| Index: src/math.js | 
| diff --git a/src/math.js b/src/math.js | 
| index 6491399292b75233fdf4e54e4d447739fd1d8da0..9dc4b37d0ce2115ed9e9b5078f204fd060f926b9 100644 | 
| --- a/src/math.js | 
| +++ b/src/math.js | 
| @@ -254,6 +254,220 @@ function TrigonometricInterpolation(x, phase) { | 
| * (1 - (phase & 2)) + 0; | 
| } | 
|  | 
| + | 
| +// ES6 draft 09-27-13, section 20.2.2.28. | 
| +function MathSign(x) { | 
| +  x = TO_NUMBER_INLINE(x); | 
| +  if (x > 0) return 1; | 
| +  if (x < 0) return -1; | 
| +  if (x === 0) return x; | 
| +  return NAN; | 
| +} | 
| + | 
| + | 
| +// ES6 draft 09-27-13, section 20.2.2.34. | 
| +function MathTrunc(x) { | 
| +  x = TO_NUMBER_INLINE(x); | 
| +  if (x > 0) return MathFloor(x); | 
| +  if (x < 0) return MathCeil(x); | 
| +  if (x === 0) return x; | 
| +  return NAN; | 
| +} | 
| + | 
| + | 
| +// ES6 draft 09-27-13, section 20.2.2.30. | 
| +function MathSinh(x) { | 
| +  if (!IS_NUMBER(x)) x = NonNumberToNumber(x); | 
| +  // Idempotent for NaN, +/-0 and +/-Infinity. | 
| +  if (x === 0 || !NUMBER_IS_FINITE(x)) return x; | 
| +  return (MathExp(x) - MathExp(-x)) / 2; | 
| +} | 
| + | 
| + | 
| +// ES6 draft 09-27-13, section 20.2.2.12. | 
| +function MathCosh(x) { | 
| +  if (!IS_NUMBER(x)) x = NonNumberToNumber(x); | 
| +  if (!NUMBER_IS_FINITE(x)) return MathAbs(x); | 
| +  return (MathExp(x) + MathExp(-x)) / 2; | 
| +} | 
| + | 
| + | 
| +// ES6 draft 09-27-13, section 20.2.2.33. | 
| +function MathTanh(x) { | 
| +  if (!IS_NUMBER(x)) x = NonNumberToNumber(x); | 
| +  // Idempotent for +/-0. | 
| +  if (x === 0) return x; | 
| +  // Returns +/-1 for +/-Infinity. | 
| +  if (!NUMBER_IS_FINITE(x)) return MathSign(x); | 
| +  var exp1 = MathExp(x); | 
| +  var exp2 = MathExp(-x); | 
| +  return (exp1 - exp2) / (exp1 + exp2); | 
| +} | 
| + | 
| + | 
| +// ES6 draft 09-27-13, section 20.2.2.5. | 
| +function MathAsinh(x) { | 
| +  if (!IS_NUMBER(x)) x = NonNumberToNumber(x); | 
| +  // Idempotent for NaN, +/-0 and +/-Infinity. | 
| +  if (x === 0 || !NUMBER_IS_FINITE(x)) return x; | 
| +  if (x > 0) return MathLog(x + MathSqrt(x * x + 1)); | 
| +  // This is to prevent numerical errors caused by large negative x. | 
| +  return -MathLog(-x + MathSqrt(x * x + 1)); | 
| +} | 
| + | 
| + | 
| +// ES6 draft 09-27-13, section 20.2.2.3. | 
| +function MathAcosh(x) { | 
| +  if (!IS_NUMBER(x)) x = NonNumberToNumber(x); | 
| +  if (x < 1) return NAN; | 
| +  // Idempotent for NaN and +Infinity. | 
| +  if (!NUMBER_IS_FINITE(x)) return x; | 
| +  return MathLog(x + MathSqrt(x + 1) * MathSqrt(x - 1)); | 
| +} | 
| + | 
| + | 
| +// ES6 draft 09-27-13, section 20.2.2.7. | 
| +function MathAtanh(x) { | 
| +  if (!IS_NUMBER(x)) x = NonNumberToNumber(x); | 
| +  // Idempotent for +/-0. | 
| +  if (x === 0) return x; | 
| +  // Returns NaN for NaN and +/- Infinity. | 
| +  if (!NUMBER_IS_FINITE(x)) return NAN; | 
