| OLD | NEW |
| (Empty) |
| 1 // Copyright 2012 the V8 project authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 // Platform-specific code for Win32. | |
| 6 | |
| 7 // Secure API functions are not available using MinGW with msvcrt.dll | |
| 8 // on Windows XP. Make sure MINGW_HAS_SECURE_API is not defined to | |
| 9 // disable definition of secure API functions in standard headers that | |
| 10 // would conflict with our own implementation. | |
| 11 #ifdef __MINGW32__ | |
| 12 #include <_mingw.h> | |
| 13 #ifdef MINGW_HAS_SECURE_API | |
| 14 #undef MINGW_HAS_SECURE_API | |
| 15 #endif // MINGW_HAS_SECURE_API | |
| 16 #endif // __MINGW32__ | |
| 17 | |
| 18 #include "src/base/win32-headers.h" | |
| 19 | |
| 20 #include "src/base/lazy-instance.h" | |
| 21 #include "src/platform.h" | |
| 22 #include "src/platform/time.h" | |
| 23 #include "src/utils.h" | |
| 24 #include "src/utils/random-number-generator.h" | |
| 25 | |
| 26 #ifdef _MSC_VER | |
| 27 | |
| 28 // Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually | |
| 29 // defined in strings.h. | |
| 30 int strncasecmp(const char* s1, const char* s2, int n) { | |
| 31 return _strnicmp(s1, s2, n); | |
| 32 } | |
| 33 | |
| 34 #endif // _MSC_VER | |
| 35 | |
| 36 | |
| 37 // Extra functions for MinGW. Most of these are the _s functions which are in | |
| 38 // the Microsoft Visual Studio C++ CRT. | |
| 39 #ifdef __MINGW32__ | |
| 40 | |
| 41 | |
| 42 #ifndef __MINGW64_VERSION_MAJOR | |
| 43 | |
| 44 #define _TRUNCATE 0 | |
| 45 #define STRUNCATE 80 | |
| 46 | |
| 47 inline void MemoryBarrier() { | |
| 48 int barrier = 0; | |
| 49 __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier)); | |
| 50 } | |
| 51 | |
| 52 #endif // __MINGW64_VERSION_MAJOR | |
| 53 | |
| 54 | |
| 55 int localtime_s(tm* out_tm, const time_t* time) { | |
| 56 tm* posix_local_time_struct = localtime(time); | |
| 57 if (posix_local_time_struct == NULL) return 1; | |
| 58 *out_tm = *posix_local_time_struct; | |
| 59 return 0; | |
| 60 } | |
| 61 | |
| 62 | |
| 63 int fopen_s(FILE** pFile, const char* filename, const char* mode) { | |
| 64 *pFile = fopen(filename, mode); | |
| 65 return *pFile != NULL ? 0 : 1; | |
| 66 } | |
| 67 | |
| 68 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count, | |
| 69 const char* format, va_list argptr) { | |
| 70 ASSERT(count == _TRUNCATE); | |
| 71 return _vsnprintf(buffer, sizeOfBuffer, format, argptr); | |
| 72 } | |
| 73 | |
| 74 | |
| 75 int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) { | |
| 76 CHECK(source != NULL); | |
| 77 CHECK(dest != NULL); | |
| 78 CHECK_GT(dest_size, 0); | |
| 79 | |
| 80 if (count == _TRUNCATE) { | |
| 81 while (dest_size > 0 && *source != 0) { | |
| 82 *(dest++) = *(source++); | |
| 83 --dest_size; | |
| 84 } | |
| 85 if (dest_size == 0) { | |
| 86 *(dest - 1) = 0; | |
| 87 return STRUNCATE; | |
| 88 } | |
| 89 } else { | |
| 90 while (dest_size > 0 && count > 0 && *source != 0) { | |
| 91 *(dest++) = *(source++); | |
| 92 --dest_size; | |
| 93 --count; | |
| 94 } | |
| 95 } | |
| 96 CHECK_GT(dest_size, 0); | |
| 97 *dest = 0; | |
| 98 return 0; | |
| 99 } | |
| 100 | |
| 101 #endif // __MINGW32__ | |
| 102 | |
| 103 namespace v8 { | |
| 104 namespace internal { | |
| 105 | |
| 106 namespace { | |
| 107 | |
| 108 bool g_hard_abort = false; | |
| 109 | |
| 110 } // namespace | |
| 111 | |
| 112 intptr_t OS::MaxVirtualMemory() { | |
| 113 return 0; | |
| 114 } | |
| 115 | |
| 116 | |
| 117 class TimezoneCache { | |
| 118 public: | |
| 119 TimezoneCache() : initialized_(false) { } | |
| 120 | |
| 121 void Clear() { | |
| 122 initialized_ = false; | |
| 123 } | |
| 124 | |
| 125 // Initialize timezone information. The timezone information is obtained from | |
| 126 // windows. If we cannot get the timezone information we fall back to CET. | |
| 127 void InitializeIfNeeded() { | |
| 128 // Just return if timezone information has already been initialized. | |
| 129 if (initialized_) return; | |
| 130 | |
| 131 // Initialize POSIX time zone data. | |
| 132 _tzset(); | |
| 133 // Obtain timezone information from operating system. | |
| 134 memset(&tzinfo_, 0, sizeof(tzinfo_)); | |
| 135 if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) { | |
| 136 // If we cannot get timezone information we fall back to CET. | |
| 137 tzinfo_.Bias = -60; | |
| 138 tzinfo_.StandardDate.wMonth = 10; | |
| 139 tzinfo_.StandardDate.wDay = 5; | |
| 140 tzinfo_.StandardDate.wHour = 3; | |
| 141 tzinfo_.StandardBias = 0; | |
| 142 tzinfo_.DaylightDate.wMonth = 3; | |
| 143 tzinfo_.DaylightDate.wDay = 5; | |
| 144 tzinfo_.DaylightDate.wHour = 2; | |
| 145 tzinfo_.DaylightBias = -60; | |
| 146 } | |
| 147 | |
| 148 // Make standard and DST timezone names. | |
| 149 WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1, | |
| 150 std_tz_name_, kTzNameSize, NULL, NULL); | |
| 151 std_tz_name_[kTzNameSize - 1] = '\0'; | |
| 152 WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1, | |
| 153 dst_tz_name_, kTzNameSize, NULL, NULL); | |
| 154 dst_tz_name_[kTzNameSize - 1] = '\0'; | |
| 155 | |
| 156 // If OS returned empty string or resource id (like "@tzres.dll,-211") | |
| 157 // simply guess the name from the UTC bias of the timezone. | |
| 158 // To properly resolve the resource identifier requires a library load, | |
| 159 // which is not possible in a sandbox. | |
| 160 if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') { | |
| 161 OS::SNPrintF(std_tz_name_, kTzNameSize - 1, | |
| 162 "%s Standard Time", | |
| 163 GuessTimezoneNameFromBias(tzinfo_.Bias)); | |
| 164 } | |
| 165 if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') { | |
| 166 OS::SNPrintF(dst_tz_name_, kTzNameSize - 1, | |
| 167 "%s Daylight Time", | |
| 168 GuessTimezoneNameFromBias(tzinfo_.Bias)); | |
| 169 } | |
| 170 // Timezone information initialized. | |
| 171 initialized_ = true; | |
| 172 } | |
| 173 | |
| 174 // Guess the name of the timezone from the bias. | |
| 175 // The guess is very biased towards the northern hemisphere. | |
| 176 const char* GuessTimezoneNameFromBias(int bias) { | |
| 177 static const int kHour = 60; | |
| 178 switch (-bias) { | |
| 179 case -9*kHour: return "Alaska"; | |
| 180 case -8*kHour: return "Pacific"; | |
| 181 case -7*kHour: return "Mountain"; | |
| 182 case -6*kHour: return "Central"; | |
| 183 case -5*kHour: return "Eastern"; | |
| 184 case -4*kHour: return "Atlantic"; | |
| 185 case 0*kHour: return "GMT"; | |
| 186 case +1*kHour: return "Central Europe"; | |
| 187 case +2*kHour: return "Eastern Europe"; | |
| 188 case +3*kHour: return "Russia"; | |
| 189 case +5*kHour + 30: return "India"; | |
