OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright 2014 Google Inc. |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. |
| 6 */ |
| 7 |
| 8 #include "SkPatch.h" |
| 9 |
| 10 #include "SkGeometry.h" |
| 11 #include "SkColorPriv.h" |
| 12 |
| 13 //////////////////////////////////////////////////////////////////////////////// |
| 14 |
| 15 /** |
| 16 * Evaluator to sample the values of a cubic bezier using forward differences. |
| 17 * Forward differences is a method for evaluating a nth degree polynomial at a u
niform step by only |
| 18 * adding precalculated values. |
| 19 * For a linear example we have the function f(t) = m*t+b, then the value of tha
t function at t+h |
| 20 * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must
add to the first |
| 21 * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t
+ b = mh. After |
| 22 * obtaining this value (mh) we could just add this constant step to our first s
ampled point |
| 23 * to compute the next one. |
| 24 * |
| 25 * For the cubic case the first difference gives as a result a quadratic polynom
ial to which we can |
| 26 * apply again forward differences and get linear function to which we can apply
again forward |
| 27 * differences to get a constant difference. This is why we keep an array of siz
e 4, the 0th |
| 28 * position keeps the sampled value while the next ones keep the quadratic, line
ar and constant |
| 29 * difference values. |
| 30 */ |
| 31 |
| 32 class FwDCubicEvaluator { |
| 33 |
| 34 public: |
| 35 FwDCubicEvaluator() { } |
| 36 |
| 37 /** |
| 38 * Receives the 4 control points of the cubic bezier. |
| 39 */ |
| 40 FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d) { |
| 41 fPoints[0] = a; |
| 42 fPoints[1] = b; |
| 43 fPoints[2] = c; |
| 44 fPoints[3] = d; |
| 45 |
| 46 SkScalar cx[4], cy[4]; |
| 47 SkGetCubicCoeff(fPoints, cx, cy); |
| 48 fCoefs[0].set(cx[0], cy[0]); |
| 49 fCoefs[1].set(cx[1], cy[1]); |
| 50 fCoefs[2].set(cx[2], cy[2]); |
| 51 fCoefs[3].set(cx[3], cy[3]); |
| 52 |
| 53 this->restart(1); |
| 54 } |
| 55 |
| 56 /** |
| 57 * Restarts the forward differences evaluator to the first value of t = 0. |
| 58 */ |
| 59 void restart(int divisions) { |
| 60 fDivisions = divisions; |
| 61 SkScalar h = 1.f / fDivisions; |
| 62 fCurrent = 0; |
| 63 fMax = fDivisions + 1; |
| 64 fFwDiff[0] = fCoefs[3]; |
| 65 SkScalar h2 = h * h; |
| 66 SkScalar h3 = h2 * h; |
| 67 |
| 68 fFwDiff[3].set(6.f * fCoefs[0].x() * h3, 6.f * fCoefs[0].y() * h3); //6a
h^3 |
| 69 fFwDiff[2].set(fFwDiff[3].x() + 2.f * fCoefs[1].x() * h2, //6ah^3 + 2bh^
2 |
| 70 fFwDiff[3].y() + 2.f * fCoefs[1].y() * h2); |
| 71 fFwDiff[1].set(fCoefs[0].x() * h3 + fCoefs[1].x() * h2 + fCoefs[2].x() *
h,//ah^3 + bh^2 +ch |
| 72 fCoefs[0].y() * h3 + fCoefs[1].y() * h2 + fCoefs[2].y() *
h); |
| 73 } |
