| Index: src/platform-win32.cc
|
| diff --git a/src/platform-win32.cc b/src/platform-win32.cc
|
| deleted file mode 100644
|
| index f89c107aad2dec2d424343689ce595f048463900..0000000000000000000000000000000000000000
|
| --- a/src/platform-win32.cc
|
| +++ /dev/null
|
| @@ -1,1423 +0,0 @@
|
| -// Copyright 2012 the V8 project authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -// Platform-specific code for Win32.
|
| -
|
| -// Secure API functions are not available using MinGW with msvcrt.dll
|
| -// on Windows XP. Make sure MINGW_HAS_SECURE_API is not defined to
|
| -// disable definition of secure API functions in standard headers that
|
| -// would conflict with our own implementation.
|
| -#ifdef __MINGW32__
|
| -#include <_mingw.h>
|
| -#ifdef MINGW_HAS_SECURE_API
|
| -#undef MINGW_HAS_SECURE_API
|
| -#endif // MINGW_HAS_SECURE_API
|
| -#endif // __MINGW32__
|
| -
|
| -#include "src/base/win32-headers.h"
|
| -
|
| -#include "src/base/lazy-instance.h"
|
| -#include "src/platform.h"
|
| -#include "src/platform/time.h"
|
| -#include "src/utils.h"
|
| -#include "src/utils/random-number-generator.h"
|
| -
|
| -#ifdef _MSC_VER
|
| -
|
| -// Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
|
| -// defined in strings.h.
|
| -int strncasecmp(const char* s1, const char* s2, int n) {
|
| - return _strnicmp(s1, s2, n);
|
| -}
|
| -
|
| -#endif // _MSC_VER
|
| -
|
| -
|
| -// Extra functions for MinGW. Most of these are the _s functions which are in
|
| -// the Microsoft Visual Studio C++ CRT.
|
| -#ifdef __MINGW32__
|
| -
|
| -
|
| -#ifndef __MINGW64_VERSION_MAJOR
|
| -
|
| -#define _TRUNCATE 0
|
| -#define STRUNCATE 80
|
| -
|
| -inline void MemoryBarrier() {
|
| - int barrier = 0;
|
| - __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
|
| -}
|
| -
|
| -#endif // __MINGW64_VERSION_MAJOR
|
| -
|
| -
|
| -int localtime_s(tm* out_tm, const time_t* time) {
|
| - tm* posix_local_time_struct = localtime(time);
|
| - if (posix_local_time_struct == NULL) return 1;
|
| - *out_tm = *posix_local_time_struct;
|
| - return 0;
|
| -}
|
| -
|
| -
|
| -int fopen_s(FILE** pFile, const char* filename, const char* mode) {
|
| - *pFile = fopen(filename, mode);
|
| - return *pFile != NULL ? 0 : 1;
|
| -}
|
| -
|
| -int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
|
| - const char* format, va_list argptr) {
|
| - ASSERT(count == _TRUNCATE);
|
| - return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
|
| -}
|
| -
|
| -
|
| -int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
|
| - CHECK(source != NULL);
|
| - CHECK(dest != NULL);
|
| - CHECK_GT(dest_size, 0);
|
| -
|
| - if (count == _TRUNCATE) {
|
| - while (dest_size > 0 && *source != 0) {
|
| - *(dest++) = *(source++);
|
| - --dest_size;
|
| - }
|
| - if (dest_size == 0) {
|
| - *(dest - 1) = 0;
|
| - return STRUNCATE;
|
| - }
|
| - } else {
|
| - while (dest_size > 0 && count > 0 && *source != 0) {
|
| - *(dest++) = *(source++);
|
| - --dest_size;
|
| - --count;
|
| - }
|
| - }
|
| - CHECK_GT(dest_size, 0);
|
| - *dest = 0;
|
| - return 0;
|
| -}
|
| -
|
| -#endif // __MINGW32__
|
| -
|
| -namespace v8 {
|
| -namespace internal {
|
| -
|
| -namespace {
|
| -
|
| -bool g_hard_abort = false;
|
| -
|
| -} // namespace
|
| -
|
| -intptr_t OS::MaxVirtualMemory() {
|
| - return 0;
|
| -}
|
| -
|
| -
|
| -class TimezoneCache {
|
| - public:
|
| - TimezoneCache() : initialized_(false) { }
|
| -
|
| - void Clear() {
|
| - initialized_ = false;
|
| - }
|
| -
|
| - // Initialize timezone information. The timezone information is obtained from
|
| - // windows. If we cannot get the timezone information we fall back to CET.
|
| - void InitializeIfNeeded() {
|
| - // Just return if timezone information has already been initialized.
|
| - if (initialized_) return;
|
| -
|
| - // Initialize POSIX time zone data.
|
| - _tzset();
|
| - // Obtain timezone information from operating system.
|
| - memset(&tzinfo_, 0, sizeof(tzinfo_));
|
| - if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
|
| - // If we cannot get timezone information we fall back to CET.
|
| - tzinfo_.Bias = -60;
|
| - tzinfo_.StandardDate.wMonth = 10;
|
| - tzinfo_.StandardDate.wDay = 5;
|
| - tzinfo_.StandardDate.wHour = 3;
|
| - tzinfo_.StandardBias = 0;
|
| - tzinfo_.DaylightDate.wMonth = 3;
|
| - tzinfo_.DaylightDate.wDay = 5;
|
| - tzinfo_.DaylightDate.wHour = 2;
|
| - tzinfo_.DaylightBias = -60;
|
| - }
|
| -
|
| - // Make standard and DST timezone names.
|
| - WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1,
|
| - std_tz_name_, kTzNameSize, NULL, NULL);
|
| - std_tz_name_[kTzNameSize - 1] = '\0';
|
| - WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1,
|
| - dst_tz_name_, kTzNameSize, NULL, NULL);
|
| - dst_tz_name_[kTzNameSize - 1] = '\0';
|
| -
|
| - // If OS returned empty string or resource id (like "@tzres.dll,-211")
|
| - // simply guess the name from the UTC bias of the timezone.
|
| - // To properly resolve the resource identifier requires a library load,
|
| - // which is not possible in a sandbox.
|
| - if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
|
| - OS::SNPrintF(std_tz_name_, kTzNameSize - 1,
|
| - "%s Standard Time",
|
| - GuessTimezoneNameFromBias(tzinfo_.Bias));
|
| - }
|
| - if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
|
| - OS::SNPrintF(dst_tz_name_, kTzNameSize - 1,
|
| - "%s Daylight Time",
|
| - GuessTimezoneNameFromBias(tzinfo_.Bias));
|
| - }
|
| - // Timezone information initialized.