| 190 case +8*kHour: return "China"; | |
| 191 case +9*kHour: return "Japan"; | |
| 192 case +12*kHour: return "New Zealand"; | |
| 193 default: return "Local"; | |
| 194 } | |
| 195 } | |
| 196 | |
| 197 | |
| 198 private: | |
| 199 static const int kTzNameSize = 128; | |
| 200 bool initialized_; | |
| 201 char std_tz_name_[kTzNameSize]; | |
| 202 char dst_tz_name_[kTzNameSize]; | |
| 203 TIME_ZONE_INFORMATION tzinfo_; | |
| 204 friend class Win32Time; | |
| 205 }; | |
| 206 | |
| 207 | |
| 208 // ---------------------------------------------------------------------------- | |
| 209 // The Time class represents time on win32. A timestamp is represented as | |
| 210 // a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript | |
| 211 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC, | |
| 212 // January 1, 1970. | |
| 213 | |
| 214 class Win32Time { | |
| 215 public: | |
| 216 // Constructors. | |
| 217 Win32Time(); | |
| 218 explicit Win32Time(double jstime); | |
| 219 Win32Time(int year, int mon, int day, int hour, int min, int sec); | |
| 220 | |
| 221 // Convert timestamp to JavaScript representation. | |
| 222 double ToJSTime(); | |
| 223 | |
| 224 // Set timestamp to current time. | |
| 225 void SetToCurrentTime(); | |
| 226 | |
| 227 // Returns the local timezone offset in milliseconds east of UTC. This is | |
| 228 // the number of milliseconds you must add to UTC to get local time, i.e. | |
| 229 // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This | |
| 230 // routine also takes into account whether daylight saving is effect | |
| 231 // at the time. | |
| 232 int64_t LocalOffset(TimezoneCache* cache); | |
| 233 | |
| 234 // Returns the daylight savings time offset for the time in milliseconds. | |
| 235 int64_t DaylightSavingsOffset(TimezoneCache* cache); | |
| 236 | |
| 237 // Returns a string identifying the current timezone for the | |
| 238 // timestamp taking into account daylight saving. | |
| 239 char* LocalTimezone(TimezoneCache* cache); | |
| 240 | |
| 241 private: | |
| 242 // Constants for time conversion. | |
| 243 static const int64_t kTimeEpoc = 116444736000000000LL; | |
| 244 static const int64_t kTimeScaler = 10000; | |
| 245 static const int64_t kMsPerMinute = 60000; | |
| 246 | |
| 247 // Constants for timezone information. | |
| 248 static const bool kShortTzNames = false; | |
| 249 | |
| 250 // Return whether or not daylight savings time is in effect at this time. | |
| 251 bool InDST(TimezoneCache* cache); | |
| 252 | |
| 253 // Accessor for FILETIME representation. | |
| 254 FILETIME& ft() { return time_.ft_; } | |
| 255 | |
| 256 // Accessor for integer representation. | |
| 257 int64_t& t() { return time_.t_; } | |
| 258 | |
| 259 // Although win32 uses 64-bit integers for representing timestamps, | |
| 260 // these are packed into a FILETIME structure. The FILETIME structure | |
| 261 // is just a struct representing a 64-bit integer. The TimeStamp union | |
| 262 // allows access to both a FILETIME and an integer representation of | |
| 263 // the timestamp. | |
| 264 union TimeStamp { | |
| 265 FILETIME ft_; | |
| 266 int64_t t_; | |
| 267 }; | |
| 268 | |
| 269 TimeStamp time_; | |
| 270 }; | |
| 271 | |
| 272 | |
| 273 // Initialize timestamp to start of epoc. | |
| 274 Win32Time::Win32Time() { | |
| 275 t() = 0; | |
| 276 } | |
| 277 | |
| 278 | |
| 279 // Initialize timestamp from a JavaScript timestamp. | |
| 280 Win32Time::Win32Time(double jstime) { | |
| 281 t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc; | |
| 282 } | |
| 283 | |
| 284 | |
| 285 // Initialize timestamp from date/time components. | |
| 286 Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) { | |
| 287 SYSTEMTIME st; | |
| 288 st.wYear = year; | |
| 289 st.wMonth = mon; | |
| 290 st.wDay = day; | |
| 291 st.wHour = hour; | |
| 292 st.wMinute = min; | |
| 293 st.wSecond = sec; | |
| 294 st.wMilliseconds = 0; | |
| 295 SystemTimeToFileTime(&st, &ft()); | |
| 296 } | |
| 297 | |
| 298 | |
| 299 // Convert timestamp to JavaScript timestamp. | |
| 300 double Win32Time::ToJSTime() { | |
| 301 return static_cast<double>((t() - kTimeEpoc) / kTimeScaler); | |
| 302 } | |
| 303 | |
| 304 | |
| 305 // Set timestamp to current time. | |
| 306 void Win32Time::SetToCurrentTime() { | |
| 307 // The default GetSystemTimeAsFileTime has a ~15.5ms resolution. | |
| 308 // Because we're fast, we like fast timers which have at least a | |
| 309 // 1ms resolution. | |
| 310 // | |
| 311 // timeGetTime() provides 1ms granularity when combined with | |
| 312 // timeBeginPeriod(). If the host application for v8 wants fast | |
| 313 // timers, it can use timeBeginPeriod to increase the resolution. | |
| 314 // | |
| 315 // Using timeGetTime() has a drawback because it is a 32bit value | |
| 316 // and hence rolls-over every ~49days. | |
| 317 // | |
| 318 // To use the clock, we use GetSystemTimeAsFileTime as our base; | |
| 319 // and then use timeGetTime to extrapolate current time from the | |
| 320 // start time. To deal with rollovers, we resync the clock | |
| 321 // any time when more than kMaxClockElapsedTime has passed or | |
| 322 // whenever timeGetTime creates a rollover. | |
| 323 | |
| 324 static bool initialized = false; | |
| 325 static TimeStamp init_time; | |
| 326 static DWORD init_ticks; | |
| 327 static const int64_t kHundredNanosecondsPerSecond = 10000000; | |
| 328 static const int64_t kMaxClockElapsedTime = | |
| 329 60*kHundredNanosecondsPerSecond; // 1 minute | |
| 330 | |
| 331 // If we are uninitialized, we need to resync the clock. | |
| 332 bool needs_resync = !initialized; | |
| 333 | |
| 334 // Get the current time. | |
| 335 TimeStamp time_now; | |
| 336 GetSystemTimeAsFileTime(&time_now.ft_); | |
| 337 DWORD ticks_now = timeGetTime(); | |
| 338 | |
| 339 // Check if we need to resync due to clock rollover. | |
| 340 needs_resync |= ticks_now < init_ticks; | |
| 341 | |
| 342 // Check if we need to resync due to elapsed time. | |
| 343 needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime; | |
| 344 | |
| 345 // Check if we need to resync due to backwards time change. | |
| 346 needs_resync |= time_now.t_ < init_time.t_; | |
| 347 | |
| 348 // Resync the clock if necessary. | |
| 349 if (needs_resync) { | |
| 350 GetSystemTimeAsFileTime(&init_time.ft_); | |
| 351 init_ticks = ticks_now = timeGetTime(); | |
| 352 initialized = true; | |
| 353 } | |
| 354 | |
| 355 // Finally, compute the actual time. Why is this so hard. | |
| 356 DWORD elapsed = ticks_now - init_ticks; | |
| 357 this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000); | |
| 358 } | |
| 359 | |
| 360 | |