| 74 |
| 75 /** |
| 76 * Check if the evaluator is still within the range of 0<=t<=1 |
| 77 */ |
| 78 bool done() const { |
| 79 return fCurrent > fMax; |
| 80 } |
| 81 |
| 82 /** |
| 83 * Call next to obtain the SkPoint sampled and move to the next one. |
| 84 */ |
| 85 SkPoint next() { |
| 86 SkPoint point = fFwDiff[0]; |
| 87 fFwDiff[0] += fFwDiff[1]; |
| 88 fFwDiff[1] += fFwDiff[2]; |
| 89 fFwDiff[2] += fFwDiff[3]; |
| 90 fCurrent++; |
| 91 return point; |
| 92 } |
| 93 |
| 94 const SkPoint* getCtrlPoints() const { |
| 95 return fPoints; |
| 96 } |
| 97 |
| 98 private: |
| 99 int fMax, fCurrent, fDivisions; |
| 100 SkPoint fFwDiff[4], fCoefs[4], fPoints[4]; |
| 101 }; |
| 102 |
| 103 //////////////////////////////////////////////////////////////////////////////// |
| 104 |
| 105 SkPatch::SkPatch(SkPoint points[12], SkColor colors[4]) { |
| 106 |
| 107 for (int i = 0; i<12; i++) { |
| 108 fCtrlPoints[i] = points[i]; |
| 109 } |
| 110 |
| 111 fCornerColors[0] = SkPreMultiplyColor(colors[0]); |
| 112 fCornerColors[1] = SkPreMultiplyColor(colors[1]); |
| 113 fCornerColors[2] = SkPreMultiplyColor(colors[2]); |
| 114 fCornerColors[3] = SkPreMultiplyColor(colors[3]); |
| 115 } |
| 116 |
| 117 uint8_t bilinear(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar
c01, SkScalar c11) { |
| 118 SkScalar a = c00 * (1.f - tx) + c10 * tx; |
| 119 SkScalar b = c01 * (1.f - tx) + c11 * tx; |
| 120 return uint8_t(a * (1.f - ty) + b * ty); |
| 121 } |
| 122 |
| 123 bool SkPatch::getVertexData(SkPatch::VertexData* data, int divisions) { |
| 124 |
| 125 if (divisions < 1) { |
| 126 return false; |
| 127 } |
| 128 |
| 129 int divX = divisions, divY = divisions; |
| 130 |
| 131 data->fVertexCount = (divX + 1) * (divY + 1); |
| 132 data->fIndexCount = divX * divY * 6; |
| 133 |
| 134 data->fPoints = SkNEW_ARRAY(SkPoint, data->fVertexCount); |
| 135 data->fColors = SkNEW_ARRAY(uint32_t, data->fVertexCount); |
| 136 data->fTexCoords = SkNEW_ARRAY(SkPoint, data->fVertexCount); |
| 137 data->fIndices = SkNEW_ARRAY(uint16_t, data->fIndexCount); |
| 138 |
| 139 FwDCubicEvaluator fBottom(fCtrlPoints[kBottomP0_CubicCtrlPts], |
| 140 fCtrlPoints[kBottomP1_CubicCtrlPts], |
| 141 fCtrlPoints[kBottomP2_CubicCtrlPts], |
| 142 fCtrlPoints[kBottomP3_CubicCtrlPts]), |
| 143 fTop(fCtrlPoints[kTopP0_CubicCtrlPts], |
| 144 fCtrlPoints[kTopP1_CubicCtrlPts], |
| 145 fCtrlPoints[kTopP2_CubicCtrlPts], |
| 146 fCtrlPoints[kTopP2_CubicCtrlPts]), |
| 147 fLeft(fCtrlPoints[kLeftP0_CubicCtrlPts], |
| 148 fCtrlPoints[kLeftP1_CubicCtrlPts], |
| 149 fCtrlPoints[kLeftP2_CubicCtrlPts], |
| 150 fCtrlPoints[kLeftP3_CubicCtrlPts]), |
| 151 fRight(fCtrlPoints[kRightP0_CubicCtrlPts], |
| 152 fCtrlPoints[kRightP1_CubicCtrlPts], |
| 153 fCtrlPoints[kRightP2_CubicCtrlPts], |
| 154 fCtrlPoints[kRightP3_CubicCtrlPts]); |
