290 // until all points are exhausted. | |
291 // The special case here is where there are only 3 points remaining, in which | |
292 // case we use the same values for vertex 3 and 4 to make a degenerate quad | |
293 // that represents a triangle. | |
294 void DrawPolygon::ToQuads2D(std::vector<gfx::QuadF>* quads) const { | |
295 if (points.size() <= 2) | |
296 return; | |
297 | |
298 gfx::PointF first(points[0].x(), points[0].y()); | |
299 unsigned int offset = 1; | |
300 while (offset < points.size() - 1) { | |
301 unsigned int op1 = offset + 1; | |
302 unsigned int op2 = offset + 2; | |
303 if (op2 >= points.size()) { | |
304 // It's going to be a degenerate triangle. | |
305 op2 = op1; | |
306 } | |
307 quads->push_back( | |
308 gfx::QuadF(first, | |
309 gfx::PointF(points[offset].x(), points[offset].y()), | |
310 gfx::PointF(points[op1].x(), points[op1].y()), | |
311 gfx::PointF(points[op2].x(), points[op2].y()))); | |
312 offset = op2; | |
313 } | |
314 } | |
315 | |
316 bool DrawPolygon::GetInverseTransform(gfx::Transform* transform) const { | |
317 return original_ref->quadTransform().GetInverse(transform); | |
318 } | |
319 | |
320 } // namespace cc | |
OLD | NEW |