Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(38)

Side by Side Diff: cc/quads/draw_polygon.cc

Issue 411793002: DrawPolygon class with Unit Tests (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Created 6 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « cc/quads/draw_polygon.h ('k') | cc/quads/draw_polygon_unittest.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "cc/quads/draw_polygon.h"
6
7 #include <vector>
8
9 #include "cc/output/bsp_compare_result.h"
10
11 namespace {
12 // This allows for some imperfection in the normal comparison when checking if
13 // two pieces of geometry are coplanar.
14 const float coplanar_dot_epsilon = 0.99f;
15 } // namespace
16
17 namespace cc {
18
19 float DrawPolygon::compare_threshold = 1.0f;
20 float DrawPolygon::split_threshold = 0.5f;
21
22 DrawPolygon::DrawPolygon() {
23 }
24
25 static float SignedArea(const DrawPolygon& polygon) {
26 gfx::Vector3dF total;
27 for (unsigned int i = 0; i < polygon.points.size(); i++) {
28 unsigned int j = (i + 1) % polygon.points.size();
29 gfx::Vector3dF cross_prod =
30 gfx::CrossProduct(gfx::Vector3dF(polygon.points[i].x(),
31 polygon.points[i].y(),
32 polygon.points[i].z()),
33 gfx::Vector3dF(polygon.points[j].x(),
34 polygon.points[j].y(),
35 polygon.points[j].z()));
36 total = total + cross_prod;
Ian Vollick 2014/07/24 18:11:27 How does this do with large quads? Seems like ther
troyhildebrandt 2014/07/24 21:05:06 All of this removed.
37 }
38 return 0.5f * std::abs(gfx::DotProduct(total, polygon.normal));
39 }
40
41 float Area(const DrawPolygon& polygon) {
42 return std::abs(SignedArea(polygon));
43 }
44
45 DrawPolygon::DrawPolygon(DrawQuad* original,
46 const std::vector<gfx::Point3F>& in_points,
47 int draw_order_index)
48 : order_index(draw_order_index), original_ref(original) {
49 for (unsigned int i = 0; i < in_points.size(); i++) {
50 points.push_back(in_points[i]);
51 }
52
53 if (points.size() > 2) {
54 gfx::Vector3dF c12 = in_points[1] - in_points[0];
55 gfx::Vector3dF c13 = in_points[2] - in_points[0];
Ian Vollick 2014/07/24 18:11:27 Couldn't these two vectors be collinear? I think t
56 normal = gfx::CrossProduct(c12, c13);
57 normal.Scale(1.0f / normal.Length());
Ian Vollick 2014/07/24 18:11:28 Please check for div-by-zero. If |in_points| is fi
58 }
59 area = Area(*this);
60 }
61
62 DrawPolygon::~DrawPolygon() {
63 }
64
65 scoped_ptr<DrawPolygon> DrawPolygon::CreateCopy() {
66 DrawPolygon* new_polygon = new DrawPolygon();
67 new_polygon->order_index = order_index;
68 new_polygon->original_ref = original_ref;
69 new_polygon->points.reserve(points.size());
70 new_polygon->points = points;
71 new_polygon->normal.set_x(normal.x());
72 new_polygon->normal.set_y(normal.y());
73 new_polygon->normal.set_z(normal.z());
74 new_polygon->area = area;
75 return scoped_ptr<DrawPolygon>(new_polygon);
76 }
77
78 float DrawPolygon::SignedPointDistance(const gfx::Point3F& point) const {
79 return gfx::DotProduct(point - points[0], normal);
80 }
81
82 // Checks whether or not shape a lies on the front or back side of b, or
83 // whether they should be considered coplanar. If on the back side, we
84 // say ABeforeB because it should be drawn in that order.
85 // Assumes that layers are split and there are no intersecting planes.
86 BspCompareResult DrawPolygon::SideCompare(const DrawPolygon& a,
87 const DrawPolygon& b) {
88 // Right away let's check if they're coplanar
89 double dot = gfx::DotProduct(a.normal, b.normal);
90 float sign;
91 bool normal_match = false;
92 // This check assumes that the normals are normalized.
93 if (std::abs(dot) >= coplanar_dot_epsilon) {
94 normal_match = true;
95 // The normals are matching enough that we only have to test one point.
96 sign = gfx::DotProduct(a.points[0] - b.points[0], b.normal);
97 // Is it on either side of the splitter?
