Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(665)

Unified Diff: ui/gfx/geometry/r_tree_base.cc

Issue 342723002: Repairs crash in RTreeBase::Node::LeastAreaEnlargement (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: crash fix and test added Created 6 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « ui/gfx/geometry/r_tree_base.h ('k') | ui/gfx/geometry/r_tree_unittest.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: ui/gfx/geometry/r_tree_base.cc
diff --git a/ui/gfx/geometry/r_tree_base.cc b/ui/gfx/geometry/r_tree_base.cc
new file mode 100644
index 0000000000000000000000000000000000000000..e93e1d5b6b1dc7ee1f9fbf85b0be8a5cb2684dfa
--- /dev/null
+++ b/ui/gfx/geometry/r_tree_base.cc
@@ -0,0 +1,658 @@
+// Copyright 2014 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "ui/gfx/geometry/r_tree_base.h"
+
+#include <algorithm>
+
+#include "base/logging.h"
+
+
+// Helpers --------------------------------------------------------------------
+
+namespace {
+
+// Returns a Vector2d to allow us to do arithmetic on the result such as
+// computing distances between centers.
+gfx::Vector2d CenterOfRect(const gfx::Rect& rect) {
+ return rect.OffsetFromOrigin() +
+ gfx::Vector2d(rect.width() / 2, rect.height() / 2);
+}
+
+}
+
+namespace gfx {
+
+
+// RTreeBase::NodeBase --------------------------------------------------------
+
+RTreeBase::NodeBase::~NodeBase() {
+}
+
+void RTreeBase::NodeBase::RecomputeBoundsUpToRoot() {
+ RecomputeLocalBounds();
+ if (parent_)
+ parent_->RecomputeBoundsUpToRoot();
+}
+
+RTreeBase::NodeBase::NodeBase(const Rect& rect, NodeBase* parent)
+ : rect_(rect),
+ parent_(parent) {
+}
+
+void RTreeBase::NodeBase::RecomputeLocalBounds() {
+}
+
+// RTreeBase::RecordBase ------------------------------------------------------
+
+RTreeBase::RecordBase::RecordBase(const Rect& rect) : NodeBase(rect, NULL) {
+}
+
+RTreeBase::RecordBase::~RecordBase() {
+}
+
+void RTreeBase::RecordBase::AppendIntersectingRecords(
+ const Rect& query_rect, Records* matches_out) const {
+ if (rect().Intersects(query_rect))
+ matches_out->push_back(this);
+}
+
+void RTreeBase::RecordBase::AppendAllRecords(Records* matches_out) const {
+ matches_out->push_back(this);
+}
+
+scoped_ptr<RTreeBase::NodeBase>
+RTreeBase::RecordBase::RemoveAndReturnLastChild() {
+ return scoped_ptr<NodeBase>();
+}
+
+int RTreeBase::RecordBase::Level() const {
+ return -1;
+}
+
+
+// RTreeBase::Node ------------------------------------------------------------
+
+RTreeBase::Node::Node() : NodeBase(Rect(), NULL), level_(0) {
+}
+
+RTreeBase::Node::~Node() {
+}
+
+scoped_ptr<RTreeBase::Node> RTreeBase::Node::ConstructParent() {
+ DCHECK(!parent());
+ scoped_ptr<Node> new_parent(new Node(level_ + 1));
+ new_parent->AddChild(scoped_ptr<NodeBase>(this));
+ return new_parent.Pass();
+}
+
+void RTreeBase::Node::AppendIntersectingRecords(
+ const Rect& query_rect, Records* matches_out) const {
+ // Check own bounding box for intersection, can cull all children if no
+ // intersection.
+ if (!rect().Intersects(query_rect))
+ return;
+
+ // Conversely if we are completely contained within the query rect we can
+ // confidently skip all bounds checks for ourselves and all our children.
+ if (query_rect.Contains(rect())) {
+ AppendAllRecords(matches_out);
+ return;
+ }
+
+ // We intersect the query rect but we are not are not contained within it.
+ // We must query each of our children in turn.
+ for (Nodes::const_iterator i = children_.begin(); i != children_.end(); ++i)
+ (*i)->AppendIntersectingRecords(query_rect, matches_out);
+}
+
+void RTreeBase::Node::AppendAllRecords(Records* matches_out) const {
+ for (Nodes::const_iterator i = children_.begin(); i != children_.end(); ++i)
+ (*i)->AppendAllRecords(matches_out);
+}
+
+void RTreeBase::Node::RemoveNodesForReinsert(size_t number_to_remove,
+ Nodes* nodes) {
+ DCHECK_LE(number_to_remove, children_.size());
+
+ std::partial_sort(children_.begin(),
+ children_.begin() + number_to_remove,
+ children_.end(),
+ &RTreeBase::Node::CompareCenterDistanceFromParent);
+
+ // Move the lowest-distance nodes to the returned vector.