| +  return 0.5 * MathLog((1 + x) / (1 - x)); | 
| +} | 
| + | 
| + | 
| +// ES6 draft 09-27-13, section 20.2.2.21. | 
| +function MathLog10(x) { | 
| +  return MathLog(x) * 0.434294481903251828;  // log10(x) = log(x)/log(10). | 
| +} | 
| + | 
| + | 
| +// ES6 draft 09-27-13, section 20.2.2.22. | 
| +function MathLog2(x) { | 
| +  return MathLog(x) * 1.442695040888963407;  // log2(x) = log(x)/log(2). | 
| +} | 
| + | 
| + | 
| +// ES6 draft 09-27-13, section 20.2.2.17. | 
| +function MathHypot(x, y) {  // Function length is 2. | 
| +  // We may want to introduce fast paths for two arguments and when | 
| +  // normalization to avoid overflow is not necessary.  For now, we | 
| +  // simply assume the general case. | 
| +  var length = %_ArgumentsLength(); | 
| +  var args = new InternalArray(length); | 
| +  var max = 0; | 
| +  for (var i = 0; i < length; i++) { | 
| +    var n = %_Arguments(i); | 
| +    if (!IS_NUMBER(n)) n = NonNumberToNumber(n); | 
| +    if (n === INFINITY || n === -INFINITY) return INFINITY; | 
| +    n = MathAbs(n); | 
| +    if (n > max) max = n; | 
| +    args[i] = n; | 
| +  } | 
| + | 
| +  // Kahan summation to avoid rounding errors. | 
| +  // Normalize the numbers to the largest one to avoid overflow. | 
| +  if (max === 0) max = 1; | 
| +  var sum = 0; | 
| +  var compensation = 0; | 
| +  for (var i = 0; i < length; i++) { | 
| +    var n = args[i] / max; | 
| +    var summand = n * n - compensation; | 
| +    var preliminary = sum + summand; | 
| +    compensation = (preliminary - sum) - summand; | 
| +    sum = preliminary; | 
| +  } | 
| +  return MathSqrt(sum) * max; | 
| +} | 
| + | 
| + | 
| +// ES6 draft 09-27-13, section 20.2.2.16. | 
| +function MathFroundJS(x) { | 
| +  return %MathFround(TO_NUMBER_INLINE(x)); | 
| +} | 
| + | 
| + | 
| +function MathClz32(x) { | 
| +  x = ToUint32(TO_NUMBER_INLINE(x)); | 
| +  if (x == 0) return 32; | 
| +  var result = 0; | 
| +  // Binary search. | 
| +  if ((x & 0xFFFF0000) === 0) { x <<= 16; result += 16; }; | 
| +  if ((x & 0xFF000000) === 0) { x <<=  8; result +=  8; }; | 
| +  if ((x & 0xF0000000) === 0) { x <<=  4; result +=  4; }; | 
| +  if ((x & 0xC0000000) === 0) { x <<=  2; result +=  2; }; | 
| +  if ((x & 0x80000000) === 0) { x <<=  1; result +=  1; }; | 
| +  return result; | 
| +} | 
| + | 
| + | 
| +// ES6 draft 09-27-13, section 20.2.2.9. | 
| +// Cube root approximation, refer to: http://metamerist.com/cbrt/cbrt.htm | 
| +// Using initial approximation adapted from Kahan's cbrt and 4 iterations | 
| +// of Newton's method. | 
| +function MathCbrt(x) { | 
| +  if (!IS_NUMBER(x)) x = NonNumberToNumber(x); | 
| +  if (x == 0 || !NUMBER_IS_FINITE(x)) return x; | 
| +  return x >= 0 ? CubeRoot(x) : -CubeRoot(-x); | 
| +} | 
| + | 
| +macro NEWTON_ITERATION_CBRT(x, approx) | 
| +  (1.0 / 3.0) * (x / (approx * approx) + 2 * approx); | 