|
| - initialized_ = true;
|
| - }
|
| -
|
| - // Guess the name of the timezone from the bias.
|
| - // The guess is very biased towards the northern hemisphere.
|
| - const char* GuessTimezoneNameFromBias(int bias) {
|
| - static const int kHour = 60;
|
| - switch (-bias) {
|
| - case -9*kHour: return "Alaska";
|
| - case -8*kHour: return "Pacific";
|
| - case -7*kHour: return "Mountain";
|
| - case -6*kHour: return "Central";
|
| - case -5*kHour: return "Eastern";
|
| - case -4*kHour: return "Atlantic";
|
| - case 0*kHour: return "GMT";
|
| - case +1*kHour: return "Central Europe";
|
| - case +2*kHour: return "Eastern Europe";
|
| - case +3*kHour: return "Russia";
|
| - case +5*kHour + 30: return "India";
|
| - case +8*kHour: return "China";
|
| - case +9*kHour: return "Japan";
|
| - case +12*kHour: return "New Zealand";
|
| - default: return "Local";
|
| - }
|
| - }
|
| -
|
| -
|
| - private:
|
| - static const int kTzNameSize = 128;
|
| - bool initialized_;
|
| - char std_tz_name_[kTzNameSize];
|
| - char dst_tz_name_[kTzNameSize];
|
| - TIME_ZONE_INFORMATION tzinfo_;
|
| - friend class Win32Time;
|
| -};
|
| -
|
| -
|
| -// ----------------------------------------------------------------------------
|
| -// The Time class represents time on win32. A timestamp is represented as
|
| -// a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript
|
| -// timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
|
| -// January 1, 1970.
|
| -
|
| -class Win32Time {
|
| - public:
|
| - // Constructors.
|
| - Win32Time();
|
| - explicit Win32Time(double jstime);
|
| - Win32Time(int year, int mon, int day, int hour, int min, int sec);
|
| -
|
| - // Convert timestamp to JavaScript representation.
|
| - double ToJSTime();
|
| -
|
| - // Set timestamp to current time.
|
| - void SetToCurrentTime();
|
| -
|
| - // Returns the local timezone offset in milliseconds east of UTC. This is
|
| - // the number of milliseconds you must add to UTC to get local time, i.e.
|
| - // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
|
| - // routine also takes into account whether daylight saving is effect
|
| - // at the time.
|
| - int64_t LocalOffset(TimezoneCache* cache);
|
| -
|
| - // Returns the daylight savings time offset for the time in milliseconds.
|
| - int64_t DaylightSavingsOffset(TimezoneCache* cache);
|
| -
|
| - // Returns a string identifying the current timezone for the
|
| - // timestamp taking into account daylight saving.
|
| - char* LocalTimezone(TimezoneCache* cache);
|
| -
|
| - private:
|
| - // Constants for time conversion.
|
| - static const int64_t kTimeEpoc = 116444736000000000LL;
|
| - static const int64_t kTimeScaler = 10000;
|
| - static const int64_t kMsPerMinute = 60000;
|
| -
|
| - // Constants for timezone information.
|
| - static const bool kShortTzNames = false;
|
| -
|
| - // Return whether or not daylight savings time is in effect at this time.
|
| - bool InDST(TimezoneCache* cache);
|
| -
|
| - // Accessor for FILETIME representation.
|
| - FILETIME& ft() { return time_.ft_; }
|
| -
|
| - // Accessor for integer representation.
|
| - int64_t& t() { return time_.t_; }
|
| -
|
| - // Although win32 uses 64-bit integers for representing timestamps,
|
| - // these are packed into a FILETIME structure. The FILETIME structure
|
| - // is just a struct representing a 64-bit integer. The TimeStamp union
|
| - // allows access to both a FILETIME and an integer representation of
|
| - // the timestamp.
|
| - union TimeStamp {
|
| - FILETIME ft_;
|
| - int64_t t_;
|
| - };
|
| -
|
| - TimeStamp time_;
|
| -};
|
| -
|
| -
|
| -// Initialize timestamp to start of epoc.
|
| -Win32Time::Win32Time() {
|
| - t() = 0;
|
| -}
|
| -
|
| -
|
| -// Initialize timestamp from a JavaScript timestamp.
|
| -Win32Time::Win32Time(double jstime) {
|
| - t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
|
| -}
|
| -
|
| -
|
| -// Initialize timestamp from date/time components.
|
| -Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) {
|
| - SYSTEMTIME st;
|
| - st.wYear = year;
|
| - st.wMonth = mon;
|
| - st.wDay = day;
|
| - st.wHour = hour;
|
| - st.wMinute = min;
|
| - st.wSecond = sec;
|
| - st.wMilliseconds = 0;
|
| - SystemTimeToFileTime(&st, &ft());
|
| -}
|
| -
|
| -
|
| -// Convert timestamp to JavaScript timestamp.
|
| -double Win32Time::ToJSTime() {
|
| - return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
|
| -}
|
| -
|
| -
|
| -// Set timestamp to current time.
|
| -void Win32Time::SetToCurrentTime() {
|
| - // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
|
| - // Because we're fast, we like fast timers which have at least a
|
| - // 1ms resolution.
|
| - //
|
| - // timeGetTime() provides 1ms granularity when combined with
|
| - // timeBeginPeriod(). If the host application for v8 wants fast
|
| - // timers, it can use timeBeginPeriod to increase the resolution.
|
| - //
|
| - // Using timeGetTime() has a drawback because it is a 32bit value
|
| - // and hence rolls-over every ~49days.
|
| - //
|
| - // To use the clock, we use GetSystemTimeAsFileTime as our base;
|
| - // and then use timeGetTime to extrapolate current time from the
|
| - // start time. To deal with rollovers, we resync the clock
|
| - // any time when more than kMaxClockElapsedTime has passed or
|
| - // whenever timeGetTime creates a rollover.
|
| -
|
| - static bool initialized = false;
|
| - static TimeStamp init_time;
|
| - static DWORD init_ticks;
|
| - static const int64_t kHundredNanosecondsPerSecond = 10000000;
|
| - static const int64_t kMaxClockElapsedTime =
|
| - 60*kHundredNanosecondsPerSecond; // 1 minute
|
| -
|
| - // If we are uninitialized, we need to resync the clock.
|
| - bool needs_resync = !initialized;
|
| -
|
| - // Get the current time.
