Index: src/arm64/assembler-arm64.cc |
diff --git a/src/arm64/assembler-arm64.cc b/src/arm64/assembler-arm64.cc |
index 0747eb03be542157cdf16438851e8662ba09a221..b3494211e577ca7e5ea5ac178b4a5dc5ac188957 100644 |
--- a/src/arm64/assembler-arm64.cc |
+++ b/src/arm64/assembler-arm64.cc |
@@ -2104,15 +2104,6 @@ void Assembler::MoveWide(const Register& rd, |
uint64_t imm, |
int shift, |
MoveWideImmediateOp mov_op) { |
- // Ignore the top 32 bits of an immediate if we're moving to a W register. |
- if (rd.Is32Bits()) { |
- // Check that the top 32 bits are zero (a positive 32-bit number) or top |
- // 33 bits are one (a negative 32-bit number, sign extended to 64 bits). |
- ASSERT(((imm >> kWRegSizeInBits) == 0) || |
- ((imm >> (kWRegSizeInBits - 1)) == 0x1ffffffff)); |
- imm &= kWRegMask; |
- } |
- |
if (shift >= 0) { |
// Explicit shift specified. |
ASSERT((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48)); |
@@ -2518,198 +2509,91 @@ bool Assembler::IsImmLogical(uint64_t value, |
ASSERT((n != NULL) && (imm_s != NULL) && (imm_r != NULL)); |
ASSERT((width == kWRegSizeInBits) || (width == kXRegSizeInBits)); |
- bool negate = false; |
- |
// Logical immediates are encoded using parameters n, imm_s and imm_r using |
// the following table: |
// |
- // N imms immr size S R |
- // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr) |
- // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr) |
- // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr) |
- // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr) |
- // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr) |
- // 0 11110s xxxxxr 2 UInt(s) UInt(r) |
+ // N imms immr size S R |
+ // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr) |
+ // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr) |
+ // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr) |
+ // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr) |
+ // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr) |
+ // 0 11110s xxxxxr 2 UInt(s) UInt(r) |
// (s bits must not be all set) |
// |
- // A pattern is constructed of size bits, where the least significant S+1 bits |
- // are set. The pattern is rotated right by R, and repeated across a 32 or |
- // 64-bit value, depending on destination register width. |
+ // A pattern is constructed of size bits, where the least significant S+1 |
+ // bits are set. The pattern is rotated right by R, and repeated across a |
+ // 32 or 64-bit value, depending on destination register width. |
// |
- // Put another way: the basic format of a logical immediate is a single |
- // contiguous stretch of 1 bits, repeated across the whole word at intervals |
- // given by a power of 2. To identify them quickly, we first locate the |
- // lowest stretch of 1 bits, then the next 1 bit above that; that combination |
- // is different for every logical immediate, so it gives us all the |
- // information we need to identify the only logical immediate that our input |
- // could be, and then we simply check if that's the value we actually have. |
+ // To test if an arbitary immediate can be encoded using this scheme, an |
+ // iterative algorithm is used. |
// |
- // (The rotation parameter does give the possibility of the stretch of 1 bits |
- // going 'round the end' of the word. To deal with that, we observe that in |
- // any situation where that happens the bitwise NOT of the value is also a |
- // valid logical immediate. So we simply invert the input whenever its low bit |
- // is set, and then we know that the rotated case can't arise.) |
+ // TODO(mcapewel) This code does not consider using X/W register overlap to |
+ // support 64-bit immediates where the top 32-bits are zero, and the bottom |
+ // 32-bits are an encodable logical immediate. |
- if (value & 1) { |
- // If the low bit is 1, negate the value, and set a flag to remember that we |
- // did (so that we can adjust the return values appropriately). |
- negate = true; |
- value = ~value; |
+ // 1. If the value has all set or all clear bits, it can't be encoded. |
+ if ((value == 0) || (value == 0xffffffffffffffffUL) || |