+ nodes->insert(
+ nodes->end(), children_.begin(), children_.begin() + number_to_remove);
+ children_.weak_erase(children_.begin(), children_.begin() + number_to_remove);
+}
+
+scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::RemoveChild(
+ NodeBase* child_node, Nodes* orphans) {
+ DCHECK_EQ(this, child_node->parent());
+
+ scoped_ptr<NodeBase> orphan(child_node->RemoveAndReturnLastChild());
+ while (orphan) {
+ orphans->push_back(orphan.release());
+ orphan = child_node->RemoveAndReturnLastChild();
+ }
+
+ Nodes::iterator i = std::find(children_.begin(), children_.end(), child_node);
+ DCHECK(i != children_.end());
+ children_.weak_erase(i);
+
+ return scoped_ptr<NodeBase>(child_node);
+}
+
+scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::RemoveAndReturnLastChild() {
+ if (children_.empty())
+ return scoped_ptr<NodeBase>();
+
+ scoped_ptr<NodeBase> last_child(children_.back());
+ children_.weak_erase(children_.end() - 1);
+ last_child->set_parent(NULL);
+ return last_child.Pass();
+}
+
+RTreeBase::Node* RTreeBase::Node::ChooseSubtree(NodeBase* node) {
+ DCHECK(node);
+ // Should never be called on a node at equal or lower level in the tree than
+ // the node to insert.
+ DCHECK_GT(level_, node->Level());
+
+ // If we are a parent of nodes on the provided node level, we are done.
+ if (level_ == node->Level() + 1)
+ return this;
+
+ // Precompute a vector of expanded rects, used by both LeastOverlapIncrease
+ // and LeastAreaEnlargement.
+ Rects expanded_rects;
+ expanded_rects.reserve(children_.size());
+ for (Nodes::iterator i = children_.begin(); i != children_.end(); ++i)
+ expanded_rects.push_back(UnionRects(node->rect(), (*i)->rect()));
+
+ Node* best_candidate = NULL;
+ // For parents of leaf nodes, we pick the node that will cause the least
+ // increase in overlap by the addition of this new node. This may detect a
+ // tie, in which case it will return NULL.
+ if (level_ == 1)
+ best_candidate = LeastOverlapIncrease(node->rect(), expanded_rects);
+
+ // For non-parents of leaf nodes, or for parents of leaf nodes with ties in
+ // overlap increase, we choose the subtree with least area enlargement caused
+ // by the addition of the new node.
+ if (!best_candidate)
+ best_candidate = LeastAreaEnlargement(node->rect(), expanded_rects);
+
+ DCHECK(best_candidate);
+ return best_candidate->ChooseSubtree(node);
+}
+
+size_t RTreeBase::Node::AddChild(scoped_ptr<NodeBase> node) {
+ DCHECK(node);
+ // Sanity-check that the level of the child being added is one less than ours.
+ DCHECK_EQ(level_ - 1, node->Level());
+ node->set_parent(this);
+ set_rect(UnionRects(rect(), node->rect()));
+ children_.push_back(node.release());
+ return children_.size();
+}
+
+scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::Split(size_t min_children,
+ size_t max_children) {
+ // We should have too many children to begin with.
+ DCHECK_EQ(max_children + 1, children_.size());
+
+ // Determine if we should split along the horizontal or vertical axis.
+ std::vector<NodeBase*> vertical_sort(children_.get());
+ std::vector<NodeBase*> horizontal_sort(children_.get());
+ std::sort(vertical_sort.begin(),
+ vertical_sort.end(),
+ &RTreeBase::Node::CompareVertical);
+ std::sort(horizontal_sort.begin(),
+ horizontal_sort.end(),
+ &RTreeBase::Node::CompareHorizontal);
+
+ Rects low_vertical_bounds;
+ Rects low_horizontal_bounds;
+ BuildLowBounds(vertical_sort,
+ horizontal_sort,
+ &low_vertical_bounds,
+ &low_horizontal_bounds);
+
+ Rects high_vertical_bounds;
+ Rects high_horizontal_bounds;
+ BuildHighBounds(vertical_sort,
+ horizontal_sort,
+ &high_vertical_bounds,
+ &high_horizontal_bounds);
+
+ // Choose |end_index| such that both Nodes after the split will have
+ // min_children <= children_.size() <= max_children.