|
| - TimeStamp time_now;
|
| - GetSystemTimeAsFileTime(&time_now.ft_);
|
| - DWORD ticks_now = timeGetTime();
|
| -
|
| - // Check if we need to resync due to clock rollover.
|
| - needs_resync |= ticks_now < init_ticks;
|
| -
|
| - // Check if we need to resync due to elapsed time.
|
| - needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
|
| -
|
| - // Check if we need to resync due to backwards time change.
|
| - needs_resync |= time_now.t_ < init_time.t_;
|
| -
|
| - // Resync the clock if necessary.
|
| - if (needs_resync) {
|
| - GetSystemTimeAsFileTime(&init_time.ft_);
|
| - init_ticks = ticks_now = timeGetTime();
|
| - initialized = true;
|
| - }
|
| -
|
| - // Finally, compute the actual time. Why is this so hard.
|
| - DWORD elapsed = ticks_now - init_ticks;
|
| - this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
|
| -}
|
| -
|
| -
|
| -// Return the local timezone offset in milliseconds east of UTC. This
|
| -// takes into account whether daylight saving is in effect at the time.
|
| -// Only times in the 32-bit Unix range may be passed to this function.
|
| -// Also, adding the time-zone offset to the input must not overflow.
|
| -// The function EquivalentTime() in date.js guarantees this.
|
| -int64_t Win32Time::LocalOffset(TimezoneCache* cache) {
|
| - cache->InitializeIfNeeded();
|
| -
|
| - Win32Time rounded_to_second(*this);
|
| - rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
|
| - 1000 * kTimeScaler;
|
| - // Convert to local time using POSIX localtime function.
|
| - // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
|
| - // very slow. Other browsers use localtime().
|
| -
|
| - // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
|
| - // POSIX seconds past 1/1/1970 0:00:00.
|
| - double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
|
| - if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
|
| - return 0;
|
| - }
|
| - // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
|
| - time_t posix_time = static_cast<time_t>(unchecked_posix_time);
|
| -
|
| - // Convert to local time, as struct with fields for day, hour, year, etc.
|
| - tm posix_local_time_struct;
|
| - if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
|
| -
|
| - if (posix_local_time_struct.tm_isdst > 0) {
|
| - return (cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * -kMsPerMinute;
|
| - } else if (posix_local_time_struct.tm_isdst == 0) {
|
| - return (cache->tzinfo_.Bias + cache->tzinfo_.StandardBias) * -kMsPerMinute;
|
| - } else {
|
| - return cache->tzinfo_.Bias * -kMsPerMinute;
|
| - }
|
| -}
|
| -
|
| -
|
| -// Return whether or not daylight savings time is in effect at this time.
|
| -bool Win32Time::InDST(TimezoneCache* cache) {
|
| - cache->InitializeIfNeeded();
|
| -
|
| - // Determine if DST is in effect at the specified time.
|
| - bool in_dst = false;
|
| - if (cache->tzinfo_.StandardDate.wMonth != 0 ||
|
| - cache->tzinfo_.DaylightDate.wMonth != 0) {
|
| - // Get the local timezone offset for the timestamp in milliseconds.
|
| - int64_t offset = LocalOffset(cache);
|
| -
|
| - // Compute the offset for DST. The bias parameters in the timezone info
|
| - // are specified in minutes. These must be converted to milliseconds.
|
| - int64_t dstofs =
|
| - -(cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * kMsPerMinute;
|
| -
|
| - // If the local time offset equals the timezone bias plus the daylight
|
| - // bias then DST is in effect.
|
| - in_dst = offset == dstofs;
|
| - }
|
| -
|
| - return in_dst;
|
| -}
|
| -
|
| -
|
| -// Return the daylight savings time offset for this time.
|
| -int64_t Win32Time::DaylightSavingsOffset(TimezoneCache* cache) {
|
| - return InDST(cache) ? 60 * kMsPerMinute : 0;
|
| -}
|
| -
|
| -
|
| -// Returns a string identifying the current timezone for the
|
| -// timestamp taking into account daylight saving.
|
| -char* Win32Time::LocalTimezone(TimezoneCache* cache) {
|
| - // Return the standard or DST time zone name based on whether daylight
|
| - // saving is in effect at the given time.
|
| - return InDST(cache) ? cache->dst_tz_name_ : cache->std_tz_name_;
|
| -}
|
| -
|
| -
|
| -// Returns the accumulated user time for thread.
|
| -int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
|
| - FILETIME dummy;
|
| - uint64_t usertime;
|
| -
|
| - // Get the amount of time that the thread has executed in user mode.
|
| - if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
|
| - reinterpret_cast<FILETIME*>(&usertime))) return -1;
|
| -
|
| - // Adjust the resolution to micro-seconds.
|
| - usertime /= 10;
|
| -
|
| - // Convert to seconds and microseconds
|
| - *secs = static_cast<uint32_t>(usertime / 1000000);
|
| - *usecs = static_cast<uint32_t>(usertime % 1000000);
|
| - return 0;
|
| -}
|
| -
|
| -
|
| -// Returns current time as the number of milliseconds since
|
| -// 00:00:00 UTC, January 1, 1970.
|
| -double OS::TimeCurrentMillis() {
|
| - return Time::Now().ToJsTime();
|
| -}
|
| -
|
| -
|
| -TimezoneCache* OS::CreateTimezoneCache() {
|
| - return new TimezoneCache();
|
| -}
|
| -
|
| -
|
| -void OS::DisposeTimezoneCache(TimezoneCache* cache) {
|
| - delete cache;
|
| -}
|
| -
|
| -
|
| -void OS::ClearTimezoneCache(TimezoneCache* cache) {
|
| - cache->Clear();
|
| -}
|
| -
|
| -
|
| -// Returns a string identifying the current timezone taking into
|
| -// account daylight saving.
|
| -const char* OS::LocalTimezone(double time, TimezoneCache* cache) {
|
| - return Win32Time(time).LocalTimezone(cache);
|
| -}
|
| -
|
| -
|
| -// Returns the local time offset in milliseconds east of UTC without
|
| -// taking daylight savings time into account.
|
| -double OS::LocalTimeOffset(TimezoneCache* cache) {
|
| - // Use current time, rounded to the millisecond.
|
| - Win32Time t(TimeCurrentMillis());
|
| - // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
|
| - return static_cast<double>(t.LocalOffset(cache) -
|
| - t.DaylightSavingsOffset(cache));
|
| -}
|
| -
|
| -
|
| -// Returns the daylight savings offset in milliseconds for the given
|
| -// time.