| 361 // Return the local timezone offset in milliseconds east of UTC. This | |
| 362 // takes into account whether daylight saving is in effect at the time. | |
| 363 // Only times in the 32-bit Unix range may be passed to this function. | |
| 364 // Also, adding the time-zone offset to the input must not overflow. | |
| 365 // The function EquivalentTime() in date.js guarantees this. | |
| 366 int64_t Win32Time::LocalOffset(TimezoneCache* cache) { | |
| 367 cache->InitializeIfNeeded(); | |
| 368 | |
| 369 Win32Time rounded_to_second(*this); | |
| 370 rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler * | |
| 371 1000 * kTimeScaler; | |
| 372 // Convert to local time using POSIX localtime function. | |
| 373 // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime() | |
| 374 // very slow. Other browsers use localtime(). | |
| 375 | |
| 376 // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to | |
| 377 // POSIX seconds past 1/1/1970 0:00:00. | |
| 378 double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000; | |
| 379 if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) { | |
| 380 return 0; | |
| 381 } | |
| 382 // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int. | |
| 383 time_t posix_time = static_cast<time_t>(unchecked_posix_time); | |
| 384 | |
| 385 // Convert to local time, as struct with fields for day, hour, year, etc. | |
| 386 tm posix_local_time_struct; | |
| 387 if (localtime_s(&posix_local_time_struct, &posix_time)) return 0; | |
| 388 | |
| 389 if (posix_local_time_struct.tm_isdst > 0) { | |
| 390 return (cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * -kMsPerMinute; | |
| 391 } else if (posix_local_time_struct.tm_isdst == 0) { | |
| 392 return (cache->tzinfo_.Bias + cache->tzinfo_.StandardBias) * -kMsPerMinute; | |
| 393 } else { | |
| 394 return cache->tzinfo_.Bias * -kMsPerMinute; | |
| 395 } | |
| 396 } | |
| 397 | |
| 398 | |
| 399 // Return whether or not daylight savings time is in effect at this time. | |
| 400 bool Win32Time::InDST(TimezoneCache* cache) { | |
| 401 cache->InitializeIfNeeded(); | |
| 402 | |
| 403 // Determine if DST is in effect at the specified time. | |
| 404 bool in_dst = false; | |
| 405 if (cache->tzinfo_.StandardDate.wMonth != 0 || | |
| 406 cache->tzinfo_.DaylightDate.wMonth != 0) { | |
| 407 // Get the local timezone offset for the timestamp in milliseconds. | |
| 408 int64_t offset = LocalOffset(cache); | |
| 409 | |
| 410 // Compute the offset for DST. The bias parameters in the timezone info | |
| 411 // are specified in minutes. These must be converted to milliseconds. | |
| 412 int64_t dstofs = | |
| 413 -(cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * kMsPerMinute; | |
| 414 | |
| 415 // If the local time offset equals the timezone bias plus the daylight | |
| 416 // bias then DST is in effect. | |
| 417 in_dst = offset == dstofs; | |
| 418 } | |
| 419 | |
| 420 return in_dst; | |
| 421 } | |
| 422 | |
| 423 | |
| 424 // Return the daylight savings time offset for this time. | |
| 425 int64_t Win32Time::DaylightSavingsOffset(TimezoneCache* cache) { | |
| 426 return InDST(cache) ? 60 * kMsPerMinute : 0; | |
| 427 } | |
| 428 | |
| 429 | |
| 430 // Returns a string identifying the current timezone for the | |
| 431 // timestamp taking into account daylight saving. | |
| 432 char* Win32Time::LocalTimezone(TimezoneCache* cache) { | |
| 433 // Return the standard or DST time zone name based on whether daylight | |
| 434 // saving is in effect at the given time. | |
| 435 return InDST(cache) ? cache->dst_tz_name_ : cache->std_tz_name_; | |
| 436 } | |
| 437 | |
| 438 | |
| 439 // Returns the accumulated user time for thread. | |
| 440 int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) { | |
| 441 FILETIME dummy; | |
| 442 uint64_t usertime; | |
| 443 | |
| 444 // Get the amount of time that the thread has executed in user mode. | |
| 445 if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy, | |
| 446 reinterpret_cast<FILETIME*>(&usertime))) return -1; | |
| 447 | |
| 448 // Adjust the resolution to micro-seconds. | |
| 449 usertime /= 10; | |
| 450 | |
| 451 // Convert to seconds and microseconds | |
| 452 *secs = static_cast<uint32_t>(usertime / 1000000); | |
| 453 *usecs = static_cast<uint32_t>(usertime % 1000000); | |
| 454 return 0; | |
| 455 } | |
| 456 | |
| 457 | |
| 458 // Returns current time as the number of milliseconds since | |
| 459 // 00:00:00 UTC, January 1, 1970. | |
| 460 double OS::TimeCurrentMillis() { | |
| 461 return Time::Now().ToJsTime(); | |
| 462 } | |
| 463 | |
| 464 | |
| 465 TimezoneCache* OS::CreateTimezoneCache() { | |
| 466 return new TimezoneCache(); | |
| 467 } | |
| 468 | |
| 469 | |
| 470 void OS::DisposeTimezoneCache(TimezoneCache* cache) { | |
| 471 delete cache; | |
| 472 } | |
| 473 | |
| 474 | |
| 475 void OS::ClearTimezoneCache(TimezoneCache* cache) { | |
| 476 cache->Clear(); | |
| 477 } | |
| 478 | |
| 479 | |
| 480 // Returns a string identifying the current timezone taking into | |
| 481 // account daylight saving. | |
| 482 const char* OS::LocalTimezone(double time, TimezoneCache* cache) { | |
| 483 return Win32Time(time).LocalTimezone(cache); | |
| 484 } | |
| 485 | |
| 486 | |
| 487 // Returns the local time offset in milliseconds east of UTC without | |
| 488 // taking daylight savings time into account. | |
| 489 double OS::LocalTimeOffset(TimezoneCache* cache) { | |
| 490 // Use current time, rounded to the millisecond. | |
| 491 Win32Time t(TimeCurrentMillis()); | |
| 492 // Time::LocalOffset inlcudes any daylight savings offset, so subtract it. | |
| 493 return static_cast<double>(t.LocalOffset(cache) - | |
| 494 t.DaylightSavingsOffset(cache)); | |
| 495 } | |
| 496 | |
| 497 | |
| 498 // Returns the daylight savings offset in milliseconds for the given | |
| 499 // time. | |
| 500 double OS::DaylightSavingsOffset(double time, TimezoneCache* cache) { | |
| 501 int64_t offset = Win32Time(time).DaylightSavingsOffset(cache); | |
| 502 return static_cast<double>(offset); | |
| 503 } | |
| 504 | |
| 505 | |
| 506 int OS::GetLastError() { | |
| 507 return ::GetLastError(); | |
| 508 } | |
| 509 | |
| 510 | |
| 511 int OS::GetCurrentProcessId() { | |
| 512 return static_cast<int>(::GetCurrentProcessId()); | |
| 513 } | |
| 514 | |
| 515 | |
| 516 // ---------------------------------------------------------------------------- | |
| 517 // Win32 console output. | |
| 518 // | |
| 519 // If a Win32 application is linked as a console application it has a normal | |
| 520 // standard output and standard error. In this case normal printf works fine | |
| 521 // for output. However, if the application is linked as a GUI application, | |