98 if (sign < -compare_threshold) {
99 return BSP_BACK;
100 }
101
102 if (sign > compare_threshold) {
103 return BSP_FRONT;
104 }
105
106 // No it wasn't, so the sign of the dot product of the normals
107 // along with document order determines which side it goes on.
108 if (dot >= 0.0f) {
109 if (a.order_index < b.order_index) {
110 return BSP_COPLANAR_FRONT;
111 }
112 return BSP_COPLANAR_BACK;
113 }
114
115 if (a.order_index < b.order_index) {
116 return BSP_COPLANAR_BACK;
117 }
118 return BSP_COPLANAR_FRONT;
119 }
120
121 unsigned int pos_count = 0;
122 unsigned int neg_count = 0;
123 for (unsigned int i = 0; i < a.points.size(); i++) {
124 if (!normal_match || (normal_match && i > 0)) {
125 sign = gfx::DotProduct(a.points[i] - b.points[0], b.normal);
126 }
127
128 if (sign < -compare_threshold) {
129 ++neg_count;
130 } else if (sign > compare_threshold) {
131 ++pos_count;
132 }
133
134 if (pos_count && neg_count) {
135 return BSP_SPLIT;
136 }
137 }
138
139 if (pos_count) {
140 return BSP_FRONT;
141 }
142 return BSP_BACK;
143 }
144
145 static bool LineIntersectPlane(const gfx::Point3F& line_start,
146 const gfx::Point3F& line_end,
147 const gfx::Point3F& plane_origin,
148 const gfx::Vector3dF& plane_normal,
149 gfx::Point3F* intersection,
150 float distance_threshold) {
151 gfx::Vector3dF start_to_origin_vector = plane_origin - line_start;
152 gfx::Vector3dF end_to_origin_vector = plane_origin - line_end;
153
154 double start_distance = gfx::DotProduct(start_to_origin_vector, plane_normal);
155 double end_distance = gfx::DotProduct(end_to_origin_vector, plane_normal);
156
157 // The case where one vertex lies on the thick-plane and the other
158 // is outside of it.
159 if (std::abs(start_distance) < distance_threshold &&
160 std::abs(end_distance) > distance_threshold) {
161 intersection->SetPoint(line_start.x(), line_start.y(), line_start.z());
162 return true;
163 }
164
165 // This is the case where we clearly cross the thick-plane.
166 if ((start_distance > distance_threshold &&
167 end_distance < -distance_threshold) ||
168 (start_distance < -distance_threshold &&
169 end_distance > distance_threshold)) {
170 // By getting the dot product of the line segment normalized vs. the plane's
171 // normal, we get a value that approaches zero as the angle of the
172 // intersecting line becomes parallel with the plane.
173 // When the line segment vector is equal to the plane's normal, we have the
174 // most direct path to the plane, and the dot product is 1. In this case,
175 // the calculation below is just |start_distance| / 1, which is the trivial
176 // case because the line takes the most direct path to intersect with the
177 // plane. |start_distance| is already the shortest straight line path
178 // distance to the plane.
179 // However, as the vector that represents the direction of the line segment
180 // indicates that it is becoming more parallel with the surface of the plane
181 // and the dot product approaches 0, the path to intersection becomes much
182 // longer, and the division of |start_distance| by < 1 gives us the true
183 // distance of the start point to the plane following the vector of the line
184 // segment.
185 gfx::Vector3dF v = line_end - line_start;
186 v.Scale(1.f / v.Length());
187 double projected_length = gfx::DotProduct(v, plane_normal);
188
189 // The only way this will ever be true is the case where the line runs
190 // parallel to the surface of the plane and would never contact it, and
191 // this would result in a divide by zero below.
192 if (!projected_length) {
193 return false;
194 }
195
196 double scale = start_distance / projected_length;
197 intersection->SetPoint(line_start.x() + (v.x() * scale),
198 line_start.y() + (v.y() * scale),
199 line_start.z() + (v.z() * scale));
200
201 return true;
202 }
203 return false;
204 }
205
206 bool DrawPolygon::Split(const DrawPolygon& splitter,
207 scoped_ptr<DrawPolygon>* front,
208 scoped_ptr<DrawPolygon>* back) {
209 gfx::Point3F intersections[2];
210 std::vector<gfx::Point3F> out_points[2];
211 // vertex_before stores the index of the vertex before its matching
212 // intersection.