|
| -double OS::DaylightSavingsOffset(double time, TimezoneCache* cache) {
|
| - int64_t offset = Win32Time(time).DaylightSavingsOffset(cache);
|
| - return static_cast<double>(offset);
|
| -}
|
| -
|
| -
|
| -int OS::GetLastError() {
|
| - return ::GetLastError();
|
| -}
|
| -
|
| -
|
| -int OS::GetCurrentProcessId() {
|
| - return static_cast<int>(::GetCurrentProcessId());
|
| -}
|
| -
|
| -
|
| -// ----------------------------------------------------------------------------
|
| -// Win32 console output.
|
| -//
|
| -// If a Win32 application is linked as a console application it has a normal
|
| -// standard output and standard error. In this case normal printf works fine
|
| -// for output. However, if the application is linked as a GUI application,
|
| -// the process doesn't have a console, and therefore (debugging) output is lost.
|
| -// This is the case if we are embedded in a windows program (like a browser).
|
| -// In order to be able to get debug output in this case the the debugging
|
| -// facility using OutputDebugString. This output goes to the active debugger
|
| -// for the process (if any). Else the output can be monitored using DBMON.EXE.
|
| -
|
| -enum OutputMode {
|
| - UNKNOWN, // Output method has not yet been determined.
|
| - CONSOLE, // Output is written to stdout.
|
| - ODS // Output is written to debug facility.
|
| -};
|
| -
|
| -static OutputMode output_mode = UNKNOWN; // Current output mode.
|
| -
|
| -
|
| -// Determine if the process has a console for output.
|
| -static bool HasConsole() {
|
| - // Only check the first time. Eventual race conditions are not a problem,
|
| - // because all threads will eventually determine the same mode.
|
| - if (output_mode == UNKNOWN) {
|
| - // We cannot just check that the standard output is attached to a console
|
| - // because this would fail if output is redirected to a file. Therefore we
|
| - // say that a process does not have an output console if either the
|
| - // standard output handle is invalid or its file type is unknown.
|
| - if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
|
| - GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
|
| - output_mode = CONSOLE;
|
| - else
|
| - output_mode = ODS;
|
| - }
|
| - return output_mode == CONSOLE;
|
| -}
|
| -
|
| -
|
| -static void VPrintHelper(FILE* stream, const char* format, va_list args) {
|
| - if ((stream == stdout || stream == stderr) && !HasConsole()) {
|
| - // It is important to use safe print here in order to avoid
|
| - // overflowing the buffer. We might truncate the output, but this
|
| - // does not crash.
|
| - char buffer[4096];
|
| - OS::VSNPrintF(buffer, sizeof(buffer), format, args);
|
| - OutputDebugStringA(buffer);
|
| - } else {
|
| - vfprintf(stream, format, args);
|
| - }
|
| -}
|
| -
|
| -
|
| -FILE* OS::FOpen(const char* path, const char* mode) {
|
| - FILE* result;
|
| - if (fopen_s(&result, path, mode) == 0) {
|
| - return result;
|
| - } else {
|
| - return NULL;
|
| - }
|
| -}
|
| -
|
| -
|
| -bool OS::Remove(const char* path) {
|
| - return (DeleteFileA(path) != 0);
|
| -}
|
| -
|
| -
|
| -FILE* OS::OpenTemporaryFile() {
|
| - // tmpfile_s tries to use the root dir, don't use it.
|
| - char tempPathBuffer[MAX_PATH];
|
| - DWORD path_result = 0;
|
| - path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
|
| - if (path_result > MAX_PATH || path_result == 0) return NULL;
|
| - UINT name_result = 0;
|
| - char tempNameBuffer[MAX_PATH];
|
| - name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
|
| - if (name_result == 0) return NULL;
|
| - FILE* result = FOpen(tempNameBuffer, "w+"); // Same mode as tmpfile uses.
|
| - if (result != NULL) {
|
| - Remove(tempNameBuffer); // Delete on close.
|
| - }
|
| - return result;
|
| -}
|
| -
|
| -
|
| -// Open log file in binary mode to avoid /n -> /r/n conversion.
|
| -const char* const OS::LogFileOpenMode = "wb";
|
| -
|
| -
|
| -// Print (debug) message to console.
|
| -void OS::Print(const char* format, ...) {
|
| - va_list args;
|
| - va_start(args, format);
|
| - VPrint(format, args);
|
| - va_end(args);
|
| -}
|
| -
|
| -
|
| -void OS::VPrint(const char* format, va_list args) {
|
| - VPrintHelper(stdout, format, args);
|
| -}
|
| -
|
| -
|
| -void OS::FPrint(FILE* out, const char* format, ...) {
|
| - va_list args;
|
| - va_start(args, format);
|
| - VFPrint(out, format, args);
|
| - va_end(args);
|
| -}
|
| -
|
| -
|
| -void OS::VFPrint(FILE* out, const char* format, va_list args) {
|
| - VPrintHelper(out, format, args);
|
| -}
|
| -
|
| -
|
| -// Print error message to console.
|
| -void OS::PrintError(const char* format, ...) {
|
| - va_list args;
|
| - va_start(args, format);
|
| - VPrintError(format, args);
|
| - va_end(args);
|
| -}
|
| -
|
| -
|
| -void OS::VPrintError(const char* format, va_list args) {
|
| - VPrintHelper(stderr, format, args);
|
| -}
|
| -
|
| -
|
| -int OS::SNPrintF(char* str, int length, const char* format, ...) {
|
| - va_list args;
|
| - va_start(args, format);
|
| - int result = VSNPrintF(str, length, format, args);
|
| - va_end(args);
|
| - return result;
|
| -}
|
| -
|
| -
|
| -int OS::VSNPrintF(char* str, int length, const char* format, va_list args) {
|
| - int n = _vsnprintf_s(str, length, _TRUNCATE, format, args);
|
| - // Make sure to zero-terminate the string if the output was
|
| - // truncated or if there was an error.
|
| - if (n < 0 || n >= length) {
|
| - if (length > 0)
|
| - str[length - 1] = '\0';
|
| - return -1;
|
| - } else {
|
| - return n;
|
| - }
|
| -}
|
| -
|
| -
|
| -char* OS::StrChr(char* str, int c) {
|
| - return const_cast<char*>(strchr(str, c));
|
| -}
|
| -
|
| -
|
| -void OS::StrNCpy(char* dest, int length, const char* src, size_t n) {
|
| - // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
|
| - size_t buffer_size = static_cast<size_t>(length);
|
| - if (n + 1 > buffer_size) // count for trailing '\0'
|
| - n = _TRUNCATE;
|
| - int result = strncpy_s(dest, length, src, n);
|
| - USE(result);
|
| - ASSERT(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
|
| -}
|
| -
|
| -
|
| -#undef _TRUNCATE
|
| -#undef STRUNCATE
|
| -
|
| -
|
| -// Get the system's page size used by VirtualAlloc() or the next power
|
| -// of two. The reason for always returning a power of two is that the
|
| -// rounding up in OS::Allocate expects that.