| 522 // the process doesn't have a console, and therefore (debugging) output is lost. | |
| 523 // This is the case if we are embedded in a windows program (like a browser). | |
| 524 // In order to be able to get debug output in this case the the debugging | |
| 525 // facility using OutputDebugString. This output goes to the active debugger | |
| 526 // for the process (if any). Else the output can be monitored using DBMON.EXE. | |
| 527 | |
| 528 enum OutputMode { | |
| 529 UNKNOWN, // Output method has not yet been determined. | |
| 530 CONSOLE, // Output is written to stdout. | |
| 531 ODS // Output is written to debug facility. | |
| 532 }; | |
| 533 | |
| 534 static OutputMode output_mode = UNKNOWN; // Current output mode. | |
| 535 | |
| 536 | |
| 537 // Determine if the process has a console for output. | |
| 538 static bool HasConsole() { | |
| 539 // Only check the first time. Eventual race conditions are not a problem, | |
| 540 // because all threads will eventually determine the same mode. | |
| 541 if (output_mode == UNKNOWN) { | |
| 542 // We cannot just check that the standard output is attached to a console | |
| 543 // because this would fail if output is redirected to a file. Therefore we | |
| 544 // say that a process does not have an output console if either the | |
| 545 // standard output handle is invalid or its file type is unknown. | |
| 546 if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE && | |
| 547 GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN) | |
| 548 output_mode = CONSOLE; | |
| 549 else | |
| 550 output_mode = ODS; | |
| 551 } | |
| 552 return output_mode == CONSOLE; | |
| 553 } | |
| 554 | |
| 555 | |
| 556 static void VPrintHelper(FILE* stream, const char* format, va_list args) { | |
| 557 if ((stream == stdout || stream == stderr) && !HasConsole()) { | |
| 558 // It is important to use safe print here in order to avoid | |
| 559 // overflowing the buffer. We might truncate the output, but this | |
| 560 // does not crash. | |
| 561 char buffer[4096]; | |
| 562 OS::VSNPrintF(buffer, sizeof(buffer), format, args); | |
| 563 OutputDebugStringA(buffer); | |
| 564 } else { | |
| 565 vfprintf(stream, format, args); | |
| 566 } | |
| 567 } | |
| 568 | |
| 569 | |
| 570 FILE* OS::FOpen(const char* path, const char* mode) { | |
| 571 FILE* result; | |
| 572 if (fopen_s(&result, path, mode) == 0) { | |
| 573 return result; | |
| 574 } else { | |
| 575 return NULL; | |
| 576 } | |
| 577 } | |
| 578 | |
| 579 | |
| 580 bool OS::Remove(const char* path) { | |
| 581 return (DeleteFileA(path) != 0); | |
| 582 } | |
| 583 | |
| 584 | |
| 585 FILE* OS::OpenTemporaryFile() { | |
| 586 // tmpfile_s tries to use the root dir, don't use it. | |
| 587 char tempPathBuffer[MAX_PATH]; | |
| 588 DWORD path_result = 0; | |
| 589 path_result = GetTempPathA(MAX_PATH, tempPathBuffer); | |
| 590 if (path_result > MAX_PATH || path_result == 0) return NULL; | |
| 591 UINT name_result = 0; | |
| 592 char tempNameBuffer[MAX_PATH]; | |
| 593 name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer); | |
| 594 if (name_result == 0) return NULL; | |
| 595 FILE* result = FOpen(tempNameBuffer, "w+"); // Same mode as tmpfile uses. | |
| 596 if (result != NULL) { | |
| 597 Remove(tempNameBuffer); // Delete on close. | |
| 598 } | |
| 599 return result; | |
| 600 } | |
| 601 | |
| 602 | |
| 603 // Open log file in binary mode to avoid /n -> /r/n conversion. | |
| 604 const char* const OS::LogFileOpenMode = "wb"; | |
| 605 | |
| 606 | |
| 607 // Print (debug) message to console. | |
| 608 void OS::Print(const char* format, ...) { | |
| 609 va_list args; | |
| 610 va_start(args, format); | |
| 611 VPrint(format, args); | |
| 612 va_end(args); | |
| 613 } | |
| 614 | |
| 615 | |
| 616 void OS::VPrint(const char* format, va_list args) { | |
| 617 VPrintHelper(stdout, format, args); | |
| 618 } | |
| 619 | |
| 620 | |
| 621 void OS::FPrint(FILE* out, const char* format, ...) { | |
| 622 va_list args; | |
| 623 va_start(args, format); | |
| 624 VFPrint(out, format, args); | |
| 625 va_end(args); | |
| 626 } | |
| 627 | |
| 628 | |
| 629 void OS::VFPrint(FILE* out, const char* format, va_list args) { | |
| 630 VPrintHelper(out, format, args); | |
| 631 } | |
| 632 | |
| 633 | |
| 634 // Print error message to console. | |
| 635 void OS::PrintError(const char* format, ...) { | |
| 636 va_list args; | |
| 637 va_start(args, format); | |
| 638 VPrintError(format, args); | |
| 639 va_end(args); | |
| 640 } | |
| 641 | |
| 642 | |
| 643 void OS::VPrintError(const char* format, va_list args) { | |
| 644 VPrintHelper(stderr, format, args); | |
| 645 } | |
| 646 | |
| 647 | |
| 648 int OS::SNPrintF(char* str, int length, const char* format, ...) { | |
| 649 va_list args; | |
| 650 va_start(args, format); | |
| 651 int result = VSNPrintF(str, length, format, args); | |
| 652 va_end(args); | |
| 653 return result; | |
| 654 } | |
| 655 | |
| 656 | |
| 657 int OS::VSNPrintF(char* str, int length, const char* format, va_list args) { | |
| 658 int n = _vsnprintf_s(str, length, _TRUNCATE, format, args); | |
| 659 // Make sure to zero-terminate the string if the output was | |
| 660 // truncated or if there was an error. | |
| 661 if (n < 0 || n >= length) { | |
| 662 if (length > 0) | |
| 663 str[length - 1] = '\0'; | |
| 664 return -1; | |
| 665 } else { | |
| 666 return n; | |
| 667 } | |
| 668 } | |
| 669 | |
| 670 | |
| 671 char* OS::StrChr(char* str, int c) { | |
| 672 return const_cast<char*>(strchr(str, c)); | |
| 673 } | |
| 674 | |
| 675 | |
| 676 void OS::StrNCpy(char* dest, int length, const char* src, size_t n) { | |
| 677 // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small. | |
| 678 size_t buffer_size = static_cast<size_t>(length); | |
| 679 if (n + 1 > buffer_size) // count for trailing '\0' | |
| 680 n = _TRUNCATE; | |
| 681 int result = strncpy_s(dest, length, src, n); | |
| 682 USE(result); | |
| 683 ASSERT(result == 0 || (n == _TRUNCATE && result == STRUNCATE)); | |
| 684 } | |
| 685 | |
| 686 | |
| 687 #undef _TRUNCATE | |
| 688 #undef STRUNCATE | |
| 689 | |
| 690 | |
| 691 // Get the system's page size used by VirtualAlloc() or the next power | |
| 692 // of two. The reason for always returning a power of two is that the | |
| 693 // rounding up in OS::Allocate expects that. | |
| 694 static size_t GetPageSize() { | |
| 695 static size_t page_size = 0; | |
| 696 if (page_size == 0) { | |
| 697 SYSTEM_INFO info; | |
| 698 GetSystemInfo(&info); | |
| 699 page_size = RoundUpToPowerOf2(info.dwPageSize); | |
| 700 } | |
| 701 return page_size; | |
| 702 } | |
| 703 | |
