Index: Source/wtf/asm/SaturatedArithmeticARM.h |
diff --git a/Source/wtf/asm/SaturatedArithmeticARM.h b/Source/wtf/asm/SaturatedArithmeticARM.h |
index 5527cacf9b2a3f47988c7963d2d2101cc8353b9e..9911b1eac14ca8ff0bb0253c0dbcd68e81541cf5 100644 |
--- a/Source/wtf/asm/SaturatedArithmeticARM.h |
+++ b/Source/wtf/asm/SaturatedArithmeticARM.h |
@@ -33,71 +33,49 @@ ALWAYS_INLINE int32_t saturatedSubtraction(int32_t a, int32_t b) |
return result; |
} |
-inline int getMaxSaturatedSetResultForTesting(int FractionalShift) |
+inline int getMaxSaturatedSetResultForTesting(int fractionalShift) |
{ |
// For ARM Asm version the set function maxes out to the biggest |
// possible integer part with the fractional part zero'd out. |
// e.g. 0x7fffffc0. |
- return std::numeric_limits<int>::max() & ~((1 << FractionalShift)-1); |
+ return std::numeric_limits<int>::max() & ~((1 << fractionalShift)-1); |
} |
-inline int getMinSaturatedSetResultForTesting(int FractionalShift) |
+inline int getMinSaturatedSetResultForTesting(int fractionalShift) |
{ |
return std::numeric_limits<int>::min(); |
} |
-ALWAYS_INLINE int saturatedSet(int value, int FractionalShift) |
+template<size_t saturate, size_t fractionalShift> |
+ALWAYS_INLINE int saturatedSetSigned(int value) |
{ |
- // Figure out how many bits are left for storing the integer part of |
- // the fixed point number, and saturate our input to that |
- const int saturate = 32 - FractionalShift; |
- |
int result; |
- |
- // The following ARM code will Saturate the passed value to the number of |
- // bits used for the whole part of the fixed point representation, then |
- // shift it up into place. This will result in the low <FractionShift> bits |
- // all being 0's. When the value saturates this gives a different result |
- // to from the C++ case; in the C++ code a saturated value has all the low |
- // bits set to 1 (for a +ve number at least). This cannot be done rapidly |
- // in ARM ... we live with the difference, for the sake of speed. |
- |
+ // To allow all compilers to correctly build this asm we need to use |
+ // template specialization to ensure that the "n" parameters are |
+ // compile-time constant values. |
asm("ssat %[output],%[saturate],%[value]\n\t" |
"lsl %[output],%[shift]" |
: [output] "=r" (result) |
: [value] "r" (value), |
[saturate] "n" (saturate), |
- [shift] "n" (FractionalShift)); |
+ [shift] "n" (fractionalShift)); |
return result; |
} |
- |
-ALWAYS_INLINE int saturatedSet(unsigned value, int FractionalShift) |
+template<size_t saturate, size_t fractionalShift> |
+ALWAYS_INLINE int saturatedSetUnsigned(unsigned value) |
{ |
- // Here we are being passed an unsigned value to saturate, |
- // even though the result is returned as a signed integer. The ARM |
- // instruction for unsigned saturation therefore needs to be given one |
- // less bit (i.e. the sign bit) for the saturation to work correctly; hence |
- // the '31' below. |
- const int saturate = 31 - FractionalShift; |
- |
- // The following ARM code will Saturate the passed value to the number of |
- // bits used for the whole part of the fixed point representation, then |
- // shift it up into place. This will result in the low <FractionShift> bits |
- // all being 0's. When the value saturates this gives a different result |
- // to from the C++ case; in the C++ code a saturated value has all the low |
- // bits set to 1. This cannot be done rapidly in ARM, so we live with the |
- // difference, for the sake of speed. |
- |
int result; |
- |
+ // To allow all compilers to correctly build this asm we need to use |
+ // template specialization to ensure that the "n" parameters are |
+ // compile-time constant values. |
asm("usat %[output],%[saturate],%[value]\n\t" |
"lsl %[output],%[shift]" |
: [output] "=r" (result) |
: [value] "r" (value), |
[saturate] "n" (saturate), |
- [shift] "n" (FractionalShift)); |
+ [shift] "n" (fractionalShift)); |
return result; |
} |