| 155 |
| 156 fBottom.restart(divX); |
| 157 fTop.restart(divX); |
| 158 |
| 159 SkScalar u = 0.0f; |
| 160 int stride = divY + 1; |
| 161 for (int x = 0; x <= divX; x++) { |
| 162 SkPoint bottom = fBottom.next(), top = fTop.next(); |
| 163 fLeft.restart(divY); |
| 164 fRight.restart(divY); |
| 165 SkScalar v = 0.f; |
| 166 for (int y = 0; y <= divY; y++) { |
| 167 int dataIndex = x * (divX + 1) + y; |
| 168 |
| 169 SkPoint left = fLeft.next(), right = fRight.next(); |
| 170 |
| 171 SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(), |
| 172 (1.0f - v) * top.y() + v * bottom.y()); |
| 173 SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(), |
| 174 (1.0f - u) * left.y() + u * right.y()); |
| 175 SkPoint s2 = SkPoint::Make( |
| 176 (1.0f - v) * ((1.0f - u) * fTop.getCtrlPo
ints()[0].x() |
| 177 + u * fTop.getCtrlPoints()[3].x()) |
| 178 + v * ((1.0f - u) * fBottom.getCtrlPoint
s()[0].x() |
| 179 + u * fBottom.getCtrlPoints()[3].x()), |
| 180 (1.0f - v) * ((1.0f - u) * fTop.getCtrlPo
ints()[0].y() |
| 181 + u * fTop.getCtrlPoints()[3].y()) |
| 182 + v * ((1.0f - u) * fBottom.getCtrlPoint
s()[0].y() |
| 183 + u * fBottom.getCtrlPoints()[3].y())); |
| 184 data->fPoints[dataIndex] = s0 + s1 - s2; |
| 185 |
| 186 uint8_t a = bilinear(u, v, |
| 187 SkScalar(SkColorGetA(fCornerColors[0])), |
| 188 SkScalar(SkColorGetA(fCornerColors[1])), |
| 189 SkScalar(SkColorGetA(fCornerColors[2])), |
| 190 SkScalar(SkColorGetA(fCornerColors[3]))); |
| 191 uint8_t r = bilinear(u, v, |
| 192 SkScalar(SkColorGetR(fCornerColors[0])), |
| 193 SkScalar(SkColorGetR(fCornerColors[1])), |
| 194 SkScalar(SkColorGetR(fCornerColors[2])), |
| 195 SkScalar(SkColorGetR(fCornerColors[3]))); |
| 196 uint8_t g = bilinear(u, v, |
| 197 SkScalar(SkColorGetG(fCornerColors[0])), |
| 198 SkScalar(SkColorGetG(fCornerColors[1])), |
| 199 SkScalar(SkColorGetG(fCornerColors[2])), |
| 200 SkScalar(SkColorGetG(fCornerColors[3]))); |
| 201 uint8_t b = bilinear(u, v, |
| 202 SkScalar(SkColorGetB(fCornerColors[0])), |
| 203 SkScalar(SkColorGetB(fCornerColors[1])), |
| 204 SkScalar(SkColorGetB(fCornerColors[2])), |
| 205 SkScalar(SkColorGetB(fCornerColors[3]))); |
| 206 data->fColors[dataIndex] = SkPackARGB32(a,r,g,b); |
| 207 |
| 208 data->fTexCoords[dataIndex] = SkPoint::Make(u, v); |
| 209 |
| 210 if(x < divX && y < divY) { |
| 211 int i = 6 * (x * divY + y); |
| 212 data->fIndices[i] = x * stride + y; |
| 213 data->fIndices[i + 1] = x * stride + 1 + y; |
| 214 data->fIndices[i + 2] = (x + 1) * stride + 1 + y; |
| 215 data->fIndices[i + 3] = data->fIndices[i]; |
| 216 data->fIndices[i + 4] = data->fIndices[i + 2]; |
| 217 data->fIndices[i + 5] = (x + 1) * stride + y; |
| 218 } |
| 219 v += 1.f / divY; |
| 220 } |
| 221 u += 1.f / divX; |
| 222 } |
| 223 return true; |
| 224 } |
OLD | NEW |