|
| -static size_t GetPageSize() {
|
| - static size_t page_size = 0;
|
| - if (page_size == 0) {
|
| - SYSTEM_INFO info;
|
| - GetSystemInfo(&info);
|
| - page_size = RoundUpToPowerOf2(info.dwPageSize);
|
| - }
|
| - return page_size;
|
| -}
|
| -
|
| -
|
| -// The allocation alignment is the guaranteed alignment for
|
| -// VirtualAlloc'ed blocks of memory.
|
| -size_t OS::AllocateAlignment() {
|
| - static size_t allocate_alignment = 0;
|
| - if (allocate_alignment == 0) {
|
| - SYSTEM_INFO info;
|
| - GetSystemInfo(&info);
|
| - allocate_alignment = info.dwAllocationGranularity;
|
| - }
|
| - return allocate_alignment;
|
| -}
|
| -
|
| -
|
| -static base::LazyInstance<RandomNumberGenerator>::type
|
| - platform_random_number_generator = LAZY_INSTANCE_INITIALIZER;
|
| -
|
| -
|
| -void OS::Initialize(int64_t random_seed, bool hard_abort,
|
| - const char* const gc_fake_mmap) {
|
| - if (random_seed) {
|
| - platform_random_number_generator.Pointer()->SetSeed(random_seed);
|
| - }
|
| - g_hard_abort = hard_abort;
|
| -}
|
| -
|
| -
|
| -void* OS::GetRandomMmapAddr() {
|
| - // The address range used to randomize RWX allocations in OS::Allocate
|
| - // Try not to map pages into the default range that windows loads DLLs
|
| - // Use a multiple of 64k to prevent committing unused memory.
|
| - // Note: This does not guarantee RWX regions will be within the
|
| - // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
|
| -#ifdef V8_HOST_ARCH_64_BIT
|
| - static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000;
|
| - static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
|
| -#else
|
| - static const intptr_t kAllocationRandomAddressMin = 0x04000000;
|
| - static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000;
|
| -#endif
|
| - uintptr_t address =
|
| - (platform_random_number_generator.Pointer()->NextInt() << kPageSizeBits) |
|
| - kAllocationRandomAddressMin;
|
| - address &= kAllocationRandomAddressMax;
|
| - return reinterpret_cast<void *>(address);
|
| -}
|
| -
|
| -
|
| -static void* RandomizedVirtualAlloc(size_t size, int action, int protection) {
|
| - LPVOID base = NULL;
|
| -
|
| - if (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS) {
|
| - // For exectutable pages try and randomize the allocation address
|
| - for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) {
|
| - base = VirtualAlloc(OS::GetRandomMmapAddr(), size, action, protection);
|
| - }
|
| - }
|
| -
|
| - // After three attempts give up and let the OS find an address to use.
|
| - if (base == NULL) base = VirtualAlloc(NULL, size, action, protection);
|
| -
|
| - return base;
|
| -}
|
| -
|
| -
|
| -void* OS::Allocate(const size_t requested,
|
| - size_t* allocated,
|
| - bool is_executable) {
|
| - // VirtualAlloc rounds allocated size to page size automatically.
|
| - size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
|
| -
|
| - // Windows XP SP2 allows Data Excution Prevention (DEP).
|
| - int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
|
| -
|
| - LPVOID mbase = RandomizedVirtualAlloc(msize,
|
| - MEM_COMMIT | MEM_RESERVE,
|
| - prot);
|
| -
|
| - if (mbase == NULL) return NULL;
|
| -
|
| - ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
|
| -
|
| - *allocated = msize;
|
| - return mbase;
|
| -}
|
| -
|
| -
|
| -void OS::Free(void* address, const size_t size) {
|
| - // TODO(1240712): VirtualFree has a return value which is ignored here.
|
| - VirtualFree(address, 0, MEM_RELEASE);
|
| - USE(size);
|
| -}
|
| -
|
| -
|
| -intptr_t OS::CommitPageSize() {
|
| - return 4096;
|
| -}
|
| -
|
| -
|
| -void OS::ProtectCode(void* address, const size_t size) {
|
| - DWORD old_protect;
|
| - VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
|
| -}
|
| -
|
| -
|
| -void OS::Guard(void* address, const size_t size) {
|
| - DWORD oldprotect;
|
| - VirtualProtect(address, size, PAGE_NOACCESS, &oldprotect);
|
| -}
|
| -
|
| -
|
| -void OS::Sleep(int milliseconds) {
|
| - ::Sleep(milliseconds);
|
| -}
|
| -
|
| -
|
| -void OS::Abort() {
|
| - if (g_hard_abort) {
|
| - V8_IMMEDIATE_CRASH();
|
| - }
|
| - // Make the MSVCRT do a silent abort.
