Index: src/core/SkPatch.cpp |
diff --git a/src/core/SkPatch.cpp b/src/core/SkPatch.cpp |
new file mode 100644 |
index 0000000000000000000000000000000000000000..acd6cb9b57725aafcd999091fb1b40f57c2557fe |
--- /dev/null |
+++ b/src/core/SkPatch.cpp |
@@ -0,0 +1,224 @@ |
+/* |
+ * Copyright 2014 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+#include "SkPatch.h" |
+ |
+#include "SkGeometry.h" |
+#include "SkColorPriv.h" |
+ |
+//////////////////////////////////////////////////////////////////////////////// |
+ |
+/** |
+ * Evaluator to sample the values of a cubic bezier using forward differences. |
+ * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only |
+ * adding precalculated values. |
+ * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h |
+ * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first |
+ * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After |
+ * obtaining this value (mh) we could just add this constant step to our first sampled point |
+ * to compute the next one. |
+ * |
+ * For the cubic case the first difference gives as a result a quadratic polynomial to which we can |
+ * apply again forward differences and get linear function to which we can apply again forward |
+ * differences to get a constant difference. This is why we keep an array of size 4, the 0th |
+ * position keeps the sampled value while the next ones keep the quadratic, linear and constant |
+ * difference values. |
+ */ |
+ |
+class FwDCubicEvaluator { |
+ |
+public: |
+ FwDCubicEvaluator() { } |
+ |
+ /** |
+ * Receives the 4 control points of the cubic bezier. |
+ */ |
+ FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d) { |
+ fPoints[0] = a; |
+ fPoints[1] = b; |
+ fPoints[2] = c; |
+ fPoints[3] = d; |
+ |
+ SkScalar cx[4], cy[4]; |
+ SkGetCubicCoeff(fPoints, cx, cy); |
+ fCoefs[0].set(cx[0], cy[0]); |
+ fCoefs[1].set(cx[1], cy[1]); |
+ fCoefs[2].set(cx[2], cy[2]); |
+ fCoefs[3].set(cx[3], cy[3]); |
+ |
+ this->restart(1); |
+ } |
+ |
+ /** |
+ * Restarts the forward differences evaluator to the first value of t = 0. |
+ */ |
+ void restart(int divisions) { |
+ fDivisions = divisions; |
+ SkScalar h = 1.f / fDivisions; |
+ fCurrent = 0; |
+ fMax = fDivisions + 1; |
+ fFwDiff[0] = fCoefs[3]; |
+ SkScalar h2 = h * h; |
+ SkScalar h3 = h2 * h; |
+ |
+ fFwDiff[3].set(6.f * fCoefs[0].x() * h3, 6.f * fCoefs[0].y() * h3); //6ah^3 |
+ fFwDiff[2].set(fFwDiff[3].x() + 2.f * fCoefs[1].x() * h2, //6ah^3 + 2bh^2 |
+ fFwDiff[3].y() + 2.f * fCoefs[1].y() * h2); |
+ fFwDiff[1].set(fCoefs[0].x() * h3 + fCoefs[1].x() * h2 + fCoefs[2].x() * h,//ah^3 + bh^2 +ch |
+ fCoefs[0].y() * h3 + fCoefs[1].y() * h2 + fCoefs[2].y() * h); |
+ } |
+ |
+ /** |
+ * Check if the evaluator is still within the range of 0<=t<=1 |
+ */ |
+ bool done() const { |
+ return fCurrent > fMax; |
+ } |
+ |
+ /** |
+ * Call next to obtain the SkPoint sampled and move to the next one. |
+ */ |
+ SkPoint next() { |
+ SkPoint point = fFwDiff[0]; |
+ fFwDiff[0] += fFwDiff[1]; |
+ fFwDiff[1] += fFwDiff[2]; |
+ fFwDiff[2] += fFwDiff[3]; |
+ fCurrent++; |
+ return point; |
+ } |
+ |
+ const SkPoint* getCtrlPoints() const { |
+ return fPoints; |
+ } |
+ |
+private: |
+ int fMax, fCurrent, fDivisions; |
+ SkPoint fFwDiff[4], fCoefs[4], fPoints[4]; |
+}; |
+ |
+//////////////////////////////////////////////////////////////////////////////// |
+ |
+SkPatch::SkPatch(SkPoint points[12], SkColor colors[4]) { |
+ |
+ for (int i = 0; i<12; i++) { |
+ fCtrlPoints[i] = points[i]; |
+ } |
+ |
+ fCornerColors[0] = SkPreMultiplyColor(colors[0]); |
+ fCornerColors[1] = SkPreMultiplyColor(colors[1]); |
+ fCornerColors[2] = SkPreMultiplyColor(colors[2]); |
+ fCornerColors[3] = SkPreMultiplyColor(colors[3]); |
+} |
+ |
+uint8_t bilinear(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01, SkScalar c11) { |
+ SkScalar a = c00 * (1.f - tx) + c10 * tx; |
