Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(137)

Side by Side Diff: src/arm64/assembler-arm64.cc

Issue 361973002: Revert "ARM64: Faster immediate check and fix corner cases" (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Created 6 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « no previous file | src/arm64/macro-assembler-arm64.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2013 the V8 project authors. All rights reserved. 1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // 2 //
3 // Redistribution and use in source and binary forms, with or without 3 // Redistribution and use in source and binary forms, with or without
4 // modification, are permitted provided that the following conditions are 4 // modification, are permitted provided that the following conditions are
5 // met: 5 // met:
6 // 6 //
7 // * Redistributions of source code must retain the above copyright 7 // * Redistributions of source code must retain the above copyright
8 // notice, this list of conditions and the following disclaimer. 8 // notice, this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above 9 // * Redistributions in binary form must reproduce the above
10 // copyright notice, this list of conditions and the following 10 // copyright notice, this list of conditions and the following
(...skipping 2086 matching lines...) Expand 10 before | Expand all | Expand 10 after
2097 2097
2098 return (bit7 | bit6 | bit5_to_0) << ImmFP_offset; 2098 return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
2099 } 2099 }
2100 2100
2101 2101
2102 // Code generation helpers. 2102 // Code generation helpers.
2103 void Assembler::MoveWide(const Register& rd, 2103 void Assembler::MoveWide(const Register& rd,
2104 uint64_t imm, 2104 uint64_t imm,
2105 int shift, 2105 int shift,
2106 MoveWideImmediateOp mov_op) { 2106 MoveWideImmediateOp mov_op) {
2107 // Ignore the top 32 bits of an immediate if we're moving to a W register.
2108 if (rd.Is32Bits()) {
2109 // Check that the top 32 bits are zero (a positive 32-bit number) or top
2110 // 33 bits are one (a negative 32-bit number, sign extended to 64 bits).
2111 ASSERT(((imm >> kWRegSizeInBits) == 0) ||
2112 ((imm >> (kWRegSizeInBits - 1)) == 0x1ffffffff));
2113 imm &= kWRegMask;
2114 }
2115
2116 if (shift >= 0) { 2107 if (shift >= 0) {
2117 // Explicit shift specified. 2108 // Explicit shift specified.
2118 ASSERT((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48)); 2109 ASSERT((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48));
2119 ASSERT(rd.Is64Bits() || (shift == 0) || (shift == 16)); 2110 ASSERT(rd.Is64Bits() || (shift == 0) || (shift == 16));
2120 shift /= 16; 2111 shift /= 16;
2121 } else { 2112 } else {
2122 // Calculate a new immediate and shift combination to encode the immediate 2113 // Calculate a new immediate and shift combination to encode the immediate
2123 // argument. 2114 // argument.
2124 shift = 0; 2115 shift = 0;
2125 if ((imm & ~0xffffUL) == 0) { 2116 if ((imm & ~0xffffUL) == 0) {
(...skipping 385 matching lines...) Expand 10 before | Expand all | Expand 10 after
2511 // If it can not be encoded, the function returns false, and the values pointed 2502 // If it can not be encoded, the function returns false, and the values pointed
2512 // to by n, imm_s and imm_r are undefined. 2503 // to by n, imm_s and imm_r are undefined.
2513 bool Assembler::IsImmLogical(uint64_t value, 2504 bool Assembler::IsImmLogical(uint64_t value,
2514 unsigned width, 2505 unsigned width,
2515 unsigned* n, 2506 unsigned* n,
2516 unsigned* imm_s, 2507 unsigned* imm_s,
2517 unsigned* imm_r) { 2508 unsigned* imm_r) {
2518 ASSERT((n != NULL) && (imm_s != NULL) && (imm_r != NULL)); 2509 ASSERT((n != NULL) && (imm_s != NULL) && (imm_r != NULL));
2519 ASSERT((width == kWRegSizeInBits) || (width == kXRegSizeInBits)); 2510 ASSERT((width == kWRegSizeInBits) || (width == kXRegSizeInBits));
2520 2511
2521 bool negate = false;
2522
2523 // Logical immediates are encoded using parameters n, imm_s and imm_r using 2512 // Logical immediates are encoded using parameters n, imm_s and imm_r using
2524 // the following table: 2513 // the following table:
2525 // 2514 //
2526 // N imms immr size S R 2515 // N imms immr size S R
2527 // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr) 2516 // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
2528 // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr) 2517 // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
2529 // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr) 2518 // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
2530 // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr) 2519 // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
2531 // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr) 2520 // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
2532 // 0 11110s xxxxxr 2 UInt(s) UInt(r) 2521 // 0 11110s xxxxxr 2 UInt(s) UInt(r)
2533 // (s bits must not be all set) 2522 // (s bits must not be all set)
2534 // 2523 //
2535 // A pattern is constructed of size bits, where the least significant S+1 bits 2524 // A pattern is constructed of size bits, where the least significant S+1
2536 // are set. The pattern is rotated right by R, and repeated across a 32 or 2525 // bits are set. The pattern is rotated right by R, and repeated across a
2537 // 64-bit value, depending on destination register width. 2526 // 32 or 64-bit value, depending on destination register width.