|
| - raise(SIGABRT);
|
| -}
|
| -
|
| -
|
| -void OS::DebugBreak() {
|
| -#ifdef _MSC_VER
|
| - // To avoid Visual Studio runtime support the following code can be used
|
| - // instead
|
| - // __asm { int 3 }
|
| - __debugbreak();
|
| -#else
|
| - ::DebugBreak();
|
| -#endif
|
| -}
|
| -
|
| -
|
| -class Win32MemoryMappedFile : public OS::MemoryMappedFile {
|
| - public:
|
| - Win32MemoryMappedFile(HANDLE file,
|
| - HANDLE file_mapping,
|
| - void* memory,
|
| - int size)
|
| - : file_(file),
|
| - file_mapping_(file_mapping),
|
| - memory_(memory),
|
| - size_(size) { }
|
| - virtual ~Win32MemoryMappedFile();
|
| - virtual void* memory() { return memory_; }
|
| - virtual int size() { return size_; }
|
| - private:
|
| - HANDLE file_;
|
| - HANDLE file_mapping_;
|
| - void* memory_;
|
| - int size_;
|
| -};
|
| -
|
| -
|
| -OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
|
| - // Open a physical file
|
| - HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
|
| - FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
|
| - if (file == INVALID_HANDLE_VALUE) return NULL;
|
| -
|
| - int size = static_cast<int>(GetFileSize(file, NULL));
|
| -
|
| - // Create a file mapping for the physical file
|
| - HANDLE file_mapping = CreateFileMapping(file, NULL,
|
| - PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
|
| - if (file_mapping == NULL) return NULL;
|
| -
|
| - // Map a view of the file into memory
|
| - void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
|
| - return new Win32MemoryMappedFile(file, file_mapping, memory, size);
|
| -}
|
| -
|
| -
|
| -OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
|
| - void* initial) {
|
| - // Open a physical file
|
| - HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
|
| - FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
|
| - if (file == NULL) return NULL;
|
| - // Create a file mapping for the physical file
|
| - HANDLE file_mapping = CreateFileMapping(file, NULL,
|
| - PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
|
| - if (file_mapping == NULL) return NULL;
|
| - // Map a view of the file into memory
|
| - void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
|
| - if (memory) MemMove(memory, initial, size);
|
| - return new Win32MemoryMappedFile(file, file_mapping, memory, size);
|
| -}
|
| -
|
| -
|
| -Win32MemoryMappedFile::~Win32MemoryMappedFile() {
|
| - if (memory_ != NULL)
|
| - UnmapViewOfFile(memory_);
|
| - CloseHandle(file_mapping_);
|
| - CloseHandle(file_);
|
| -}
|
| -
|
| -
|
| -// The following code loads functions defined in DbhHelp.h and TlHelp32.h
|
| -// dynamically. This is to avoid being depending on dbghelp.dll and
|
| -// tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
|
| -// kernel32.dll at some point so loading functions defines in TlHelp32.h
|
| -// dynamically might not be necessary any more - for some versions of Windows?).
|
| -
|
| -// Function pointers to functions dynamically loaded from dbghelp.dll.
|
| -#define DBGHELP_FUNCTION_LIST(V) \
|
| - V(SymInitialize) \
|
| - V(SymGetOptions) \
|
| - V(SymSetOptions) \
|
| - V(SymGetSearchPath) \
|
| - V(SymLoadModule64) \
|
| - V(StackWalk64) \
|
| - V(SymGetSymFromAddr64) \
|
| - V(SymGetLineFromAddr64) \
|
| - V(SymFunctionTableAccess64) \
|
| - V(SymGetModuleBase64)
|
| -
|
| -// Function pointers to functions dynamically loaded from dbghelp.dll.
|
| -#define TLHELP32_FUNCTION_LIST(V) \
|
| - V(CreateToolhelp32Snapshot) \
|
| - V(Module32FirstW) \
|
| - V(Module32NextW)
|
| -
|
| -// Define the decoration to use for the type and variable name used for
|
| -// dynamically loaded DLL function..
|
| -#define DLL_FUNC_TYPE(name) _##name##_
|
| -#define DLL_FUNC_VAR(name) _##name
|
| -
|
| -// Define the type for each dynamically loaded DLL function. The function
|
| -// definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
|
| -// from the Windows include files are redefined here to have the function
|
| -// definitions to be as close to the ones in the original .h files as possible.
|
| -#ifndef IN
|
| -#define IN
|
| -#endif
|
| -#ifndef VOID
|
| -#define VOID void
|
| -#endif
|
| -
|
| -// DbgHelp isn't supported on MinGW yet
|
| -#ifndef __MINGW32__
|
| -// DbgHelp.h functions.
|
| -typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
|
| - IN PSTR UserSearchPath,
|
| - IN BOOL fInvadeProcess);
|
| -typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
|
| -typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
|
| -typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
|
| - IN HANDLE hProcess,
|
| - OUT PSTR SearchPath,
|
| - IN DWORD SearchPathLength);
|
| -typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
|
| - IN HANDLE hProcess,
|
| - IN HANDLE hFile,
|
| - IN PSTR ImageName,
|
| - IN PSTR ModuleName,
|
| - IN DWORD64 BaseOfDll,
|
| - IN DWORD SizeOfDll);
|
| -typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
|
| - DWORD MachineType,
|
| - HANDLE hProcess,
|
| - HANDLE hThread,
|
| - LPSTACKFRAME64 StackFrame,
|
| - PVOID ContextRecord,
|
| - PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
|
| - PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
|
| - PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
|
| - PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
|
| -typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
|
| - IN HANDLE hProcess,
|
| - IN DWORD64 qwAddr,
|
| - OUT PDWORD64 pdwDisplacement,
|
| - OUT PIMAGEHLP_SYMBOL64 Symbol);
|
| -typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
|
| - IN HANDLE hProcess,
|
| - IN DWORD64 qwAddr,
|
| - OUT PDWORD pdwDisplacement,
|
| - OUT PIMAGEHLP_LINE64 Line64);
|
| -// DbgHelp.h typedefs. Implementation found in dbghelp.dll.
|
| -typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
|
| - HANDLE hProcess,
|
| - DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
|
| -typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
|
| - HANDLE hProcess,
|
| - DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
|
| -
|
| -// TlHelp32.h functions.
|
| -typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
|
| - DWORD dwFlags,
|
| - DWORD th32ProcessID);
|
| -typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
|
| - LPMODULEENTRY32W lpme);
|
| -typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
|
| - LPMODULEENTRY32W lpme);
|
| -
|
| -#undef IN
|
| -#undef VOID
|
| -
|
| -// Declare a variable for each dynamically loaded DLL function.
|
| -#define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
|
| -DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
|
| -TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
|
| -#undef DEF_DLL_FUNCTION
|
| -
|
| -// Load the functions. This function has a lot of "ugly" macros in order to
|
| -// keep down code duplication.
|
| -
|
| -static bool LoadDbgHelpAndTlHelp32() {
|
| - static bool dbghelp_loaded = false;
|
| -
|
| - if (dbghelp_loaded) return true;
|
| -
|
| - HMODULE module;
|
| -
|
| - // Load functions from the dbghelp.dll module.
|
| - module = LoadLibrary(TEXT("dbghelp.dll"));
|
| - if (module == NULL) {
|
| - return false;
|
| - }
|
| -
|
| -#define LOAD_DLL_FUNC(name) \
|
| - DLL_FUNC_VAR(name) = \
|
| - reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
|
| -
|
| -DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
|
| -
|
| -#undef LOAD_DLL_FUNC
|
| -
|
| - // Load functions from the kernel32.dll module (the TlHelp32.h function used
|
| - // to be in tlhelp32.dll but are now moved to kernel32.dll).
|
| - module = LoadLibrary(TEXT("kernel32.dll"));
|
| - if (module == NULL) {
|
| - return false;
|
| - }
|
| -
|
| -#define LOAD_DLL_FUNC(name) \
|
| - DLL_FUNC_VAR(name) = \
|
| - reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
|
| -
|
| -TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
|
| -
|
| -#undef LOAD_DLL_FUNC
|
| -
|
| - // Check that all functions where loaded.