+ ((width == kWRegSizeInBits) && (value == 0xffffffff))) { |
+ return false; |
} |
- if (width == kWRegSizeInBits) { |
- // To handle 32-bit logical immediates, the very easiest thing is to repeat |
- // the input value twice to make a 64-bit word. The correct encoding of that |
- // as a logical immediate will also be the correct encoding of the 32-bit |
- // value. |
- |
- // The most-significant 32 bits may not be zero (ie. negate is true) so |
- // shift the value left before duplicating it. |
- value <<= kWRegSizeInBits; |
- value |= value >> kWRegSizeInBits; |
- } |
+ unsigned lead_zero = CountLeadingZeros(value, width); |
+ unsigned lead_one = CountLeadingZeros(~value, width); |
+ unsigned trail_zero = CountTrailingZeros(value, width); |
+ unsigned trail_one = CountTrailingZeros(~value, width); |
+ unsigned set_bits = CountSetBits(value, width); |
+ |
+ // The fixed bits in the immediate s field. |
+ // If width == 64 (X reg), start at 0xFFFFFF80. |
+ // If width == 32 (W reg), start at 0xFFFFFFC0, as the iteration for 64-bit |
+ // widths won't be executed. |
+ int imm_s_fixed = (width == kXRegSizeInBits) ? -128 : -64; |
+ int imm_s_mask = 0x3F; |
+ |
+ for (;;) { |
+ // 2. If the value is two bits wide, it can be encoded. |
+ if (width == 2) { |
+ *n = 0; |
+ *imm_s = 0x3C; |
+ *imm_r = (value & 3) - 1; |
+ return true; |
+ } |
- // The basic analysis idea: imagine our input word looks like this. |
- // |
- // 0011111000111110001111100011111000111110001111100011111000111110 |
- // c b a |
- // |<--d-->| |
- // |
- // We find the lowest set bit (as an actual power-of-2 value, not its index) |
- // and call it a. Then we add a to our original number, which wipes out the |
- // bottommost stretch of set bits and replaces it with a 1 carried into the |
- // next zero bit. Then we look for the new lowest set bit, which is in |
- // position b, and subtract it, so now our number is just like the original |
- // but with the lowest stretch of set bits completely gone. Now we find the |
- // lowest set bit again, which is position c in the diagram above. Then we'll |
- // measure the distance d between bit positions a and c (using CLZ), and that |
- // tells us that the only valid logical immediate that could possibly be equal |
- // to this number is the one in which a stretch of bits running from a to just |
- // below b is replicated every d bits. |
- uint64_t a = LargestPowerOf2Divisor(value); |
- uint64_t value_plus_a = value + a; |
- uint64_t b = LargestPowerOf2Divisor(value_plus_a); |
- uint64_t value_plus_a_minus_b = value_plus_a - b; |
- uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b); |
- |
- int d, clz_a, out_n; |
- uint64_t mask; |
- |
- if (c != 0) { |
- // The general case, in which there is more than one stretch of set bits. |
- // Compute the repeat distance d, and set up a bitmask covering the basic |
- // unit of repetition (i.e. a word with the bottom d bits set). Also, in all |
- // of these cases the N bit of the output will be zero. |
- clz_a = CountLeadingZeros(a, kXRegSizeInBits); |
- int clz_c = CountLeadingZeros(c, kXRegSizeInBits); |
- d = clz_a - clz_c; |
- mask = ((UINT64_C(1) << d) - 1); |
- out_n = 0; |
- } else { |
- // Handle degenerate cases. |
- // |
- // If any of those 'find lowest set bit' operations didn't find a set bit at |
- // all, then the word will have been zero thereafter, so in particular the |
- // last lowest_set_bit operation will have returned zero. So we can test for |
- // all the special case conditions in one go by seeing if c is zero. |
- if (a == 0) { |
- // The input was zero (or all 1 bits, which will come to here too after we |
- // inverted it at the start of the function), for which we just return |
- // false. |
- return false; |
+ *n = (width == 64) ? 1 : 0; |
+ *imm_s = ((imm_s_fixed | (set_bits - 1)) & imm_s_mask); |
+ if ((lead_zero + set_bits) == width) { |
+ *imm_r = 0; |
} else { |
- // Otherwise, if c was zero but a was not, then there's just one stretch |
- // of set bits in our word, meaning that we have the trivial case of |
- // d == 64 and only one 'repetition'. Set up all the same variables as in |