2538 // 2527 //
2539 // Put another way: the basic format of a logical immediate is a single 2528 // To test if an arbitary immediate can be encoded using this scheme, an
2540 // contiguous stretch of 1 bits, repeated across the whole word at intervals 2529 // iterative algorithm is used.
2541 // given by a power of 2. To identify them quickly, we first locate the
2542 // lowest stretch of 1 bits, then the next 1 bit above that; that combination
2543 // is different for every logical immediate, so it gives us all the
2544 // information we need to identify the only logical immediate that our input
2545 // could be, and then we simply check if that's the value we actually have.
2546 // 2530 //
2547 // (The rotation parameter does give the possibility of the stretch of 1 bits 2531 // TODO(mcapewel) This code does not consider using X/W register overlap to
2548 // going 'round the end' of the word. To deal with that, we observe that in 2532 // support 64-bit immediates where the top 32-bits are zero, and the bottom
2549 // any situation where that happens the bitwise NOT of the value is also a 2533 // 32-bits are an encodable logical immediate.
2550 // valid logical immediate. So we simply invert the input whenever its low bit
2551 // is set, and then we know that the rotated case can't arise.)
2552 2534
2553 if (value & 1) { 2535 // 1. If the value has all set or all clear bits, it can't be encoded.
2554 // If the low bit is 1, negate the value, and set a flag to remember that we 2536 if ((value == 0) || (value == 0xffffffffffffffffUL) ||
2555 // did (so that we can adjust the return values appropriately). 2537 ((width == kWRegSizeInBits) && (value == 0xffffffff))) {
2556 negate = true;
2557 value = ~value;
2558 }
2559
2560 if (width == kWRegSizeInBits) {
2561 // To handle 32-bit logical immediates, the very easiest thing is to repeat
2562 // the input value twice to make a 64-bit word. The correct encoding of that
2563 // as a logical immediate will also be the correct encoding of the 32-bit
2564 // value.
2565
2566 // The most-significant 32 bits may not be zero (ie. negate is true) so
2567 // shift the value left before duplicating it.
2568 value <<= kWRegSizeInBits;
2569 value |= value >> kWRegSizeInBits;
2570 }
2571
2572 // The basic analysis idea: imagine our input word looks like this.
2573 //
2574 // 0011111000111110001111100011111000111110001111100011111000111110
2575 // c b a
2576 // |<--d-->|
2577 //
2578 // We find the lowest set bit (as an actual power-of-2 value, not its index)
2579 // and call it a. Then we add a to our original number, which wipes out the
2580 // bottommost stretch of set bits and replaces it with a 1 carried into the
2581 // next zero bit. Then we look for the new lowest set bit, which is in
2582 // position b, and subtract it, so now our number is just like the original
2583 // but with the lowest stretch of set bits completely gone. Now we find the
2584 // lowest set bit again, which is position c in the diagram above. Then we'll
2585 // measure the distance d between bit positions a and c (using CLZ), and that
2586 // tells us that the only valid logical immediate that could possibly be equal
2587 // to this number is the one in which a stretch of bits running from a to just
2588 // below b is replicated every d bits.
2589 uint64_t a = LargestPowerOf2Divisor(value);
2590 uint64_t value_plus_a = value + a;
2591 uint64_t b = LargestPowerOf2Divisor(value_plus_a);
2592 uint64_t value_plus_a_minus_b = value_plus_a - b;
2593 uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b);
2594
2595 int d, clz_a, out_n;
2596 uint64_t mask;
2597
2598 if (c != 0) {
2599 // The general case, in which there is more than one stretch of set bits.
