Index: src/math.js |
diff --git a/src/math.js b/src/math.js |
index 6491399292b75233fdf4e54e4d447739fd1d8da0..9dc4b37d0ce2115ed9e9b5078f204fd060f926b9 100644 |
--- a/src/math.js |
+++ b/src/math.js |
@@ -254,6 +254,220 @@ function TrigonometricInterpolation(x, phase) { |
* (1 - (phase & 2)) + 0; |
} |
+ |
+// ES6 draft 09-27-13, section 20.2.2.28. |
+function MathSign(x) { |
+ x = TO_NUMBER_INLINE(x); |
+ if (x > 0) return 1; |
+ if (x < 0) return -1; |
+ if (x === 0) return x; |
+ return NAN; |
+} |
+ |
+ |
+// ES6 draft 09-27-13, section 20.2.2.34. |
+function MathTrunc(x) { |
+ x = TO_NUMBER_INLINE(x); |
+ if (x > 0) return MathFloor(x); |
+ if (x < 0) return MathCeil(x); |
+ if (x === 0) return x; |
+ return NAN; |
+} |
+ |
+ |
+// ES6 draft 09-27-13, section 20.2.2.30. |
+function MathSinh(x) { |
+ if (!IS_NUMBER(x)) x = NonNumberToNumber(x); |
+ // Idempotent for NaN, +/-0 and +/-Infinity. |
+ if (x === 0 || !NUMBER_IS_FINITE(x)) return x; |
+ return (MathExp(x) - MathExp(-x)) / 2; |
+} |
+ |
+ |
+// ES6 draft 09-27-13, section 20.2.2.12. |
+function MathCosh(x) { |
+ if (!IS_NUMBER(x)) x = NonNumberToNumber(x); |
+ if (!NUMBER_IS_FINITE(x)) return MathAbs(x); |
+ return (MathExp(x) + MathExp(-x)) / 2; |
+} |
+ |
+ |
+// ES6 draft 09-27-13, section 20.2.2.33. |
+function MathTanh(x) { |
+ if (!IS_NUMBER(x)) x = NonNumberToNumber(x); |
+ // Idempotent for +/-0. |
+ if (x === 0) return x; |
+ // Returns +/-1 for +/-Infinity. |
+ if (!NUMBER_IS_FINITE(x)) return MathSign(x); |
+ var exp1 = MathExp(x); |
+ var exp2 = MathExp(-x); |
+ return (exp1 - exp2) / (exp1 + exp2); |
+} |
+ |
+ |
+// ES6 draft 09-27-13, section 20.2.2.5. |
+function MathAsinh(x) { |
+ if (!IS_NUMBER(x)) x = NonNumberToNumber(x); |
+ // Idempotent for NaN, +/-0 and +/-Infinity. |
+ if (x === 0 || !NUMBER_IS_FINITE(x)) return x; |
+ if (x > 0) return MathLog(x + MathSqrt(x * x + 1)); |
+ // This is to prevent numerical errors caused by large negative x. |
+ return -MathLog(-x + MathSqrt(x * x + 1)); |
+} |
+ |
+ |
+// ES6 draft 09-27-13, section 20.2.2.3. |
+function MathAcosh(x) { |
+ if (!IS_NUMBER(x)) x = NonNumberToNumber(x); |
+ if (x < 1) return NAN; |
+ // Idempotent for NaN and +Infinity. |
+ if (!NUMBER_IS_FINITE(x)) return x; |
+ return MathLog(x + MathSqrt(x + 1) * MathSqrt(x - 1)); |
+} |
+ |
+ |
+// ES6 draft 09-27-13, section 20.2.2.7. |
+function MathAtanh(x) { |
+ if (!IS_NUMBER(x)) x = NonNumberToNumber(x); |
+ // Idempotent for +/-0. |
+ if (x === 0) return x; |
+ // Returns NaN for NaN and +/- Infinity. |
+ if (!NUMBER_IS_FINITE(x)) return NAN; |
+ return 0.5 * MathLog((1 + x) / (1 - x)); |
+} |
+ |
+ |
+// ES6 draft 09-27-13, section 20.2.2.21. |
+function MathLog10(x) { |
+ return MathLog(x) * 0.434294481903251828; // log10(x) = log(x)/log(10). |
+} |
+ |
+ |
+// ES6 draft 09-27-13, section 20.2.2.22. |
+function MathLog2(x) { |
+ return MathLog(x) * 1.442695040888963407; // log2(x) = log(x)/log(2). |
+} |
+ |
+ |
+// ES6 draft 09-27-13, section 20.2.2.17. |
+function MathHypot(x, y) { // Function length is 2. |
+ // We may want to introduce fast paths for two arguments and when |
+ // normalization to avoid overflow is not necessary. For now, we |
+ // simply assume the general case. |
+ var length = %_ArgumentsLength(); |
+ var args = new InternalArray(length); |
+ var max = 0; |
+ for (var i = 0; i < length; i++) { |
+ var n = %_Arguments(i); |
+ if (!IS_NUMBER(n)) n = NonNumberToNumber(n); |
+ if (n === INFINITY || n === -INFINITY) return INFINITY; |
+ n = MathAbs(n); |
+ if (n > max) max = n; |
+ args[i] = n; |
+ } |
+ |
+ // Kahan summation to avoid rounding errors. |
+ // Normalize the numbers to the largest one to avoid overflow. |
+ if (max === 0) max = 1; |
+ var sum = 0; |
+ var compensation = 0; |
+ for (var i = 0; i < length; i++) { |