| 704 | |
| 705 // The allocation alignment is the guaranteed alignment for | |
| 706 // VirtualAlloc'ed blocks of memory. | |
| 707 size_t OS::AllocateAlignment() { | |
| 708 static size_t allocate_alignment = 0; | |
| 709 if (allocate_alignment == 0) { | |
| 710 SYSTEM_INFO info; | |
| 711 GetSystemInfo(&info); | |
| 712 allocate_alignment = info.dwAllocationGranularity; | |
| 713 } | |
| 714 return allocate_alignment; | |
| 715 } | |
| 716 | |
| 717 | |
| 718 static base::LazyInstance<RandomNumberGenerator>::type | |
| 719 platform_random_number_generator = LAZY_INSTANCE_INITIALIZER; | |
| 720 | |
| 721 | |
| 722 void OS::Initialize(int64_t random_seed, bool hard_abort, | |
| 723 const char* const gc_fake_mmap) { | |
| 724 if (random_seed) { | |
| 725 platform_random_number_generator.Pointer()->SetSeed(random_seed); | |
| 726 } | |
| 727 g_hard_abort = hard_abort; | |
| 728 } | |
| 729 | |
| 730 | |
| 731 void* OS::GetRandomMmapAddr() { | |
| 732 // The address range used to randomize RWX allocations in OS::Allocate | |
| 733 // Try not to map pages into the default range that windows loads DLLs | |
| 734 // Use a multiple of 64k to prevent committing unused memory. | |
| 735 // Note: This does not guarantee RWX regions will be within the | |
| 736 // range kAllocationRandomAddressMin to kAllocationRandomAddressMax | |
| 737 #ifdef V8_HOST_ARCH_64_BIT | |
| 738 static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000; | |
| 739 static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000; | |
| 740 #else | |
| 741 static const intptr_t kAllocationRandomAddressMin = 0x04000000; | |
| 742 static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000; | |
| 743 #endif | |
| 744 uintptr_t address = | |
| 745 (platform_random_number_generator.Pointer()->NextInt() << kPageSizeBits) | | |
| 746 kAllocationRandomAddressMin; | |
| 747 address &= kAllocationRandomAddressMax; | |
| 748 return reinterpret_cast<void *>(address); | |
| 749 } | |
| 750 | |
| 751 | |
| 752 static void* RandomizedVirtualAlloc(size_t size, int action, int protection) { | |
| 753 LPVOID base = NULL; | |
| 754 | |
| 755 if (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS) { | |
| 756 // For exectutable pages try and randomize the allocation address | |
| 757 for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) { | |
| 758 base = VirtualAlloc(OS::GetRandomMmapAddr(), size, action, protection); | |
| 759 } | |
| 760 } | |
| 761 | |
| 762 // After three attempts give up and let the OS find an address to use. | |
| 763 if (base == NULL) base = VirtualAlloc(NULL, size, action, protection); | |
| 764 | |
| 765 return base; | |
| 766 } | |
| 767 | |
| 768 | |
| 769 void* OS::Allocate(const size_t requested, | |
| 770 size_t* allocated, | |
| 771 bool is_executable) { | |
| 772 // VirtualAlloc rounds allocated size to page size automatically. | |
| 773 size_t msize = RoundUp(requested, static_cast<int>(GetPageSize())); | |
| 774 | |
| 775 // Windows XP SP2 allows Data Excution Prevention (DEP). | |
| 776 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE; | |
| 777 | |
| 778 LPVOID mbase = RandomizedVirtualAlloc(msize, | |
| 779 MEM_COMMIT | MEM_RESERVE, | |
| 780 prot); | |
| 781 | |
| 782 if (mbase == NULL) return NULL; | |
| 783 | |
| 784 ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment())); | |
| 785 | |
| 786 *allocated = msize; | |
| 787 return mbase; | |
| 788 } | |
| 789 | |
| 790 | |
| 791 void OS::Free(void* address, const size_t size) { | |
| 792 // TODO(1240712): VirtualFree has a return value which is ignored here. | |
| 793 VirtualFree(address, 0, MEM_RELEASE); | |
| 794 USE(size); | |
| 795 } | |
| 796 | |
| 797 | |
| 798 intptr_t OS::CommitPageSize() { | |
| 799 return 4096; | |
| 800 } | |
| 801 | |
| 802 | |
| 803 void OS::ProtectCode(void* address, const size_t size) { | |
| 804 DWORD old_protect; | |
| 805 VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect); | |
| 806 } | |
| 807 | |
| 808 | |
| 809 void OS::Guard(void* address, const size_t size) { | |
| 810 DWORD oldprotect; | |
| 811 VirtualProtect(address, size, PAGE_NOACCESS, &oldprotect); | |
| 812 } | |
| 813 | |
| 814 | |
| 815 void OS::Sleep(int milliseconds) { | |
| 816 ::Sleep(milliseconds); | |
| 817 } | |
| 818 | |
| 819 | |
| 820 void OS::Abort() { | |
| 821 if (g_hard_abort) { | |
| 822 V8_IMMEDIATE_CRASH(); | |
| 823 } | |
| 824 // Make the MSVCRT do a silent abort. | |
| 825 raise(SIGABRT); | |
| 826 } | |
| 827 | |
| 828 | |
| 829 void OS::DebugBreak() { | |
| 830 #ifdef _MSC_VER | |
| 831 // To avoid Visual Studio runtime support the following code can be used | |
| 832 // instead | |
| 833 // __asm { int 3 } | |
| 834 __debugbreak(); | |
| 835 #else | |
| 836 ::DebugBreak(); | |
| 837 #endif | |
| 838 } | |
| 839 | |
| 840 | |
| 841 class Win32MemoryMappedFile : public OS::MemoryMappedFile { | |
| 842 public: | |
| 843 Win32MemoryMappedFile(HANDLE file, | |
| 844 HANDLE file_mapping, | |
| 845 void* memory, | |
| 846 int size) | |
| 847 : file_(file), | |
| 848 file_mapping_(file_mapping), | |
| 849 memory_(memory), | |
| 850 size_(size) { } | |
| 851 virtual ~Win32MemoryMappedFile(); | |
| 852 virtual void* memory() { return memory_; } | |
| 853 virtual int size() { return size_; } | |
| 854 private: | |
| 855 HANDLE file_; | |
| 856 HANDLE file_mapping_; | |
| 857 void* memory_; | |
| 858 int size_; | |
| 859 }; | |
| 860 | |
| 861 | |
| 862 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) { | |
| 863 // Open a physical file | |
| 864 HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE, | |
| 865 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL); | |
| 866 if (file == INVALID_HANDLE_VALUE) return NULL; | |
| 867 | |
| 868 int size = static_cast<int>(GetFileSize(file, NULL)); | |
| 869 | |
| 870 // Create a file mapping for the physical file | |
| 871 HANDLE file_mapping = CreateFileMapping(file, NULL, | |
| 872 PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL); | |
| 873 if (file_mapping == NULL) return NULL; | |
| 874 | |
| 875 // Map a view of the file into memory | |
| 876 void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size); | |
| 877 return new Win32MemoryMappedFile(file, file_mapping, memory, size); | |
| 878 } | |
| 879 | |
| 880 | |
| 881 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, | |
| 882 void* initial) { | |
| 883 // Open a physical file | |
| 884 HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE, | |
| 885 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL); | |
| 886 if (file == NULL) return NULL; | |
| 887 // Create a file mapping for the physical file | |
