Index: src/harmony-math.js |
diff --git a/src/harmony-math.js b/src/harmony-math.js |
deleted file mode 100644 |
index 4a8d95bc01a997b02512ac20f76a0e6a0ec8eb61..0000000000000000000000000000000000000000 |
--- a/src/harmony-math.js |
+++ /dev/null |
@@ -1,246 +0,0 @@ |
-// Copyright 2013 the V8 project authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-'use strict'; |
- |
-// ES6 draft 09-27-13, section 20.2.2.28. |
-function MathSign(x) { |
- x = TO_NUMBER_INLINE(x); |
- if (x > 0) return 1; |
- if (x < 0) return -1; |
- if (x === 0) return x; |
- return NAN; |
-} |
- |
- |
-// ES6 draft 09-27-13, section 20.2.2.34. |
-function MathTrunc(x) { |
- x = TO_NUMBER_INLINE(x); |
- if (x > 0) return MathFloor(x); |
- if (x < 0) return MathCeil(x); |
- if (x === 0) return x; |
- return NAN; |
-} |
- |
- |
-// ES6 draft 09-27-13, section 20.2.2.30. |
-function MathSinh(x) { |
- if (!IS_NUMBER(x)) x = NonNumberToNumber(x); |
- // Idempotent for NaN, +/-0 and +/-Infinity. |
- if (x === 0 || !NUMBER_IS_FINITE(x)) return x; |
- return (MathExp(x) - MathExp(-x)) / 2; |
-} |
- |
- |
-// ES6 draft 09-27-13, section 20.2.2.12. |
-function MathCosh(x) { |
- if (!IS_NUMBER(x)) x = NonNumberToNumber(x); |
- if (!NUMBER_IS_FINITE(x)) return MathAbs(x); |
- return (MathExp(x) + MathExp(-x)) / 2; |
-} |
- |
- |
-// ES6 draft 09-27-13, section 20.2.2.33. |
-function MathTanh(x) { |
- if (!IS_NUMBER(x)) x = NonNumberToNumber(x); |
- // Idempotent for +/-0. |
- if (x === 0) return x; |
- // Returns +/-1 for +/-Infinity. |
- if (!NUMBER_IS_FINITE(x)) return MathSign(x); |
- var exp1 = MathExp(x); |
- var exp2 = MathExp(-x); |
- return (exp1 - exp2) / (exp1 + exp2); |
-} |
- |
- |
-// ES6 draft 09-27-13, section 20.2.2.5. |
-function MathAsinh(x) { |
- if (!IS_NUMBER(x)) x = NonNumberToNumber(x); |
- // Idempotent for NaN, +/-0 and +/-Infinity. |
- if (x === 0 || !NUMBER_IS_FINITE(x)) return x; |
- if (x > 0) return MathLog(x + MathSqrt(x * x + 1)); |
- // This is to prevent numerical errors caused by large negative x. |
- return -MathLog(-x + MathSqrt(x * x + 1)); |
-} |
- |
- |
-// ES6 draft 09-27-13, section 20.2.2.3. |
-function MathAcosh(x) { |
- if (!IS_NUMBER(x)) x = NonNumberToNumber(x); |
- if (x < 1) return NAN; |
- // Idempotent for NaN and +Infinity. |
- if (!NUMBER_IS_FINITE(x)) return x; |
- return MathLog(x + MathSqrt(x + 1) * MathSqrt(x - 1)); |
-} |
- |
- |
-// ES6 draft 09-27-13, section 20.2.2.7. |
-function MathAtanh(x) { |
- if (!IS_NUMBER(x)) x = NonNumberToNumber(x); |
- // Idempotent for +/-0. |
- if (x === 0) return x; |
- // Returns NaN for NaN and +/- Infinity. |
- if (!NUMBER_IS_FINITE(x)) return NAN; |
- return 0.5 * MathLog((1 + x) / (1 - x)); |
-} |
- |
- |
-// ES6 draft 09-27-13, section 20.2.2.21. |
-function MathLog10(x) { |
- return MathLog(x) * 0.434294481903251828; // log10(x) = log(x)/log(10). |
-} |
- |
- |
-// ES6 draft 09-27-13, section 20.2.2.22. |
-function MathLog2(x) { |
- return MathLog(x) * 1.442695040888963407; // log2(x) = log(x)/log(2). |
-} |
- |
- |
-// ES6 draft 09-27-13, section 20.2.2.17. |
-function MathHypot(x, y) { // Function length is 2. |
- // We may want to introduce fast paths for two arguments and when |
- // normalization to avoid overflow is not necessary. For now, we |
- // simply assume the general case. |
- var length = %_ArgumentsLength(); |
- var args = new InternalArray(length); |
- var max = 0; |
- for (var i = 0; i < length; i++) { |
- var n = %_Arguments(i); |
- if (!IS_NUMBER(n)) n = NonNumberToNumber(n); |
- if (n === INFINITY || n === -INFINITY) return INFINITY; |
- n = MathAbs(n); |
- if (n > max) max = n; |
- args[i] = n; |
- } |
- |
- // Kahan summation to avoid rounding errors. |
- // Normalize the numbers to the largest one to avoid overflow. |
- if (max === 0) max = 1; |
