| Index: src/math.js
|
| diff --git a/src/math.js b/src/math.js
|
| index 6491399292b75233fdf4e54e4d447739fd1d8da0..9dc4b37d0ce2115ed9e9b5078f204fd060f926b9 100644
|
| --- a/src/math.js
|
| +++ b/src/math.js
|
| @@ -254,6 +254,220 @@ function TrigonometricInterpolation(x, phase) {
|
| * (1 - (phase & 2)) + 0;
|
| }
|
|
|
| +
|
| +// ES6 draft 09-27-13, section 20.2.2.28.
|
| +function MathSign(x) {
|
| + x = TO_NUMBER_INLINE(x);
|
| + if (x > 0) return 1;
|
| + if (x < 0) return -1;
|
| + if (x === 0) return x;
|
| + return NAN;
|
| +}
|
| +
|
| +
|
| +// ES6 draft 09-27-13, section 20.2.2.34.
|
| +function MathTrunc(x) {
|
| + x = TO_NUMBER_INLINE(x);
|
| + if (x > 0) return MathFloor(x);
|
| + if (x < 0) return MathCeil(x);
|
| + if (x === 0) return x;
|
| + return NAN;
|
| +}
|
| +
|
| +
|
| +// ES6 draft 09-27-13, section 20.2.2.30.
|
| +function MathSinh(x) {
|
| + if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
| + // Idempotent for NaN, +/-0 and +/-Infinity.
|
| + if (x === 0 || !NUMBER_IS_FINITE(x)) return x;
|
| + return (MathExp(x) - MathExp(-x)) / 2;
|
| +}
|
| +
|
| +
|
| +// ES6 draft 09-27-13, section 20.2.2.12.
|
| +function MathCosh(x) {
|
| + if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
| + if (!NUMBER_IS_FINITE(x)) return MathAbs(x);
|
| + return (MathExp(x) + MathExp(-x)) / 2;
|
| +}
|
| +
|
| +
|
| +// ES6 draft 09-27-13, section 20.2.2.33.
|
| +function MathTanh(x) {
|
| + if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
| + // Idempotent for +/-0.
|
| + if (x === 0) return x;
|
| + // Returns +/-1 for +/-Infinity.
|
| + if (!NUMBER_IS_FINITE(x)) return MathSign(x);
|
| + var exp1 = MathExp(x);
|
| + var exp2 = MathExp(-x);
|
| + return (exp1 - exp2) / (exp1 + exp2);
|
| +}
|
| +
|
| +
|
| +// ES6 draft 09-27-13, section 20.2.2.5.
|
| +function MathAsinh(x) {
|
| + if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
| + // Idempotent for NaN, +/-0 and +/-Infinity.
|
| + if (x === 0 || !NUMBER_IS_FINITE(x)) return x;
|
| + if (x > 0) return MathLog(x + MathSqrt(x * x + 1));
|
| + // This is to prevent numerical errors caused by large negative x.
|
| + return -MathLog(-x + MathSqrt(x * x + 1));
|
| +}
|
| +
|
| +
|
| +// ES6 draft 09-27-13, section 20.2.2.3.
|
| +function MathAcosh(x) {
|
| + if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
| + if (x < 1) return NAN;
|
| + // Idempotent for NaN and +Infinity.
|
| + if (!NUMBER_IS_FINITE(x)) return x;
|
| + return MathLog(x + MathSqrt(x + 1) * MathSqrt(x - 1));
|
| +}
|
| +
|
| +
|
| +// ES6 draft 09-27-13, section 20.2.2.7.
|
| +function MathAtanh(x) {
|
| + if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
| + // Idempotent for +/-0.
|
| + if (x === 0) return x;
|
| + // Returns NaN for NaN and +/- Infinity.
|
| + if (!NUMBER_IS_FINITE(x)) return NAN;
|
| + return 0.5 * MathLog((1 + x) / (1 - x));
|
| +}
|
| +
|
| +
|
| +// ES6 draft 09-27-13, section 20.2.2.21.
|
| +function MathLog10(x) {
|
| + return MathLog(x) * 0.434294481903251828; // log10(x) = log(x)/log(10).
|
| +}
|
| +
|
| +
|
| +// ES6 draft 09-27-13, section 20.2.2.22.
|
| +function MathLog2(x) {
|
| + return MathLog(x) * 1.442695040888963407; // log2(x) = log(x)/log(2).
|
| +}
|
| +
|
| +
|
| +// ES6 draft 09-27-13, section 20.2.2.17.
|
| +function MathHypot(x, y) { // Function length is 2.
|
| + // We may want to introduce fast paths for two arguments and when
|
| + // normalization to avoid overflow is not necessary. For now, we
|
| + // simply assume the general case.
|
| + var length = %_ArgumentsLength();
|
| + var args = new InternalArray(length);
|
| + var max = 0;
|
| + for (var i = 0; i < length; i++) {
|
| + var n = %_Arguments(i);
|
| + if (!IS_NUMBER(n)) n = NonNumberToNumber(n);
|
| + if (n === INFINITY || n === -INFINITY) return INFINITY;
|
| + n = MathAbs(n);
|
| + if (n > max) max = n;
|
| + args[i] = n;
|
| + }
|
| +
|
| + // Kahan summation to avoid rounding errors.
|
| + // Normalize the numbers to the largest one to avoid overflow.
|
| + if (max === 0) max = 1;
|
| + var sum = 0;
|
| + var compensation = 0;
|
| + for (var i = 0; i < length; i++) {
|
| + var n = args[i] / max;
|
| + var summand = n * n - compensation;
|
| + var preliminary = sum + summand;
|
| + compensation = (preliminary - sum) - summand;
|
| + sum = preliminary;
|
| + }
|
| + return MathSqrt(sum) * max;
|
| +}
|
| +
|
| +
|
| +// ES6 draft 09-27-13, section 20.2.2.16.