- // the general case above, and set the N bit in the output. |
- clz_a = CountLeadingZeros(a, kXRegSizeInBits); |
- d = 64; |
- mask = ~UINT64_C(0); |
- out_n = 1; |
+ *imm_r = (lead_zero > 0) ? (width - trail_zero) : lead_one; |
} |
- } |
- // If the repeat period d is not a power of two, it can't be encoded. |
- if (!IS_POWER_OF_TWO(d)) { |
- return false; |
- } |
+ // 3. If the sum of leading zeros, trailing zeros and set bits is equal to |
+ // the bit width of the value, it can be encoded. |
+ if (lead_zero + trail_zero + set_bits == width) { |
+ return true; |
+ } |
- if (((b - a) & ~mask) != 0) { |
- // If the bit stretch (b - a) does not fit within the mask derived from the |
- // repeat period, then fail. |
- return false; |
- } |
+ // 4. If the sum of leading ones, trailing ones and unset bits in the |
+ // value is equal to the bit width of the value, it can be encoded. |
+ if (lead_one + trail_one + (width - set_bits) == width) { |
+ return true; |
+ } |
- // The only possible option is b - a repeated every d bits. Now we're going to |
- // actually construct the valid logical immediate derived from that |
- // specification, and see if it equals our original input. |
- // |
- // To repeat a value every d bits, we multiply it by a number of the form |
- // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can |
- // be derived using a table lookup on CLZ(d). |
- static const uint64_t multipliers[] = { |
- 0x0000000000000001UL, |
- 0x0000000100000001UL, |
- 0x0001000100010001UL, |
- 0x0101010101010101UL, |
- 0x1111111111111111UL, |
- 0x5555555555555555UL, |
- }; |
- int multiplier_idx = CountLeadingZeros(d, kXRegSizeInBits) - 57; |
- // Ensure that the index to the multipliers array is within bounds. |
- ASSERT((multiplier_idx >= 0) && |
- (static_cast<size_t>(multiplier_idx) < |
- (sizeof(multipliers) / sizeof(multipliers[0])))); |
- uint64_t multiplier = multipliers[multiplier_idx]; |
- uint64_t candidate = (b - a) * multiplier; |
- |
- if (value != candidate) { |
- // The candidate pattern doesn't match our input value, so fail. |
- return false; |
- } |
+ // 5. If the most-significant half of the bitwise value is equal to the |
+ // least-significant half, return to step 2 using the least-significant |
+ // half of the value. |
+ uint64_t mask = (1UL << (width >> 1)) - 1; |
+ if ((value & mask) == ((value >> (width >> 1)) & mask)) { |
+ width >>= 1; |
+ set_bits >>= 1; |
+ imm_s_fixed >>= 1; |
+ continue; |
+ } |
- // We have a match! This is a valid logical immediate, so now we have to |
- // construct the bits and pieces of the instruction encoding that generates |
- // it. |
- |
- // Count the set bits in our basic stretch. The special case of clz(0) == -1 |
- // makes the answer come out right for stretches that reach the very top of |
- // the word (e.g. numbers like 0xffffc00000000000). |
- int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSizeInBits); |
- int s = clz_a - clz_b; |
- |
- // Decide how many bits to rotate right by, to put the low bit of that basic |
- // stretch in position a. |
- int r; |
- if (negate) { |
- // If we inverted the input right at the start of this function, here's |
- // where we compensate: the number of set bits becomes the number of clear |
- // bits, and the rotation count is based on position b rather than position |
- // a (since b is the location of the 'lowest' 1 bit after inversion). |
- s = d - s; |
- r = (clz_b + 1) & (d - 1); |
- } else { |
- r = (clz_a + 1) & (d - 1); |
+ // 6. Otherwise, the value can't be encoded. |
+ return false; |
} |
- |
- // Now we're done, except for having to encode the S output in such a way that |
- // it gives both the number of set bits and the length of the repeated |
- // segment. The s field is encoded like this: |
- // |
- // imms size S |
- // ssssss 64 UInt(ssssss) |
- // 0sssss 32 UInt(sssss) |
- // 10ssss 16 UInt(ssss) |
- // 110sss 8 UInt(sss) |
- // 1110ss 4 UInt(ss) |
- // 11110s 2 UInt(s) |
- // |
- // So we 'or' (-d << 1) with our computed s to form imms. |
- *n = out_n; |
- *imm_s = ((-d << 1) | (s - 1)) & 0x3f; |
- *imm_r = r; |
- |
- return true; |
} |