| Index: src/core/SkPatch.cpp
|
| diff --git a/src/core/SkPatch.cpp b/src/core/SkPatch.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..acd6cb9b57725aafcd999091fb1b40f57c2557fe
|
| --- /dev/null
|
| +++ b/src/core/SkPatch.cpp
|
| @@ -0,0 +1,224 @@
|
| +/*
|
| + * Copyright 2014 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +#include "SkPatch.h"
|
| +
|
| +#include "SkGeometry.h"
|
| +#include "SkColorPriv.h"
|
| +
|
| +////////////////////////////////////////////////////////////////////////////////
|
| +
|
| +/**
|
| + * Evaluator to sample the values of a cubic bezier using forward differences.
|
| + * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only
|
| + * adding precalculated values.
|
| + * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h
|
| + * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first
|
| + * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After
|
| + * obtaining this value (mh) we could just add this constant step to our first sampled point
|
| + * to compute the next one.
|
| + *
|
| + * For the cubic case the first difference gives as a result a quadratic polynomial to which we can
|
| + * apply again forward differences and get linear function to which we can apply again forward
|
| + * differences to get a constant difference. This is why we keep an array of size 4, the 0th
|
| + * position keeps the sampled value while the next ones keep the quadratic, linear and constant
|
| + * difference values.
|
| + */
|
| +
|
| +class FwDCubicEvaluator {
|
| +
|
| +public:
|
| + FwDCubicEvaluator() { }
|
| +
|
| + /**
|
| + * Receives the 4 control points of the cubic bezier.
|
| + */
|
| + FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d) {
|
| + fPoints[0] = a;
|
| + fPoints[1] = b;
|
| + fPoints[2] = c;
|
| + fPoints[3] = d;
|
| +
|
| + SkScalar cx[4], cy[4];
|
| + SkGetCubicCoeff(fPoints, cx, cy);
|
| + fCoefs[0].set(cx[0], cy[0]);
|
| + fCoefs[1].set(cx[1], cy[1]);
|
| + fCoefs[2].set(cx[2], cy[2]);
|
| + fCoefs[3].set(cx[3], cy[3]);
|
| +
|
| + this->restart(1);
|
| + }
|
| +
|
| + /**
|
| + * Restarts the forward differences evaluator to the first value of t = 0.
|
| + */
|
| + void restart(int divisions) {
|
| + fDivisions = divisions;
|
| + SkScalar h = 1.f / fDivisions;
|
| + fCurrent = 0;
|
| + fMax = fDivisions + 1;
|
| + fFwDiff[0] = fCoefs[3];
|
| + SkScalar h2 = h * h;
|
| + SkScalar h3 = h2 * h;
|
| +
|
| + fFwDiff[3].set(6.f * fCoefs[0].x() * h3, 6.f * fCoefs[0].y() * h3); //6ah^3
|
| + fFwDiff[2].set(fFwDiff[3].x() + 2.f * fCoefs[1].x() * h2, //6ah^3 + 2bh^2
|
| + fFwDiff[3].y() + 2.f * fCoefs[1].y() * h2);
|
| + fFwDiff[1].set(fCoefs[0].x() * h3 + fCoefs[1].x() * h2 + fCoefs[2].x() * h,//ah^3 + bh^2 +ch
|
| + fCoefs[0].y() * h3 + fCoefs[1].y() * h2 + fCoefs[2].y() * h);
|
| + }
|
| +
|
| + /**
|
| + * Check if the evaluator is still within the range of 0<=t<=1
|
| + */
|
| + bool done() const {
|
| + return fCurrent > fMax;
|
| + }
|
| +
|
| + /**
|
| + * Call next to obtain the SkPoint sampled and move to the next one.
|
| + */
|
| + SkPoint next() {
|
| + SkPoint point = fFwDiff[0];
|
| + fFwDiff[0] += fFwDiff[1];
|
| + fFwDiff[1] += fFwDiff[2];
|
| + fFwDiff[2] += fFwDiff[3];
|
| + fCurrent++;
|
| + return point;
|
| + }
|
| +
|
| + const SkPoint* getCtrlPoints() const {
|
| + return fPoints;
|
| + }
|
| +
|
| +private:
|
| + int fMax, fCurrent, fDivisions;
|
| + SkPoint fFwDiff[4], fCoefs[4], fPoints[4];
|
| +};
|
| +
|
| +////////////////////////////////////////////////////////////////////////////////
|
| +
|
| +SkPatch::SkPatch(SkPoint points[12], SkColor colors[4]) {
|
| +
|
| + for (int i = 0; i<12; i++) {
|
| + fCtrlPoints[i] = points[i];
|
| + }
|
| +
|
| + fCornerColors[0] = SkPreMultiplyColor(colors[0]);
|
| + fCornerColors[1] = SkPreMultiplyColor(colors[1]);
|
| + fCornerColors[2] = SkPreMultiplyColor(colors[2]);
|
| + fCornerColors[3] = SkPreMultiplyColor(colors[3]);
|
| +}
|
| +
|
| +uint8_t bilinear(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01, SkScalar c11) {
|
| + SkScalar a = c00 * (1.f - tx) + c10 * tx;