|
| - bool result =
|
| -#define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
|
| -
|
| -DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
|
| -TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
|
| -
|
| -#undef DLL_FUNC_LOADED
|
| - true;
|
| -
|
| - dbghelp_loaded = result;
|
| - return result;
|
| - // NOTE: The modules are never unloaded and will stay around until the
|
| - // application is closed.
|
| -}
|
| -
|
| -#undef DBGHELP_FUNCTION_LIST
|
| -#undef TLHELP32_FUNCTION_LIST
|
| -#undef DLL_FUNC_VAR
|
| -#undef DLL_FUNC_TYPE
|
| -
|
| -
|
| -// Load the symbols for generating stack traces.
|
| -static std::vector<OS::SharedLibraryAddress> LoadSymbols(
|
| - HANDLE process_handle) {
|
| - static std::vector<OS::SharedLibraryAddress> result;
|
| -
|
| - static bool symbols_loaded = false;
|
| -
|
| - if (symbols_loaded) return result;
|
| -
|
| - BOOL ok;
|
| -
|
| - // Initialize the symbol engine.
|
| - ok = _SymInitialize(process_handle, // hProcess
|
| - NULL, // UserSearchPath
|
| - false); // fInvadeProcess
|
| - if (!ok) return result;
|
| -
|
| - DWORD options = _SymGetOptions();
|
| - options |= SYMOPT_LOAD_LINES;
|
| - options |= SYMOPT_FAIL_CRITICAL_ERRORS;
|
| - options = _SymSetOptions(options);
|
| -
|
| - char buf[OS::kStackWalkMaxNameLen] = {0};
|
| - ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
|
| - if (!ok) {
|
| - int err = GetLastError();
|
| - PrintF("%d\n", err);
|
| - return result;
|
| - }
|
| -
|
| - HANDLE snapshot = _CreateToolhelp32Snapshot(
|
| - TH32CS_SNAPMODULE, // dwFlags
|
| - GetCurrentProcessId()); // th32ProcessId
|
| - if (snapshot == INVALID_HANDLE_VALUE) return result;
|
| - MODULEENTRY32W module_entry;
|
| - module_entry.dwSize = sizeof(module_entry); // Set the size of the structure.
|
| - BOOL cont = _Module32FirstW(snapshot, &module_entry);
|
| - while (cont) {
|
| - DWORD64 base;
|
| - // NOTE the SymLoadModule64 function has the peculiarity of accepting a
|
| - // both unicode and ASCII strings even though the parameter is PSTR.
|
| - base = _SymLoadModule64(
|
| - process_handle, // hProcess
|
| - 0, // hFile
|
| - reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName
|
| - reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName
|
| - reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll
|
| - module_entry.modBaseSize); // SizeOfDll
|
| - if (base == 0) {
|
| - int err = GetLastError();
|
| - if (err != ERROR_MOD_NOT_FOUND &&
|
| - err != ERROR_INVALID_HANDLE) {
|
| - result.clear();
|
| - return result;
|
| - }
|
| - }
|
| - int lib_name_length = WideCharToMultiByte(
|
| - CP_UTF8, 0, module_entry.szExePath, -1, NULL, 0, NULL, NULL);
|
| - std::string lib_name(lib_name_length, 0);
|
| - WideCharToMultiByte(CP_UTF8, 0, module_entry.szExePath, -1, &lib_name[0],
|
| - lib_name_length, NULL, NULL);
|
| - result.push_back(OS::SharedLibraryAddress(
|
| - lib_name, reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
|
| - reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
|
| - module_entry.modBaseSize)));
|
| - cont = _Module32NextW(snapshot, &module_entry);
|
| - }
|
| - CloseHandle(snapshot);
|
| -
|
| - symbols_loaded = true;
|
| - return result;
|
| -}
|
| -
|
| -
|
| -std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
|
| - // SharedLibraryEvents are logged when loading symbol information.
|
| - // Only the shared libraries loaded at the time of the call to
|
| - // GetSharedLibraryAddresses are logged. DLLs loaded after
|
| - // initialization are not accounted for.
|
| - if (!LoadDbgHelpAndTlHelp32()) return std::vector<OS::SharedLibraryAddress>();
|
| - HANDLE process_handle = GetCurrentProcess();
|
| - return LoadSymbols(process_handle);
|
| -}
|
| -
|
| -
|
| -void OS::SignalCodeMovingGC() {
|
| -}
|
| -
|
| -
|
| -uint64_t OS::TotalPhysicalMemory() {
|
| - MEMORYSTATUSEX memory_info;
|
| - memory_info.dwLength = sizeof(memory_info);
|
| - if (!GlobalMemoryStatusEx(&memory_info)) {
|
| - UNREACHABLE();
|
| - return 0;
|
| - }
|
| -
|
| - return static_cast<uint64_t>(memory_info.ullTotalPhys);
|
| -}
|
| -
|
| -
|
| -#else // __MINGW32__
|
| -std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
|
| - return std::vector<OS::SharedLibraryAddress>();
|
| -}
|
| -
|
| -
|
| -void OS::SignalCodeMovingGC() { }
|
| -#endif // __MINGW32__
|
| -
|
| -
|
| -int OS::NumberOfProcessorsOnline() {
|
| - SYSTEM_INFO info;
|
| - GetSystemInfo(&info);
|
| - return info.dwNumberOfProcessors;
|
| -}
|
| -
|
| -
|
| -double OS::nan_value() {
|
| -#ifdef _MSC_VER
|
| - // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits
|
| - // in mask set, so value equals mask.
|
| - static const __int64 nanval = kQuietNaNMask;
|
| - return *reinterpret_cast<const double*>(&nanval);
|
| -#else // _MSC_VER
|
| - return NAN;
|
| -#endif // _MSC_VER
|
| -}
|
| -
|
| -
|
| -int OS::ActivationFrameAlignment() {
|
| -#ifdef _WIN64
|
| - return 16; // Windows 64-bit ABI requires the stack to be 16-byte aligned.
|
| -#elif defined(__MINGW32__)
|
| - // With gcc 4.4 the tree vectorization optimizer can generate code
|
| - // that requires 16 byte alignment such as movdqa on x86.
|
| - return 16;
|
| -#else
|
| - return 8; // Floating-point math runs faster with 8-byte alignment.