+ SkScalar b = c01 * (1.f - tx) + c11 * tx; |
+ return uint8_t(a * (1.f - ty) + b * ty); |
+} |
+ |
+bool SkPatch::getVertexData(SkPatch::VertexData* data, int divisions) { |
+ |
+ if (divisions < 1) { |
+ return false; |
+ } |
+ |
+ int divX = divisions, divY = divisions; |
+ |
+ data->fVertexCount = (divX + 1) * (divY + 1); |
+ data->fIndexCount = divX * divY * 6; |
+ |
+ data->fPoints = SkNEW_ARRAY(SkPoint, data->fVertexCount); |
+ data->fColors = SkNEW_ARRAY(uint32_t, data->fVertexCount); |
+ data->fTexCoords = SkNEW_ARRAY(SkPoint, data->fVertexCount); |
+ data->fIndices = SkNEW_ARRAY(uint16_t, data->fIndexCount); |
+ |
+ FwDCubicEvaluator fBottom(fCtrlPoints[kBottomP0_CubicCtrlPts], |
+ fCtrlPoints[kBottomP1_CubicCtrlPts], |
+ fCtrlPoints[kBottomP2_CubicCtrlPts], |
+ fCtrlPoints[kBottomP3_CubicCtrlPts]), |
+ fTop(fCtrlPoints[kTopP0_CubicCtrlPts], |
+ fCtrlPoints[kTopP1_CubicCtrlPts], |
+ fCtrlPoints[kTopP2_CubicCtrlPts], |
+ fCtrlPoints[kTopP2_CubicCtrlPts]), |
+ fLeft(fCtrlPoints[kLeftP0_CubicCtrlPts], |
+ fCtrlPoints[kLeftP1_CubicCtrlPts], |
+ fCtrlPoints[kLeftP2_CubicCtrlPts], |
+ fCtrlPoints[kLeftP3_CubicCtrlPts]), |
+ fRight(fCtrlPoints[kRightP0_CubicCtrlPts], |
+ fCtrlPoints[kRightP1_CubicCtrlPts], |
+ fCtrlPoints[kRightP2_CubicCtrlPts], |
+ fCtrlPoints[kRightP3_CubicCtrlPts]); |
+ |
+ fBottom.restart(divX); |
+ fTop.restart(divX); |
+ |
+ SkScalar u = 0.0f; |
+ int stride = divY + 1; |
+ for (int x = 0; x <= divX; x++) { |
+ SkPoint bottom = fBottom.next(), top = fTop.next(); |
+ fLeft.restart(divY); |
+ fRight.restart(divY); |
+ SkScalar v = 0.f; |
+ for (int y = 0; y <= divY; y++) { |
+ int dataIndex = x * (divX + 1) + y; |
+ |
+ SkPoint left = fLeft.next(), right = fRight.next(); |
+ |
+ SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(), |
+ (1.0f - v) * top.y() + v * bottom.y()); |
+ SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(), |
+ (1.0f - u) * left.y() + u * right.y()); |
+ SkPoint s2 = SkPoint::Make( |
+ (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x() |
+ + u * fTop.getCtrlPoints()[3].x()) |
+ + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x() |
+ + u * fBottom.getCtrlPoints()[3].x()), |
+ (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y() |
+ + u * fTop.getCtrlPoints()[3].y()) |
+ + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y() |
+ + u * fBottom.getCtrlPoints()[3].y())); |
+ data->fPoints[dataIndex] = s0 + s1 - s2; |
+ |
+ uint8_t a = bilinear(u, v, |
+ SkScalar(SkColorGetA(fCornerColors[0])), |
+ SkScalar(SkColorGetA(fCornerColors[1])), |
+ SkScalar(SkColorGetA(fCornerColors[2])), |
+ SkScalar(SkColorGetA(fCornerColors[3]))); |
+ uint8_t r = bilinear(u, v, |
+ SkScalar(SkColorGetR(fCornerColors[0])), |
+ SkScalar(SkColorGetR(fCornerColors[1])), |
+ SkScalar(SkColorGetR(fCornerColors[2])), |
+ SkScalar(SkColorGetR(fCornerColors[3]))); |
+ uint8_t g = bilinear(u, v, |
+ SkScalar(SkColorGetG(fCornerColors[0])), |
+ SkScalar(SkColorGetG(fCornerColors[1])), |
+ SkScalar(SkColorGetG(fCornerColors[2])), |
+ SkScalar(SkColorGetG(fCornerColors[3]))); |
+ uint8_t b = bilinear(u, v, |
+ SkScalar(SkColorGetB(fCornerColors[0])), |
+ SkScalar(SkColorGetB(fCornerColors[1])), |
+ SkScalar(SkColorGetB(fCornerColors[2])), |
+ SkScalar(SkColorGetB(fCornerColors[3]))); |
+ data->fColors[dataIndex] = SkPackARGB32(a,r,g,b); |
+ |
+ data->fTexCoords[dataIndex] = SkPoint::Make(u, v); |
+ |
+ if(x < divX && y < divY) { |
+ int i = 6 * (x * divY + y); |
+ data->fIndices[i] = x * stride + y; |
+ data->fIndices[i + 1] = x * stride + 1 + y; |
+ data->fIndices[i + 2] = (x + 1) * stride + 1 + y; |
+ data->fIndices[i + 3] = data->fIndices[i]; |
+ data->fIndices[i + 4] = data->fIndices[i + 2]; |
+ data->fIndices[i + 5] = (x + 1) * stride + y; |
+ } |
+ v += 1.f / divY; |
+ } |
+ u += 1.f / divX; |
+ } |
+ return true; |
+} |