|
| +function MathFroundJS(x) {
|
| + return %MathFround(TO_NUMBER_INLINE(x));
|
| +}
|
| +
|
| +
|
| +function MathClz32(x) {
|
| + x = ToUint32(TO_NUMBER_INLINE(x));
|
| + if (x == 0) return 32;
|
| + var result = 0;
|
| + // Binary search.
|
| + if ((x & 0xFFFF0000) === 0) { x <<= 16; result += 16; };
|
| + if ((x & 0xFF000000) === 0) { x <<= 8; result += 8; };
|
| + if ((x & 0xF0000000) === 0) { x <<= 4; result += 4; };
|
| + if ((x & 0xC0000000) === 0) { x <<= 2; result += 2; };
|
| + if ((x & 0x80000000) === 0) { x <<= 1; result += 1; };
|
| + return result;
|
| +}
|
| +
|
| +
|
| +// ES6 draft 09-27-13, section 20.2.2.9.
|
| +// Cube root approximation, refer to: http://metamerist.com/cbrt/cbrt.htm
|
| +// Using initial approximation adapted from Kahan's cbrt and 4 iterations
|
| +// of Newton's method.
|
| +function MathCbrt(x) {
|
| + if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
| + if (x == 0 || !NUMBER_IS_FINITE(x)) return x;
|
| + return x >= 0 ? CubeRoot(x) : -CubeRoot(-x);
|
| +}
|
| +
|
| +macro NEWTON_ITERATION_CBRT(x, approx)
|
| + (1.0 / 3.0) * (x / (approx * approx) + 2 * approx);
|
| +endmacro
|
| +
|
| +function CubeRoot(x) {
|
| + var approx_hi = MathFloor(%_DoubleHi(x) / 3) + 0x2A9F7893;
|
| + var approx = %_ConstructDouble(approx_hi, 0);
|
| + approx = NEWTON_ITERATION_CBRT(x, approx);
|
| + approx = NEWTON_ITERATION_CBRT(x, approx);
|
| + approx = NEWTON_ITERATION_CBRT(x, approx);
|
| + return NEWTON_ITERATION_CBRT(x, approx);
|
| +}
|
| +
|
| +
|
| +
|
| +// ES6 draft 09-27-13, section 20.2.2.14.
|
| +// Use Taylor series to approximate.
|
| +// exp(x) - 1 at 0 == -1 + exp(0) + exp'(0)*x/1! + exp''(0)*x^2/2! + ...
|
| +// == x/1! + x^2/2! + x^3/3! + ...
|
| +// The closer x is to 0, the fewer terms are required.
|
| +function MathExpm1(x) {
|
| + if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
| + var xabs = MathAbs(x);
|
| + if (xabs < 2E-7) {
|
| + return x * (1 + x * (1/2));
|
| + } else if (xabs < 6E-5) {
|
| + return x * (1 + x * (1/2 + x * (1/6)));
|
| + } else if (xabs < 2E-2) {
|
| + return x * (1 + x * (1/2 + x * (1/6 +
|
| + x * (1/24 + x * (1/120 + x * (1/720))))));
|
| + } else { // Use regular exp if not close enough to 0.
|
| + return MathExp(x) - 1;
|
| + }
|
| +}
|
| +
|
| +
|
| +// ES6 draft 09-27-13, section 20.2.2.20.
|
| +// Use Taylor series to approximate. With y = x + 1;
|
| +// log(y) at 1 == log(1) + log'(1)(y-1)/1! + log''(1)(y-1)^2/2! + ...
|
| +// == 0 + x - x^2/2 + x^3/3 ...
|
| +// The closer x is to 0, the fewer terms are required.
|
| +function MathLog1p(x) {
|
| + if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
| + var xabs = MathAbs(x);
|
| + if (xabs < 1E-7) {
|
| + return x * (1 - x * (1/2));
|
| + } else if (xabs < 3E-5) {
|
| + return x * (1 - x * (1/2 - x * (1/3)));
|
| + } else if (xabs < 7E-3) {
|
| + return x * (1 - x * (1/2 - x * (1/3 - x * (1/4 -
|
| + x * (1/5 - x * (1/6 - x * (1/7)))))));
|
| + } else { // Use regular log if not close enough to 0.
|
| + return MathLog(1 + x);
|
| + }
|
| +}
|
| +
|
| // -------------------------------------------------------------------
|
|
|
| function SetUpMath() {
|
| @@ -300,7 +514,23 @@ function SetUpMath() {
|
| "pow", MathPow,
|
| "max", MathMax,
|
| "min", MathMin,
|
| - "imul", MathImul
|
| + "imul", MathImul,
|
| + "sign", MathSign,
|
| + "trunc", MathTrunc,
|
| + "sinh", MathSinh,
|
| + "cosh", MathCosh,
|
| + "tanh", MathTanh,
|
| + "asinh", MathAsinh,
|
| + "acosh", MathAcosh,
|
| + "atanh", MathAtanh,
|
| + "log10", MathLog10,
|
| + "log2", MathLog2,
|
| + "hypot", MathHypot,
|
| + "fround", MathFroundJS,
|
| + "clz32", MathClz32,
|
| + "cbrt", MathCbrt,
|
| + "log1p", MathLog1p,
|
| + "expm1", MathExpm1
|
| ));
|
|
|
| %SetInlineBuiltinFlag(MathCeil);
|
|
|