213 // i.e. vertex_before[0] stores the vertex we saw before we crossed the plane
214 // which resulted in the line/plane intersection giving us intersections[0].
215 unsigned int vertex_before[2];
216 unsigned int points_size = points.size();
217 unsigned int current_intersection = 0;
218
219 unsigned int current_vertex = 0;
220 while (current_intersection < 2) {
221 if (LineIntersectPlane(points[(current_vertex % points_size)],
222 points[(current_vertex + 1) % points_size],
223 splitter.points[0],
224 splitter.normal,
225 &intersections[current_intersection],
226 split_threshold)) {
227 vertex_before[current_intersection] = current_vertex % points_size;
228 current_intersection++;
229 // We found both intersection points so we're done already.
230 if (current_intersection == 2) {
231 break;
232 }
233 }
234 if (current_vertex++ > points_size) {
235 break;
236 }
237 }
238 if (current_intersection < 2) {
239 return false;
240 }
241
242 // Since we found both the intersection points, we can begin building the
243 // vertex set for both our new polygons.
244 unsigned int start1 = (vertex_before[0] + 1) % points_size;
245 unsigned int start2 = (vertex_before[1] + 1) % points_size;
246 unsigned int points_remaining = points_size;
247
248 // First polygon.
249 out_points[0].push_back(intersections[0]);
250 for (unsigned int i = start1; i <= vertex_before[1]; i++) {
251 out_points[0].push_back(points[i]);
252 --points_remaining;
253 }
254 out_points[0].push_back(intersections[1]);
255
256 // Second polygon.
257 out_points[1].push_back(intersections[1]);
258 unsigned int index = start2;
259 for (unsigned int i = 0; i < points_remaining; i++) {
260 out_points[1].push_back(points[index % points_size]);
261 ++index;
262 }
263 out_points[1].push_back(intersections[0]);
264
265 // Give both polygons the original splitting polygon's ID, so that they'll
266 // still be sorted properly in co-planar instances.
267 // Send false as last parameter for is_original because they're split.
268 scoped_ptr<DrawPolygon> poly1(
269 new DrawPolygon(original_ref, out_points[0], this->order_index));
270 scoped_ptr<DrawPolygon> poly2(
271 new DrawPolygon(original_ref, out_points[1], this->order_index));
272
273 if (SideCompare(*poly1, splitter) == BSP_FRONT) {
274 *front = poly1.Pass();
275 *back = poly2.Pass();
276 } else {
277 *front = poly2.Pass();
278 *back = poly1.Pass();
279 }
280 return true;
281 }
282
283 // This algorithm takes the first vertex in the polygon and uses that as a
284 // pivot point to fan out and create quads from the rest of the vertices.
285 // |offset| starts off as the second vertex, and then |op1| and |op2| indicate
286 // offset+1 and offset+2 respectively.
287 // After the first quad is created, the first vertex in the next quad is the
288 // same as all the rest, the pivot point. The second vertex in the next quad is
289 // the old |op2|, the last vertex added to the previous quad. This continues
290 // until all points are exhausted.
291 // The special case here is where there are only 3 points remaining, in which
292 // case we use the same values for vertex 3 and 4 to make a degenerate quad
293 // that represents a triangle.
294 void DrawPolygon::ToQuads2D(std::vector<gfx::QuadF>* quads) const {
295 if (points.size() <= 2)
296 return;
297
298 gfx::PointF first(points[0].x(), points[0].y());
299 unsigned int offset = 1;
300 while (offset < points.size() - 1) {
301 unsigned int op1 = offset + 1;
302 unsigned int op2 = offset + 2;
303 if (op2 >= points.size()) {
304 // It's going to be a degenerate triangle.
305 op2 = op1;
306 }
307 quads->push_back(
308 gfx::QuadF(first,
309 gfx::PointF(points[offset].x(), points[offset].y()),
310 gfx::PointF(points[op1].x(), points[op1].y()),
311 gfx::PointF(points[op2].x(), points[op2].y())));
312 offset = op2;
313 }
314 }
315
316 bool DrawPolygon::GetInverseTransform(gfx::Transform* transform) const {
317 return original_ref->quadTransform().GetInverse(transform);
318 }
319
320 } // namespace cc
OLDNEW
« no previous file with comments | « cc/quads/draw_polygon.h ('k') | cc/quads/draw_polygon_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698