|
| + SkScalar b = c01 * (1.f - tx) + c11 * tx;
|
| + return uint8_t(a * (1.f - ty) + b * ty);
|
| +}
|
| +
|
| +bool SkPatch::getVertexData(SkPatch::VertexData* data, int divisions) {
|
| +
|
| + if (divisions < 1) {
|
| + return false;
|
| + }
|
| +
|
| + int divX = divisions, divY = divisions;
|
| +
|
| + data->fVertexCount = (divX + 1) * (divY + 1);
|
| + data->fIndexCount = divX * divY * 6;
|
| +
|
| + data->fPoints = SkNEW_ARRAY(SkPoint, data->fVertexCount);
|
| + data->fColors = SkNEW_ARRAY(uint32_t, data->fVertexCount);
|
| + data->fTexCoords = SkNEW_ARRAY(SkPoint, data->fVertexCount);
|
| + data->fIndices = SkNEW_ARRAY(uint16_t, data->fIndexCount);
|
| +
|
| + FwDCubicEvaluator fBottom(fCtrlPoints[kBottomP0_CubicCtrlPts],
|
| + fCtrlPoints[kBottomP1_CubicCtrlPts],
|
| + fCtrlPoints[kBottomP2_CubicCtrlPts],
|
| + fCtrlPoints[kBottomP3_CubicCtrlPts]),
|
| + fTop(fCtrlPoints[kTopP0_CubicCtrlPts],
|
| + fCtrlPoints[kTopP1_CubicCtrlPts],
|
| + fCtrlPoints[kTopP2_CubicCtrlPts],
|
| + fCtrlPoints[kTopP2_CubicCtrlPts]),
|
| + fLeft(fCtrlPoints[kLeftP0_CubicCtrlPts],
|
| + fCtrlPoints[kLeftP1_CubicCtrlPts],
|
| + fCtrlPoints[kLeftP2_CubicCtrlPts],
|
| + fCtrlPoints[kLeftP3_CubicCtrlPts]),
|
| + fRight(fCtrlPoints[kRightP0_CubicCtrlPts],
|
| + fCtrlPoints[kRightP1_CubicCtrlPts],
|
| + fCtrlPoints[kRightP2_CubicCtrlPts],
|
| + fCtrlPoints[kRightP3_CubicCtrlPts]);
|
| +
|
| + fBottom.restart(divX);
|
| + fTop.restart(divX);
|
| +
|
| + SkScalar u = 0.0f;
|
| + int stride = divY + 1;
|
| + for (int x = 0; x <= divX; x++) {
|
| + SkPoint bottom = fBottom.next(), top = fTop.next();
|
| + fLeft.restart(divY);
|
| + fRight.restart(divY);
|
| + SkScalar v = 0.f;
|
| + for (int y = 0; y <= divY; y++) {
|
| + int dataIndex = x * (divX + 1) + y;
|
| +
|
| + SkPoint left = fLeft.next(), right = fRight.next();
|
| +
|
| + SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(),
|
| + (1.0f - v) * top.y() + v * bottom.y());
|
| + SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(),
|
| + (1.0f - u) * left.y() + u * right.y());
|
| + SkPoint s2 = SkPoint::Make(
|
| + (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x()
|
| + + u * fTop.getCtrlPoints()[3].x())
|
| + + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x()
|
| + + u * fBottom.getCtrlPoints()[3].x()),
|
| + (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y()
|
| + + u * fTop.getCtrlPoints()[3].y())
|
| + + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y()
|
| + + u * fBottom.getCtrlPoints()[3].y()));
|
| + data->fPoints[dataIndex] = s0 + s1 - s2;
|
| +
|
| + uint8_t a = bilinear(u, v,
|
| + SkScalar(SkColorGetA(fCornerColors[0])),
|
| + SkScalar(SkColorGetA(fCornerColors[1])),
|
| + SkScalar(SkColorGetA(fCornerColors[2])),
|
| + SkScalar(SkColorGetA(fCornerColors[3])));
|
| + uint8_t r = bilinear(u, v,
|
| + SkScalar(SkColorGetR(fCornerColors[0])),
|
| + SkScalar(SkColorGetR(fCornerColors[1])),
|
| + SkScalar(SkColorGetR(fCornerColors[2])),
|
| + SkScalar(SkColorGetR(fCornerColors[3])));
|
| + uint8_t g = bilinear(u, v,
|
| + SkScalar(SkColorGetG(fCornerColors[0])),
|
| + SkScalar(SkColorGetG(fCornerColors[1])),
|
| + SkScalar(SkColorGetG(fCornerColors[2])),
|
| + SkScalar(SkColorGetG(fCornerColors[3])));
|
| + uint8_t b = bilinear(u, v,
|
| + SkScalar(SkColorGetB(fCornerColors[0])),
|
| + SkScalar(SkColorGetB(fCornerColors[1])),
|
| + SkScalar(SkColorGetB(fCornerColors[2])),
|
| + SkScalar(SkColorGetB(fCornerColors[3])));
|
| + data->fColors[dataIndex] = SkPackARGB32(a,r,g,b);
|
| +
|
| + data->fTexCoords[dataIndex] = SkPoint::Make(u, v);
|
| +
|
| + if(x < divX && y < divY) {
|
| + int i = 6 * (x * divY + y);
|
| + data->fIndices[i] = x * stride + y;
|
| + data->fIndices[i + 1] = x * stride + 1 + y;
|
| + data->fIndices[i + 2] = (x + 1) * stride + 1 + y;
|
| + data->fIndices[i + 3] = data->fIndices[i];
|
| + data->fIndices[i + 4] = data->fIndices[i + 2];
|
| + data->fIndices[i + 5] = (x + 1) * stride + y;
|
| + }
|
| + v += 1.f / divY;
|
| + }
|
| + u += 1.f / divX;
|
| + }
|
| + return true;
|
| +}
|
|
|