+ var n = args[i] / max; |
+ var summand = n * n - compensation; |
+ var preliminary = sum + summand; |
+ compensation = (preliminary - sum) - summand; |
+ sum = preliminary; |
+ } |
+ return MathSqrt(sum) * max; |
+} |
+ |
+ |
+// ES6 draft 09-27-13, section 20.2.2.16. |
+function MathFroundJS(x) { |
+ return %MathFround(TO_NUMBER_INLINE(x)); |
+} |
+ |
+ |
+function MathClz32(x) { |
+ x = ToUint32(TO_NUMBER_INLINE(x)); |
+ if (x == 0) return 32; |
+ var result = 0; |
+ // Binary search. |
+ if ((x & 0xFFFF0000) === 0) { x <<= 16; result += 16; }; |
+ if ((x & 0xFF000000) === 0) { x <<= 8; result += 8; }; |
+ if ((x & 0xF0000000) === 0) { x <<= 4; result += 4; }; |
+ if ((x & 0xC0000000) === 0) { x <<= 2; result += 2; }; |
+ if ((x & 0x80000000) === 0) { x <<= 1; result += 1; }; |
+ return result; |
+} |
+ |
+ |
+// ES6 draft 09-27-13, section 20.2.2.9. |
+// Cube root approximation, refer to: http://metamerist.com/cbrt/cbrt.htm |
+// Using initial approximation adapted from Kahan's cbrt and 4 iterations |
+// of Newton's method. |
+function MathCbrt(x) { |
+ if (!IS_NUMBER(x)) x = NonNumberToNumber(x); |
+ if (x == 0 || !NUMBER_IS_FINITE(x)) return x; |
+ return x >= 0 ? CubeRoot(x) : -CubeRoot(-x); |
+} |
+ |
+macro NEWTON_ITERATION_CBRT(x, approx) |
+ (1.0 / 3.0) * (x / (approx * approx) + 2 * approx); |
+endmacro |
+ |
+function CubeRoot(x) { |
+ var approx_hi = MathFloor(%_DoubleHi(x) / 3) + 0x2A9F7893; |
+ var approx = %_ConstructDouble(approx_hi, 0); |
+ approx = NEWTON_ITERATION_CBRT(x, approx); |
+ approx = NEWTON_ITERATION_CBRT(x, approx); |
+ approx = NEWTON_ITERATION_CBRT(x, approx); |
+ return NEWTON_ITERATION_CBRT(x, approx); |
+} |
+ |
+ |
+ |
+// ES6 draft 09-27-13, section 20.2.2.14. |
+// Use Taylor series to approximate. |
+// exp(x) - 1 at 0 == -1 + exp(0) + exp'(0)*x/1! + exp''(0)*x^2/2! + ... |
+// == x/1! + x^2/2! + x^3/3! + ... |
+// The closer x is to 0, the fewer terms are required. |
+function MathExpm1(x) { |
+ if (!IS_NUMBER(x)) x = NonNumberToNumber(x); |
+ var xabs = MathAbs(x); |
+ if (xabs < 2E-7) { |
+ return x * (1 + x * (1/2)); |
+ } else if (xabs < 6E-5) { |
+ return x * (1 + x * (1/2 + x * (1/6))); |
+ } else if (xabs < 2E-2) { |
+ return x * (1 + x * (1/2 + x * (1/6 + |
+ x * (1/24 + x * (1/120 + x * (1/720)))))); |
+ } else { // Use regular exp if not close enough to 0. |
+ return MathExp(x) - 1; |
+ } |
+} |
+ |
+ |
+// ES6 draft 09-27-13, section 20.2.2.20. |
+// Use Taylor series to approximate. With y = x + 1; |
+// log(y) at 1 == log(1) + log'(1)(y-1)/1! + log''(1)(y-1)^2/2! + ... |
+// == 0 + x - x^2/2 + x^3/3 ... |
+// The closer x is to 0, the fewer terms are required. |
+function MathLog1p(x) { |
+ if (!IS_NUMBER(x)) x = NonNumberToNumber(x); |
+ var xabs = MathAbs(x); |
+ if (xabs < 1E-7) { |
+ return x * (1 - x * (1/2)); |
+ } else if (xabs < 3E-5) { |
+ return x * (1 - x * (1/2 - x * (1/3))); |
+ } else if (xabs < 7E-3) { |
+ return x * (1 - x * (1/2 - x * (1/3 - x * (1/4 - |
+ x * (1/5 - x * (1/6 - x * (1/7))))))); |
+ } else { // Use regular log if not close enough to 0. |
+ return MathLog(1 + x); |
+ } |
+} |
+ |
// ------------------------------------------------------------------- |
function SetUpMath() { |
@@ -300,7 +514,23 @@ function SetUpMath() { |
"pow", MathPow, |
"max", MathMax, |
"min", MathMin, |
- "imul", MathImul |
+ "imul", MathImul, |
+ "sign", MathSign, |
+ "trunc", MathTrunc, |
+ "sinh", MathSinh, |
+ "cosh", MathCosh, |
+ "tanh", MathTanh, |
+ "asinh", MathAsinh, |
+ "acosh", MathAcosh, |
+ "atanh", MathAtanh, |
+ "log10", MathLog10, |
+ "log2", MathLog2, |
+ "hypot", MathHypot, |
+ "fround", MathFroundJS, |
+ "clz32", MathClz32, |
+ "cbrt", MathCbrt, |
+ "log1p", MathLog1p, |
+ "expm1", MathExpm1 |
)); |
%SetInlineBuiltinFlag(MathCeil); |