| 888 HANDLE file_mapping = CreateFileMapping(file, NULL, | |
| 889 PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL); | |
| 890 if (file_mapping == NULL) return NULL; | |
| 891 // Map a view of the file into memory | |
| 892 void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size); | |
| 893 if (memory) MemMove(memory, initial, size); | |
| 894 return new Win32MemoryMappedFile(file, file_mapping, memory, size); | |
| 895 } | |
| 896 | |
| 897 | |
| 898 Win32MemoryMappedFile::~Win32MemoryMappedFile() { | |
| 899 if (memory_ != NULL) | |
| 900 UnmapViewOfFile(memory_); | |
| 901 CloseHandle(file_mapping_); | |
| 902 CloseHandle(file_); | |
| 903 } | |
| 904 | |
| 905 | |
| 906 // The following code loads functions defined in DbhHelp.h and TlHelp32.h | |
| 907 // dynamically. This is to avoid being depending on dbghelp.dll and | |
| 908 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to | |
| 909 // kernel32.dll at some point so loading functions defines in TlHelp32.h | |
| 910 // dynamically might not be necessary any more - for some versions of Windows?). | |
| 911 | |
| 912 // Function pointers to functions dynamically loaded from dbghelp.dll. | |
| 913 #define DBGHELP_FUNCTION_LIST(V) \ | |
| 914 V(SymInitialize) \ | |
| 915 V(SymGetOptions) \ | |
| 916 V(SymSetOptions) \ | |
| 917 V(SymGetSearchPath) \ | |
| 918 V(SymLoadModule64) \ | |
| 919 V(StackWalk64) \ | |
| 920 V(SymGetSymFromAddr64) \ | |
| 921 V(SymGetLineFromAddr64) \ | |
| 922 V(SymFunctionTableAccess64) \ | |
| 923 V(SymGetModuleBase64) | |
| 924 | |
| 925 // Function pointers to functions dynamically loaded from dbghelp.dll. | |
| 926 #define TLHELP32_FUNCTION_LIST(V) \ | |
| 927 V(CreateToolhelp32Snapshot) \ | |
| 928 V(Module32FirstW) \ | |
| 929 V(Module32NextW) | |
| 930 | |
| 931 // Define the decoration to use for the type and variable name used for | |
| 932 // dynamically loaded DLL function.. | |
| 933 #define DLL_FUNC_TYPE(name) _##name##_ | |
| 934 #define DLL_FUNC_VAR(name) _##name | |
| 935 | |
| 936 // Define the type for each dynamically loaded DLL function. The function | |
| 937 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros | |
| 938 // from the Windows include files are redefined here to have the function | |
| 939 // definitions to be as close to the ones in the original .h files as possible. | |
| 940 #ifndef IN | |
| 941 #define IN | |
| 942 #endif | |
| 943 #ifndef VOID | |
| 944 #define VOID void | |
| 945 #endif | |
| 946 | |
| 947 // DbgHelp isn't supported on MinGW yet | |
| 948 #ifndef __MINGW32__ | |
| 949 // DbgHelp.h functions. | |
| 950 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess, | |
| 951 IN PSTR UserSearchPath, | |
| 952 IN BOOL fInvadeProcess); | |
| 953 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID); | |
| 954 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions); | |
| 955 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))( | |
| 956 IN HANDLE hProcess, | |
| 957 OUT PSTR SearchPath, | |
| 958 IN DWORD SearchPathLength); | |
| 959 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))( | |
| 960 IN HANDLE hProcess, | |
| 961 IN HANDLE hFile, | |
| 962 IN PSTR ImageName, | |
| 963 IN PSTR ModuleName, | |
| 964 IN DWORD64 BaseOfDll, | |
| 965 IN DWORD SizeOfDll); | |
| 966 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))( | |
| 967 DWORD MachineType, | |
| 968 HANDLE hProcess, | |
| 969 HANDLE hThread, | |
| 970 LPSTACKFRAME64 StackFrame, | |
| 971 PVOID ContextRecord, | |
| 972 PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine, | |
| 973 PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine, | |
| 974 PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine, | |
| 975 PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress); | |
| 976 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))( | |
| 977 IN HANDLE hProcess, | |
| 978 IN DWORD64 qwAddr, | |
| 979 OUT PDWORD64 pdwDisplacement, | |
| 980 OUT PIMAGEHLP_SYMBOL64 Symbol); | |
| 981 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))( | |
| 982 IN HANDLE hProcess, | |
| 983 IN DWORD64 qwAddr, | |
| 984 OUT PDWORD pdwDisplacement, | |
| 985 OUT PIMAGEHLP_LINE64 Line64); | |
| 986 // DbgHelp.h typedefs. Implementation found in dbghelp.dll. | |
| 987 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))( | |
| 988 HANDLE hProcess, | |
| 989 DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64 | |
| 990 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))( | |
| 991 HANDLE hProcess, | |
| 992 DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64 | |
| 993 | |
| 994 // TlHelp32.h functions. | |
| 995 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))( | |
| 996 DWORD dwFlags, | |
| 997 DWORD th32ProcessID); | |
| 998 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot, | |
| 999 LPMODULEENTRY32W lpme); | |
| 1000 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot, | |
| 1001 LPMODULEENTRY32W lpme); | |
| 1002 | |
| 1003 #undef IN | |
| 1004 #undef VOID | |
| 1005 | |
| 1006 // Declare a variable for each dynamically loaded DLL function. | |
| 1007 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL; | |
| 1008 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION) | |
| 1009 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION) | |
| 1010 #undef DEF_DLL_FUNCTION | |
| 1011 | |
| 1012 // Load the functions. This function has a lot of "ugly" macros in order to | |
| 1013 // keep down code duplication. | |
| 1014 | |
| 1015 static bool LoadDbgHelpAndTlHelp32() { | |
| 1016 static bool dbghelp_loaded = false; | |
| 1017 | |
| 1018 if (dbghelp_loaded) return true; | |
| 1019 | |
| 1020 HMODULE module; | |
| 1021 | |
| 1022 // Load functions from the dbghelp.dll module. | |
| 1023 module = LoadLibrary(TEXT("dbghelp.dll")); | |
| 1024 if (module == NULL) { | |
| 1025 return false; | |
| 1026 } | |
| 1027 | |
| 1028 #define LOAD_DLL_FUNC(name) \ | |
| 1029 DLL_FUNC_VAR(name) = \ | |
| 1030 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name)); | |
| 1031 | |
| 1032 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC) | |
| 1033 | |
| 1034 #undef LOAD_DLL_FUNC | |
| 1035 | |
| 1036 // Load functions from the kernel32.dll module (the TlHelp32.h function used | |
| 1037 // to be in tlhelp32.dll but are now moved to kernel32.dll). | |
| 1038 module = LoadLibrary(TEXT("kernel32.dll")); | |
| 1039 if (module == NULL) { | |
| 1040 return false; | |
| 1041 } | |
| 1042 | |
| 1043 #define LOAD_DLL_FUNC(name) \ | |
| 1044 DLL_FUNC_VAR(name) = \ | |
| 1045 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name)); | |
| 1046 | |
| 1047 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC) | |