2600 // Compute the repeat distance d, and set up a bitmask covering the basic
2601 // unit of repetition (i.e. a word with the bottom d bits set). Also, in all
2602 // of these cases the N bit of the output will be zero.
2603 clz_a = CountLeadingZeros(a, kXRegSizeInBits);
2604 int clz_c = CountLeadingZeros(c, kXRegSizeInBits);
2605 d = clz_a - clz_c;
2606 mask = ((UINT64_C(1) << d) - 1);
2607 out_n = 0;
2608 } else {
2609 // Handle degenerate cases.
2610 //
2611 // If any of those 'find lowest set bit' operations didn't find a set bit at
2612 // all, then the word will have been zero thereafter, so in particular the
2613 // last lowest_set_bit operation will have returned zero. So we can test for
2614 // all the special case conditions in one go by seeing if c is zero.
2615 if (a == 0) {
2616 // The input was zero (or all 1 bits, which will come to here too after we
2617 // inverted it at the start of the function), for which we just return
2618 // false.
2619 return false;
2620 } else {
2621 // Otherwise, if c was zero but a was not, then there's just one stretch
2622 // of set bits in our word, meaning that we have the trivial case of
2623 // d == 64 and only one 'repetition'. Set up all the same variables as in
2624 // the general case above, and set the N bit in the output.
2625 clz_a = CountLeadingZeros(a, kXRegSizeInBits);
2626 d = 64;
2627 mask = ~UINT64_C(0);
2628 out_n = 1;
2629 }
2630 }
2631
2632 // If the repeat period d is not a power of two, it can't be encoded.
2633 if (!IS_POWER_OF_TWO(d)) {
2634 return false; 2538 return false;
2635 } 2539 }
2636 2540
2637 if (((b - a) & ~mask) != 0) { 2541 unsigned lead_zero = CountLeadingZeros(value, width);
2638 // If the bit stretch (b - a) does not fit within the mask derived from the 2542 unsigned lead_one = CountLeadingZeros(~value, width);
2639 // repeat period, then fail. 2543 unsigned trail_zero = CountTrailingZeros(value, width);
2544 unsigned trail_one = CountTrailingZeros(~value, width);
2545 unsigned set_bits = CountSetBits(value, width);
2546
2547 // The fixed bits in the immediate s field.
2548 // If width == 64 (X reg), start at 0xFFFFFF80.
2549 // If width == 32 (W reg), start at 0xFFFFFFC0, as the iteration for 64-bit
2550 // widths won't be executed.
2551 int imm_s_fixed = (width == kXRegSizeInBits) ? -128 : -64;
2552 int imm_s_mask = 0x3F;
2553
2554 for (;;) {
2555 // 2. If the value is two bits wide, it can be encoded.
2556 if (width == 2) {
2557 *n = 0;
2558 *imm_s = 0x3C;
2559 *imm_r = (value & 3) - 1;
2560 return true;
2561 }
2562
2563 *n = (width == 64) ? 1 : 0;
2564 *imm_s = ((imm_s_fixed | (set_bits - 1)) & imm_s_mask);
2565 if ((lead_zero + set_bits) == width) {
2566 *imm_r = 0;
2567 } else {
2568 *imm_r = (lead_zero > 0) ? (width - trail_zero) : lead_one;
2569 }
2570
2571 // 3. If the sum of leading zeros, trailing zeros and set bits is equal to
2572 // the bit width of the value, it can be encoded.
2573 if (lead_zero + trail_zero + set_bits == width) {
2574 return true;
2575 }
2576
2577 // 4. If the sum of leading ones, trailing ones and unset bits in the
2578 // value is equal to the bit width of the value, it can be encoded.
2579 if (lead_one + trail_one + (width - set_bits) == width) {
2580 return true;
2581 }
2582
2583 // 5. If the most-significant half of the bitwise value is equal to the
2584 // least-significant half, return to step 2 using the least-significant
2585 // half of the value.
2586 uint64_t mask = (1UL << (width >> 1)) - 1;
2587 if ((value & mask) == ((value >> (width >> 1)) & mask)) {
2588 width >>= 1;
2589 set_bits >>= 1;
2590 imm_s_fixed >>= 1;
2591 continue;
2592 }
2593
2594 // 6. Otherwise, the value can't be encoded.