| +endmacro | 
| + | 
| +function CubeRoot(x) { | 
| +  var approx_hi = MathFloor(%_DoubleHi(x) / 3) + 0x2A9F7893; | 
| +  var approx = %_ConstructDouble(approx_hi, 0); | 
| +  approx = NEWTON_ITERATION_CBRT(x, approx); | 
| +  approx = NEWTON_ITERATION_CBRT(x, approx); | 
| +  approx = NEWTON_ITERATION_CBRT(x, approx); | 
| +  return NEWTON_ITERATION_CBRT(x, approx); | 
| +} | 
| + | 
| + | 
| + | 
| +// ES6 draft 09-27-13, section 20.2.2.14. | 
| +// Use Taylor series to approximate. | 
| +// exp(x) - 1 at 0 == -1 + exp(0) + exp'(0)*x/1! + exp''(0)*x^2/2! + ... | 
| +//                 == x/1! + x^2/2! + x^3/3! + ... | 
| +// The closer x is to 0, the fewer terms are required. | 
| +function MathExpm1(x) { | 
| +  if (!IS_NUMBER(x)) x = NonNumberToNumber(x); | 
| +  var xabs = MathAbs(x); | 
| +  if (xabs < 2E-7) { | 
| +    return x * (1 + x * (1/2)); | 
| +  } else if (xabs < 6E-5) { | 
| +    return x * (1 + x * (1/2 + x * (1/6))); | 
| +  } else if (xabs < 2E-2) { | 
| +    return x * (1 + x * (1/2 + x * (1/6 + | 
| +           x * (1/24 + x * (1/120 + x * (1/720)))))); | 
| +  } else {  // Use regular exp if not close enough to 0. | 
| +    return MathExp(x) - 1; | 
| +  } | 
| +} | 
| + | 
| + | 
| +// ES6 draft 09-27-13, section 20.2.2.20. | 
| +// Use Taylor series to approximate. With y = x + 1; | 
| +// log(y) at 1 == log(1) + log'(1)(y-1)/1! + log''(1)(y-1)^2/2! + ... | 
| +//             == 0 + x - x^2/2 + x^3/3 ... | 
| +// The closer x is to 0, the fewer terms are required. | 
| +function MathLog1p(x) { | 
| +  if (!IS_NUMBER(x)) x = NonNumberToNumber(x); | 
| +  var xabs = MathAbs(x); | 
| +  if (xabs < 1E-7) { | 
| +    return x * (1 - x * (1/2)); | 
| +  } else if (xabs < 3E-5) { | 
| +    return x * (1 - x * (1/2 - x * (1/3))); | 
| +  } else if (xabs < 7E-3) { | 
| +    return x * (1 - x * (1/2 - x * (1/3 - x * (1/4 - | 
| +           x * (1/5 - x * (1/6 - x * (1/7))))))); | 
| +  } else {  // Use regular log if not close enough to 0. | 
| +    return MathLog(1 + x); | 
| +  } | 
| +} | 
| + | 
| // ------------------------------------------------------------------- | 
|  | 
| function SetUpMath() { | 
| @@ -300,7 +514,23 @@ function SetUpMath() { | 
| "pow", MathPow, | 
| "max", MathMax, | 
| "min", MathMin, | 
| -    "imul", MathImul | 
| +    "imul", MathImul, | 
| +    "sign", MathSign, | 
| +    "trunc", MathTrunc, | 
| +    "sinh", MathSinh, | 
| +    "cosh", MathCosh, | 
| +    "tanh", MathTanh, | 
| +    "asinh", MathAsinh, | 
| +    "acosh", MathAcosh, | 
| +    "atanh", MathAtanh, | 
| +    "log10", MathLog10, | 
| +    "log2", MathLog2, | 
| +    "hypot", MathHypot, | 
| +    "fround", MathFroundJS, | 
| +    "clz32", MathClz32, | 
| +    "cbrt", MathCbrt, | 
| +    "log1p", MathLog1p, | 
| +    "expm1", MathExpm1 | 
| )); | 
|  | 
| %SetInlineBuiltinFlag(MathCeil); | 
|  |