| 1048 | |
| 1049 #undef LOAD_DLL_FUNC | |
| 1050 | |
| 1051 // Check that all functions where loaded. | |
| 1052 bool result = | |
| 1053 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) && | |
| 1054 | |
| 1055 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED) | |
| 1056 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED) | |
| 1057 | |
| 1058 #undef DLL_FUNC_LOADED | |
| 1059 true; | |
| 1060 | |
| 1061 dbghelp_loaded = result; | |
| 1062 return result; | |
| 1063 // NOTE: The modules are never unloaded and will stay around until the | |
| 1064 // application is closed. | |
| 1065 } | |
| 1066 | |
| 1067 #undef DBGHELP_FUNCTION_LIST | |
| 1068 #undef TLHELP32_FUNCTION_LIST | |
| 1069 #undef DLL_FUNC_VAR | |
| 1070 #undef DLL_FUNC_TYPE | |
| 1071 | |
| 1072 | |
| 1073 // Load the symbols for generating stack traces. | |
| 1074 static std::vector<OS::SharedLibraryAddress> LoadSymbols( | |
| 1075 HANDLE process_handle) { | |
| 1076 static std::vector<OS::SharedLibraryAddress> result; | |
| 1077 | |
| 1078 static bool symbols_loaded = false; | |
| 1079 | |
| 1080 if (symbols_loaded) return result; | |
| 1081 | |
| 1082 BOOL ok; | |
| 1083 | |
| 1084 // Initialize the symbol engine. | |
| 1085 ok = _SymInitialize(process_handle, // hProcess | |
| 1086 NULL, // UserSearchPath | |
| 1087 false); // fInvadeProcess | |
| 1088 if (!ok) return result; | |
| 1089 | |
| 1090 DWORD options = _SymGetOptions(); | |
| 1091 options |= SYMOPT_LOAD_LINES; | |
| 1092 options |= SYMOPT_FAIL_CRITICAL_ERRORS; | |
| 1093 options = _SymSetOptions(options); | |
| 1094 | |
| 1095 char buf[OS::kStackWalkMaxNameLen] = {0}; | |
| 1096 ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen); | |
| 1097 if (!ok) { | |
| 1098 int err = GetLastError(); | |
| 1099 PrintF("%d\n", err); | |
| 1100 return result; | |
| 1101 } | |
| 1102 | |
| 1103 HANDLE snapshot = _CreateToolhelp32Snapshot( | |
| 1104 TH32CS_SNAPMODULE, // dwFlags | |
| 1105 GetCurrentProcessId()); // th32ProcessId | |
| 1106 if (snapshot == INVALID_HANDLE_VALUE) return result; | |
| 1107 MODULEENTRY32W module_entry; | |
| 1108 module_entry.dwSize = sizeof(module_entry); // Set the size of the structure. | |
| 1109 BOOL cont = _Module32FirstW(snapshot, &module_entry); | |
| 1110 while (cont) { | |
| 1111 DWORD64 base; | |
| 1112 // NOTE the SymLoadModule64 function has the peculiarity of accepting a | |
| 1113 // both unicode and ASCII strings even though the parameter is PSTR. | |
| 1114 base = _SymLoadModule64( | |
| 1115 process_handle, // hProcess | |
| 1116 0, // hFile | |
| 1117 reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName | |
| 1118 reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName | |
| 1119 reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll | |
| 1120 module_entry.modBaseSize); // SizeOfDll | |
| 1121 if (base == 0) { | |
| 1122 int err = GetLastError(); | |
| 1123 if (err != ERROR_MOD_NOT_FOUND && | |
| 1124 err != ERROR_INVALID_HANDLE) { | |
| 1125 result.clear(); | |
| 1126 return result; | |
| 1127 } | |
| 1128 } | |
| 1129 int lib_name_length = WideCharToMultiByte( | |
| 1130 CP_UTF8, 0, module_entry.szExePath, -1, NULL, 0, NULL, NULL); | |
| 1131 std::string lib_name(lib_name_length, 0); | |
| 1132 WideCharToMultiByte(CP_UTF8, 0, module_entry.szExePath, -1, &lib_name[0], | |
| 1133 lib_name_length, NULL, NULL); | |
| 1134 result.push_back(OS::SharedLibraryAddress( | |
| 1135 lib_name, reinterpret_cast<unsigned int>(module_entry.modBaseAddr), | |
| 1136 reinterpret_cast<unsigned int>(module_entry.modBaseAddr + | |
| 1137 module_entry.modBaseSize))); | |
| 1138 cont = _Module32NextW(snapshot, &module_entry); | |
| 1139 } | |
| 1140 CloseHandle(snapshot); | |
| 1141 | |
| 1142 symbols_loaded = true; | |
| 1143 return result; | |
| 1144 } | |
| 1145 | |
| 1146 | |
| 1147 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() { | |
| 1148 // SharedLibraryEvents are logged when loading symbol information. | |
| 1149 // Only the shared libraries loaded at the time of the call to | |
| 1150 // GetSharedLibraryAddresses are logged. DLLs loaded after | |
| 1151 // initialization are not accounted for. | |
| 1152 if (!LoadDbgHelpAndTlHelp32()) return std::vector<OS::SharedLibraryAddress>(); | |
| 1153 HANDLE process_handle = GetCurrentProcess(); | |
| 1154 return LoadSymbols(process_handle); | |
| 1155 } | |
| 1156 | |
| 1157 | |
| 1158 void OS::SignalCodeMovingGC() { | |
| 1159 } | |
| 1160 | |
| 1161 | |
| 1162 uint64_t OS::TotalPhysicalMemory() { | |
| 1163 MEMORYSTATUSEX memory_info; | |
| 1164 memory_info.dwLength = sizeof(memory_info); | |
| 1165 if (!GlobalMemoryStatusEx(&memory_info)) { | |
| 1166 UNREACHABLE(); | |
| 1167 return 0; | |
| 1168 } | |
| 1169 | |
| 1170 return static_cast<uint64_t>(memory_info.ullTotalPhys); | |
| 1171 } | |
| 1172 | |
| 1173 | |
| 1174 #else // __MINGW32__ | |
| 1175 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() { | |
| 1176 return std::vector<OS::SharedLibraryAddress>(); | |
| 1177 } | |
| 1178 | |
| 1179 | |
| 1180 void OS::SignalCodeMovingGC() { } | |
| 1181 #endif // __MINGW32__ | |
| 1182 | |
| 1183 | |
| 1184 int OS::NumberOfProcessorsOnline() { | |
| 1185 SYSTEM_INFO info; | |
| 1186 GetSystemInfo(&info); | |
| 1187 return info.dwNumberOfProcessors; | |
| 1188 } | |
| 1189 | |
| 1190 | |
| 1191 double OS::nan_value() { | |
| 1192 #ifdef _MSC_VER | |
| 1193 // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits | |
| 1194 // in mask set, so value equals mask. | |
| 1195 static const __int64 nanval = kQuietNaNMask; | |
| 1196 return *reinterpret_cast<const double*>(&nanval); | |
| 1197 #else // _MSC_VER | |
| 1198 return NAN; | |
| 1199 #endif // _MSC_VER | |
| 1200 } | |
| 1201 | |
| 1202 | |
| 1203 int OS::ActivationFrameAlignment() { | |
| 1204 #ifdef _WIN64 | |
| 1205 return 16; // Windows 64-bit ABI requires the stack to be 16-byte aligned. | |
| 1206 #elif defined(__MINGW32__) | |
| 1207 // With gcc 4.4 the tree vectorization optimizer can generate code | |
| 1208 // that requires 16 byte alignment such as movdqa on x86. | |
| 1209 return 16; | |
| 1210 #else | |
| 1211 return 8; // Floating-point math runs faster with 8-byte alignment. | |
| 1212 #endif | |
| 1213 } | |
| 1214 | |
| 1215 | |
| 1216 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { } | |
| 1217 | |
| 1218 | |
| 1219 VirtualMemory::VirtualMemory(size_t size) | |
| 1220 : address_(ReserveRegion(size)), size_(size) { } | |
| 1221 | |
| 1222 | |
| 1223 VirtualMemory::VirtualMemory(size_t size, size_t alignment) | |
| 1224 : address_(NULL), size_(0) { | |
| 1225 ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment()))); | |