2640 return false; 2595 return false;
2641 } 2596 }
2642
2643 // The only possible option is b - a repeated every d bits. Now we're going to
2644 // actually construct the valid logical immediate derived from that
2645 // specification, and see if it equals our original input.
2646 //
2647 // To repeat a value every d bits, we multiply it by a number of the form
2648 // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
2649 // be derived using a table lookup on CLZ(d).
2650 static const uint64_t multipliers[] = {
2651 0x0000000000000001UL,
2652 0x0000000100000001UL,
2653 0x0001000100010001UL,
2654 0x0101010101010101UL,
2655 0x1111111111111111UL,
2656 0x5555555555555555UL,
2657 };
2658 int multiplier_idx = CountLeadingZeros(d, kXRegSizeInBits) - 57;
2659 // Ensure that the index to the multipliers array is within bounds.
2660 ASSERT((multiplier_idx >= 0) &&
2661 (static_cast<size_t>(multiplier_idx) <
2662 (sizeof(multipliers) / sizeof(multipliers[0]))));
2663 uint64_t multiplier = multipliers[multiplier_idx];
2664 uint64_t candidate = (b - a) * multiplier;
2665
2666 if (value != candidate) {
2667 // The candidate pattern doesn't match our input value, so fail.
2668 return false;
2669 }
2670
2671 // We have a match! This is a valid logical immediate, so now we have to
2672 // construct the bits and pieces of the instruction encoding that generates
2673 // it.
2674
2675 // Count the set bits in our basic stretch. The special case of clz(0) == -1
2676 // makes the answer come out right for stretches that reach the very top of
2677 // the word (e.g. numbers like 0xffffc00000000000).
2678 int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSizeInBits);
2679 int s = clz_a - clz_b;
2680
2681 // Decide how many bits to rotate right by, to put the low bit of that basic
2682 // stretch in position a.
2683 int r;
2684 if (negate) {
2685 // If we inverted the input right at the start of this function, here's
2686 // where we compensate: the number of set bits becomes the number of clear
2687 // bits, and the rotation count is based on position b rather than position
2688 // a (since b is the location of the 'lowest' 1 bit after inversion).
2689 s = d - s;
2690 r = (clz_b + 1) & (d - 1);
2691 } else {
2692 r = (clz_a + 1) & (d - 1);
2693 }
2694
2695 // Now we're done, except for having to encode the S output in such a way that
2696 // it gives both the number of set bits and the length of the repeated
2697 // segment. The s field is encoded like this:
2698 //
2699 // imms size S
2700 // ssssss 64 UInt(ssssss)
2701 // 0sssss 32 UInt(sssss)
2702 // 10ssss 16 UInt(ssss)
2703 // 110sss 8 UInt(sss)
2704 // 1110ss 4 UInt(ss)
2705 // 11110s 2 UInt(s)
2706 //
2707 // So we 'or' (-d << 1) with our computed s to form imms.
2708 *n = out_n;
2709 *imm_s = ((-d << 1) | (s - 1)) & 0x3f;
2710 *imm_r = r;
2711
2712 return true;
2713 } 2597 }
2714 2598
2715 2599
2716 bool Assembler::IsImmConditionalCompare(int64_t immediate) { 2600 bool Assembler::IsImmConditionalCompare(int64_t immediate) {
2717 return is_uint5(immediate); 2601 return is_uint5(immediate);
2718 } 2602 }
2719 2603
2720 2604
2721 bool Assembler::IsImmFP32(float imm) { 2605 bool Assembler::IsImmFP32(float imm) {
2722 // Valid values will have the form: 2606 // Valid values will have the form:
(...skipping 431 matching lines...) Expand 10 before | Expand all | Expand 10 after
3154 adr(rd, 0); 3038 adr(rd, 0);
3155 MovInt64(scratch, target_offset); 3039 MovInt64(scratch, target_offset);
3156 add(rd, rd, scratch); 3040 add(rd, rd, scratch);
3157 } 3041 }
3158 } 3042 }
3159 3043
3160 3044
3161 } } // namespace v8::internal 3045 } } // namespace v8::internal
3162 3046
3163 #endif // V8_TARGET_ARCH_ARM64 3047 #endif // V8_TARGET_ARCH_ARM64
OLDNEW
« no previous file with comments | « no previous file | src/arm64/macro-assembler-arm64.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698