|
| -#endif
|
| -}
|
| -
|
| -
|
| -VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
|
| -
|
| -
|
| -VirtualMemory::VirtualMemory(size_t size)
|
| - : address_(ReserveRegion(size)), size_(size) { }
|
| -
|
| -
|
| -VirtualMemory::VirtualMemory(size_t size, size_t alignment)
|
| - : address_(NULL), size_(0) {
|
| - ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
|
| - size_t request_size = RoundUp(size + alignment,
|
| - static_cast<intptr_t>(OS::AllocateAlignment()));
|
| - void* address = ReserveRegion(request_size);
|
| - if (address == NULL) return;
|
| - uint8_t* base = RoundUp(static_cast<uint8_t*>(address), alignment);
|
| - // Try reducing the size by freeing and then reallocating a specific area.
|
| - bool result = ReleaseRegion(address, request_size);
|
| - USE(result);
|
| - ASSERT(result);
|
| - address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
|
| - if (address != NULL) {
|
| - request_size = size;
|
| - ASSERT(base == static_cast<uint8_t*>(address));
|
| - } else {
|
| - // Resizing failed, just go with a bigger area.
|
| - address = ReserveRegion(request_size);
|
| - if (address == NULL) return;
|
| - }
|
| - address_ = address;
|
| - size_ = request_size;
|
| -}
|
| -
|
| -
|
| -VirtualMemory::~VirtualMemory() {
|
| - if (IsReserved()) {
|
| - bool result = ReleaseRegion(address(), size());
|
| - ASSERT(result);
|
| - USE(result);
|
| - }
|
| -}
|
| -
|
| -
|
| -bool VirtualMemory::IsReserved() {
|
| - return address_ != NULL;
|
| -}
|
| -
|
| -
|
| -void VirtualMemory::Reset() {
|
| - address_ = NULL;
|
| - size_ = 0;
|
| -}
|
| -
|
| -
|
| -bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
|
| - return CommitRegion(address, size, is_executable);
|
| -}
|
| -
|
| -
|
| -bool VirtualMemory::Uncommit(void* address, size_t size) {
|
| - ASSERT(IsReserved());
|
| - return UncommitRegion(address, size);
|
| -}
|
| -
|
| -
|
| -bool VirtualMemory::Guard(void* address) {
|
| - if (NULL == VirtualAlloc(address,
|
| - OS::CommitPageSize(),
|
| - MEM_COMMIT,
|
| - PAGE_NOACCESS)) {
|
| - return false;
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -
|
| -void* VirtualMemory::ReserveRegion(size_t size) {
|
| - return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS);
|
| -}
|
| -
|
| -
|
| -bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
|
| - int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
|
| - if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
|
| - return false;
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -
|
| -bool VirtualMemory::UncommitRegion(void* base, size_t size) {
|
| - return VirtualFree(base, size, MEM_DECOMMIT) != 0;
|
| -}
|
| -
|
| -
|
| -bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
|
| - return VirtualFree(base, 0, MEM_RELEASE) != 0;
|
| -}
|
| -
|
| -
|
| -bool VirtualMemory::HasLazyCommits() {
|
| - // TODO(alph): implement for the platform.
|
| - return false;
|
| -}
|
| -
|
| -
|
| -// ----------------------------------------------------------------------------
|
| -// Win32 thread support.
|
| -
|
| -// Definition of invalid thread handle and id.
|
| -static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
|
| -
|
| -// Entry point for threads. The supplied argument is a pointer to the thread
|
| -// object. The entry function dispatches to the run method in the thread
|
| -// object. It is important that this function has __stdcall calling
|
| -// convention.
|
| -static unsigned int __stdcall ThreadEntry(void* arg) {
|
| - Thread* thread = reinterpret_cast<Thread*>(arg);
|
| - thread->NotifyStartedAndRun();
|
| - return 0;
|
| -}
|
| -
|
| -
|
| -class Thread::PlatformData {
|
| - public:
|
| - explicit PlatformData(HANDLE thread) : thread_(thread) {}
|
| - HANDLE thread_;
|
| - unsigned thread_id_;
|
| -};
|
| -
|
| -
|
| -// Initialize a Win32 thread object. The thread has an invalid thread
|
| -// handle until it is started.
|
| -
|
| -Thread::Thread(const Options& options)
|
| - : stack_size_(options.stack_size()),
|
| - start_semaphore_(NULL) {
|
| - data_ = new PlatformData(kNoThread);
|
| - set_name(options.name());
|
| -}
|
| -
|
| -
|
| -void Thread::set_name(const char* name) {
|
| - OS::StrNCpy(name_, sizeof(name_), name, strlen(name));
|
| - name_[sizeof(name_) - 1] = '\0';
|
| -}
|
| -
|
| -
|
| -// Close our own handle for the thread.
|
| -Thread::~Thread() {
|
| - if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
|
| - delete data_;
|
| -}
|
| -
|
| -
|
| -// Create a new thread. It is important to use _beginthreadex() instead of
|
| -// the Win32 function CreateThread(), because the CreateThread() does not
|
| -// initialize thread specific structures in the C runtime library.
|
| -void Thread::Start() {
|
| - data_->thread_ = reinterpret_cast<HANDLE>(
|
| - _beginthreadex(NULL,
|
| - static_cast<unsigned>(stack_size_),
|
| - ThreadEntry,
|
| - this,
|
| - 0,
|
| - &data_->thread_id_));
|
| -}
|
| -
|
| -
|
| -// Wait for thread to terminate.
|
| -void Thread::Join() {
|
| - if (data_->thread_id_ != GetCurrentThreadId()) {
|
| - WaitForSingleObject(data_->thread_, INFINITE);
|
| - }
|
| -}
|
| -
|
| -
|
| -Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
|
| - DWORD result = TlsAlloc();
|
| - ASSERT(result != TLS_OUT_OF_INDEXES);
|
| - return static_cast<LocalStorageKey>(result);
|
| -}
|
| -
|
| -
|
| -void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
|
| - BOOL result = TlsFree(static_cast<DWORD>(key));
|
| - USE(result);
|
| - ASSERT(result);
|
| -}
|
| -
|
| -
|
| -void* Thread::GetThreadLocal(LocalStorageKey key) {
|
| - return TlsGetValue(static_cast<DWORD>(key));
|
| -}
|
| -
|
| -
|
| -void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
|
| - BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
|
| - USE(result);
|
| - ASSERT(result);
|
| -}
|
| -
|
| -
|
| -
|
| -void Thread::YieldCPU() {
|
| - Sleep(0);
|
| -}
|
| -
|
| -} } // namespace v8::internal
|
|
|