| 1226 size_t request_size = RoundUp(size + alignment, | |
| 1227 static_cast<intptr_t>(OS::AllocateAlignment())); | |
| 1228 void* address = ReserveRegion(request_size); | |
| 1229 if (address == NULL) return; | |
| 1230 uint8_t* base = RoundUp(static_cast<uint8_t*>(address), alignment); | |
| 1231 // Try reducing the size by freeing and then reallocating a specific area. | |
| 1232 bool result = ReleaseRegion(address, request_size); | |
| 1233 USE(result); | |
| 1234 ASSERT(result); | |
| 1235 address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS); | |
| 1236 if (address != NULL) { | |
| 1237 request_size = size; | |
| 1238 ASSERT(base == static_cast<uint8_t*>(address)); | |
| 1239 } else { | |
| 1240 // Resizing failed, just go with a bigger area. | |
| 1241 address = ReserveRegion(request_size); | |
| 1242 if (address == NULL) return; | |
| 1243 } | |
| 1244 address_ = address; | |
| 1245 size_ = request_size; | |
| 1246 } | |
| 1247 | |
| 1248 | |
| 1249 VirtualMemory::~VirtualMemory() { | |
| 1250 if (IsReserved()) { | |
| 1251 bool result = ReleaseRegion(address(), size()); | |
| 1252 ASSERT(result); | |
| 1253 USE(result); | |
| 1254 } | |
| 1255 } | |
| 1256 | |
| 1257 | |
| 1258 bool VirtualMemory::IsReserved() { | |
| 1259 return address_ != NULL; | |
| 1260 } | |
| 1261 | |
| 1262 | |
| 1263 void VirtualMemory::Reset() { | |
| 1264 address_ = NULL; | |
| 1265 size_ = 0; | |
| 1266 } | |
| 1267 | |
| 1268 | |
| 1269 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { | |
| 1270 return CommitRegion(address, size, is_executable); | |
| 1271 } | |
| 1272 | |
| 1273 | |
| 1274 bool VirtualMemory::Uncommit(void* address, size_t size) { | |
| 1275 ASSERT(IsReserved()); | |
| 1276 return UncommitRegion(address, size); | |
| 1277 } | |
| 1278 | |
| 1279 | |
| 1280 bool VirtualMemory::Guard(void* address) { | |
| 1281 if (NULL == VirtualAlloc(address, | |
| 1282 OS::CommitPageSize(), | |
| 1283 MEM_COMMIT, | |
| 1284 PAGE_NOACCESS)) { | |
| 1285 return false; | |
| 1286 } | |
| 1287 return true; | |
| 1288 } | |
| 1289 | |
| 1290 | |
| 1291 void* VirtualMemory::ReserveRegion(size_t size) { | |
| 1292 return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS); | |
| 1293 } | |
| 1294 | |
| 1295 | |
| 1296 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) { | |
| 1297 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE; | |
| 1298 if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) { | |
| 1299 return false; | |
| 1300 } | |
| 1301 return true; | |
| 1302 } | |
| 1303 | |
| 1304 | |
| 1305 bool VirtualMemory::UncommitRegion(void* base, size_t size) { | |
| 1306 return VirtualFree(base, size, MEM_DECOMMIT) != 0; | |
| 1307 } | |
| 1308 | |
| 1309 | |
| 1310 bool VirtualMemory::ReleaseRegion(void* base, size_t size) { | |
| 1311 return VirtualFree(base, 0, MEM_RELEASE) != 0; | |
| 1312 } | |
| 1313 | |
| 1314 | |
| 1315 bool VirtualMemory::HasLazyCommits() { | |
| 1316 // TODO(alph): implement for the platform. | |
| 1317 return false; | |
| 1318 } | |
| 1319 | |
| 1320 | |
| 1321 // ---------------------------------------------------------------------------- | |
| 1322 // Win32 thread support. | |
| 1323 | |
| 1324 // Definition of invalid thread handle and id. | |
| 1325 static const HANDLE kNoThread = INVALID_HANDLE_VALUE; | |
| 1326 | |
| 1327 // Entry point for threads. The supplied argument is a pointer to the thread | |
| 1328 // object. The entry function dispatches to the run method in the thread | |
| 1329 // object. It is important that this function has __stdcall calling | |
| 1330 // convention. | |
| 1331 static unsigned int __stdcall ThreadEntry(void* arg) { | |
| 1332 Thread* thread = reinterpret_cast<Thread*>(arg); | |
| 1333 thread->NotifyStartedAndRun(); | |
| 1334 return 0; | |
| 1335 } | |
| 1336 | |
| 1337 | |
| 1338 class Thread::PlatformData { | |
| 1339 public: | |
| 1340 explicit PlatformData(HANDLE thread) : thread_(thread) {} | |
| 1341 HANDLE thread_; | |
| 1342 unsigned thread_id_; | |
| 1343 }; | |
| 1344 | |
| 1345 | |
| 1346 // Initialize a Win32 thread object. The thread has an invalid thread | |
| 1347 // handle until it is started. | |
| 1348 | |
| 1349 Thread::Thread(const Options& options) | |
| 1350 : stack_size_(options.stack_size()), | |
| 1351 start_semaphore_(NULL) { | |
| 1352 data_ = new PlatformData(kNoThread); | |
| 1353 set_name(options.name()); | |
| 1354 } | |
| 1355 | |
| 1356 | |
| 1357 void Thread::set_name(const char* name) { | |
| 1358 OS::StrNCpy(name_, sizeof(name_), name, strlen(name)); | |
| 1359 name_[sizeof(name_) - 1] = '\0'; | |
| 1360 } | |
| 1361 | |
| 1362 | |
| 1363 // Close our own handle for the thread. | |
| 1364 Thread::~Thread() { | |
| 1365 if (data_->thread_ != kNoThread) CloseHandle(data_->thread_); | |
| 1366 delete data_; | |
| 1367 } | |
| 1368 | |
| 1369 | |
| 1370 // Create a new thread. It is important to use _beginthreadex() instead of | |
| 1371 // the Win32 function CreateThread(), because the CreateThread() does not | |
| 1372 // initialize thread specific structures in the C runtime library. | |
| 1373 void Thread::Start() { | |
| 1374 data_->thread_ = reinterpret_cast<HANDLE>( | |
| 1375 _beginthreadex(NULL, | |
| 1376 static_cast<unsigned>(stack_size_), | |
| 1377 ThreadEntry, | |
| 1378 this, | |
| 1379 0, | |
| 1380 &data_->thread_id_)); | |
| 1381 } | |
| 1382 | |
| 1383 | |
| 1384 // Wait for thread to terminate. | |
| 1385 void Thread::Join() { | |
| 1386 if (data_->thread_id_ != GetCurrentThreadId()) { | |
| 1387 WaitForSingleObject(data_->thread_, INFINITE); | |
| 1388 } | |
| 1389 } | |
| 1390 | |
| 1391 | |
| 1392 Thread::LocalStorageKey Thread::CreateThreadLocalKey() { | |
| 1393 DWORD result = TlsAlloc(); | |
| 1394 ASSERT(result != TLS_OUT_OF_INDEXES); | |
| 1395 return static_cast<LocalStorageKey>(result); | |
| 1396 } | |
| 1397 | |
| 1398 | |
| 1399 void Thread::DeleteThreadLocalKey(LocalStorageKey key) { | |
| 1400 BOOL result = TlsFree(static_cast<DWORD>(key)); | |
| 1401 USE(result); | |
| 1402 ASSERT(result); | |
| 1403 } | |
| 1404 | |
| 1405 | |
| 1406 void* Thread::GetThreadLocal(LocalStorageKey key) { | |
| 1407 return TlsGetValue(static_cast<DWORD>(key)); | |
| 1408 } | |
| 1409 | |
| 1410 | |
| 1411 void Thread::SetThreadLocal(LocalStorageKey key, void* value) { | |
| 1412 BOOL result = TlsSetValue(static_cast<DWORD>(key), value); | |
| 1413 USE(result); | |
| 1414 ASSERT(result); | |
| 1415 } | |
| 1416 | |
| 1417 | |
| 1418 | |
| 1419 void Thread::YieldCPU() { | |
| 1420 Sleep(0); | |
| 1421 } | |
| 1422 | |
| 1423 } } // namespace v8::internal | |
| OLD | NEW |