- var sum = 0; |
- var compensation = 0; |
- for (var i = 0; i < length; i++) { |
- var n = args[i] / max; |
- var summand = n * n - compensation; |
- var preliminary = sum + summand; |
- compensation = (preliminary - sum) - summand; |
- sum = preliminary; |
- } |
- return MathSqrt(sum) * max; |
-} |
- |
- |
-// ES6 draft 09-27-13, section 20.2.2.16. |
-function MathFroundJS(x) { |
- return %MathFround(TO_NUMBER_INLINE(x)); |
-} |
- |
- |
-function MathClz32(x) { |
- x = ToUint32(TO_NUMBER_INLINE(x)); |
- if (x == 0) return 32; |
- var result = 0; |
- // Binary search. |
- if ((x & 0xFFFF0000) === 0) { x <<= 16; result += 16; }; |
- if ((x & 0xFF000000) === 0) { x <<= 8; result += 8; }; |
- if ((x & 0xF0000000) === 0) { x <<= 4; result += 4; }; |
- if ((x & 0xC0000000) === 0) { x <<= 2; result += 2; }; |
- if ((x & 0x80000000) === 0) { x <<= 1; result += 1; }; |
- return result; |
-} |
- |
- |
-// ES6 draft 09-27-13, section 20.2.2.9. |
-// Cube root approximation, refer to: http://metamerist.com/cbrt/cbrt.htm |
-// Using initial approximation adapted from Kahan's cbrt and 4 iterations |
-// of Newton's method. |
-function MathCbrt(x) { |
- if (!IS_NUMBER(x)) x = NonNumberToNumber(x); |
- if (x == 0 || !NUMBER_IS_FINITE(x)) return x; |
- return x >= 0 ? CubeRoot(x) : -CubeRoot(-x); |
-} |
- |
-macro NEWTON_ITERATION_CBRT(x, approx) |
- (1.0 / 3.0) * (x / (approx * approx) + 2 * approx); |
-endmacro |
- |
-function CubeRoot(x) { |
- var approx_hi = MathFloor(%_DoubleHi(x) / 3) + 0x2A9F7893; |
- var approx = %_ConstructDouble(approx_hi, 0); |
- approx = NEWTON_ITERATION_CBRT(x, approx); |
- approx = NEWTON_ITERATION_CBRT(x, approx); |
- approx = NEWTON_ITERATION_CBRT(x, approx); |
- return NEWTON_ITERATION_CBRT(x, approx); |
-} |
- |
- |
- |
-// ES6 draft 09-27-13, section 20.2.2.14. |
-// Use Taylor series to approximate. |
-// exp(x) - 1 at 0 == -1 + exp(0) + exp'(0)*x/1! + exp''(0)*x^2/2! + ... |
-// == x/1! + x^2/2! + x^3/3! + ... |
-// The closer x is to 0, the fewer terms are required. |
-function MathExpm1(x) { |
- if (!IS_NUMBER(x)) x = NonNumberToNumber(x); |
- var xabs = MathAbs(x); |
- if (xabs < 2E-7) { |
- return x * (1 + x * (1/2)); |
- } else if (xabs < 6E-5) { |
- return x * (1 + x * (1/2 + x * (1/6))); |
- } else if (xabs < 2E-2) { |
- return x * (1 + x * (1/2 + x * (1/6 + |
- x * (1/24 + x * (1/120 + x * (1/720)))))); |
- } else { // Use regular exp if not close enough to 0. |
- return MathExp(x) - 1; |
- } |
-} |
- |
- |
-// ES6 draft 09-27-13, section 20.2.2.20. |
-// Use Taylor series to approximate. With y = x + 1; |
-// log(y) at 1 == log(1) + log'(1)(y-1)/1! + log''(1)(y-1)^2/2! + ... |
-// == 0 + x - x^2/2 + x^3/3 ... |
-// The closer x is to 0, the fewer terms are required. |
-function MathLog1p(x) { |
- if (!IS_NUMBER(x)) x = NonNumberToNumber(x); |
- var xabs = MathAbs(x); |
- if (xabs < 1E-7) { |
- return x * (1 - x * (1/2)); |
- } else if (xabs < 3E-5) { |
- return x * (1 - x * (1/2 - x * (1/3))); |
- } else if (xabs < 7E-3) { |
- return x * (1 - x * (1/2 - x * (1/3 - x * (1/4 - |
- x * (1/5 - x * (1/6 - x * (1/7))))))); |
- } else { // Use regular log if not close enough to 0. |
- return MathLog(1 + x); |
- } |
-} |
- |
- |
-function ExtendMath() { |
- %CheckIsBootstrapping(); |
- |
- // Set up the non-enumerable functions on the Math object. |
- InstallFunctions($Math, DONT_ENUM, $Array( |
- "sign", MathSign, |
- "trunc", MathTrunc, |
- "sinh", MathSinh, |
- "cosh", MathCosh, |
- "tanh", MathTanh, |
- "asinh", MathAsinh, |
- "acosh", MathAcosh, |
- "atanh", MathAtanh, |
- "log10", MathLog10, |
- "log2", MathLog2, |
- "hypot", MathHypot, |
- "fround", MathFroundJS, |
- "clz32", MathClz32, |
- "cbrt", MathCbrt, |
- "log1p", MathLog1p, |
- "expm1", MathExpm1 |
- )); |
-} |
- |
- |
-ExtendMath(); |