+ size_t end_index = std::min(max_children, children_.size() - min_children);
+ bool is_vertical_split =
+ SmallestMarginSum(min_children,
+ end_index,
+ low_horizontal_bounds,
+ high_horizontal_bounds) <
+ SmallestMarginSum(min_children,
+ end_index,
+ low_vertical_bounds,
+ high_vertical_bounds);
+
+ // Choose split index along chosen axis and perform the split.
+ const Rects& low_bounds(
+ is_vertical_split ? low_vertical_bounds : low_horizontal_bounds);
+ const Rects& high_bounds(
+ is_vertical_split ? high_vertical_bounds : high_horizontal_bounds);
+ size_t split_index =
+ ChooseSplitIndex(min_children, end_index, low_bounds, high_bounds);
+
+ const std::vector<NodeBase*>& sort(
+ is_vertical_split ? vertical_sort : horizontal_sort);
+ return DivideChildren(low_bounds, high_bounds, sort, split_index);
+}
+
+int RTreeBase::Node::Level() const {
+ return level_;
+}
+
+RTreeBase::Node::Node(int level) : NodeBase(Rect(), NULL), level_(level) {
+}
+
+// static
+bool RTreeBase::Node::CompareVertical(const NodeBase* a, const NodeBase* b) {
+ const Rect& a_rect = a->rect();
+ const Rect& b_rect = b->rect();
+ return (a_rect.y() < b_rect.y()) ||
+ ((a_rect.y() == b_rect.y()) && (a_rect.height() < b_rect.height()));
+}
+
+// static
+bool RTreeBase::Node::CompareHorizontal(const NodeBase* a, const NodeBase* b) {
+ const Rect& a_rect = a->rect();
+ const Rect& b_rect = b->rect();
+ return (a_rect.x() < b_rect.x()) ||
+ ((a_rect.x() == b_rect.x()) && (a_rect.width() < b_rect.width()));
+}
+
+// static
+bool RTreeBase::Node::CompareCenterDistanceFromParent(const NodeBase* a,
+ const NodeBase* b) {
+ const NodeBase* p = a->parent();
+
+ DCHECK(p);
+ DCHECK_EQ(p, b->parent());
+
+ Vector2d p_center = CenterOfRect(p->rect());
+ Vector2d a_center = CenterOfRect(a->rect());
+ Vector2d b_center = CenterOfRect(b->rect());
+
+ // We don't bother with square roots because we are only comparing the two
+ // values for sorting purposes.
+ return (a_center - p_center).LengthSquared() <
+ (b_center - p_center).LengthSquared();
+}
+
+// static
+void RTreeBase::Node::BuildLowBounds(
+ const std::vector<NodeBase*>& vertical_sort,
+ const std::vector<NodeBase*>& horizontal_sort,
+ Rects* vertical_bounds,
+ Rects* horizontal_bounds) {
+ Rect vertical_bounds_rect;
+ vertical_bounds->reserve(vertical_sort.size());
+ for (std::vector<NodeBase*>::const_iterator i = vertical_sort.begin();
+ i != vertical_sort.end();
+ ++i) {
+ vertical_bounds_rect.Union((*i)->rect());
+ vertical_bounds->push_back(vertical_bounds_rect);
+ }
+
+ Rect horizontal_bounds_rect;
+ horizontal_bounds->reserve(horizontal_sort.size());
+ for (std::vector<NodeBase*>::const_iterator i = horizontal_sort.begin();
+ i != horizontal_sort.end();
+ ++i) {
+ horizontal_bounds_rect.Union((*i)->rect());
+ horizontal_bounds->push_back(horizontal_bounds_rect);
+ }
+}
+
+// static
+void RTreeBase::Node::BuildHighBounds(
+ const std::vector<NodeBase*>& vertical_sort,
+ const std::vector<NodeBase*>& horizontal_sort,
+ Rects* vertical_bounds,
+ Rects* horizontal_bounds) {
+ Rect vertical_bounds_rect;
+ vertical_bounds->reserve(vertical_sort.size());
+ for (std::vector<NodeBase*>::const_reverse_iterator i =
+ vertical_sort.rbegin();
+ i != vertical_sort.rend();
+ ++i) {
+ vertical_bounds_rect.Union((*i)->rect());
+ vertical_bounds->push_back(vertical_bounds_rect);
+ }
+ std::reverse(vertical_bounds->begin(), vertical_bounds->end());
+
+ Rect horizontal_bounds_rect;
+ horizontal_bounds->reserve(horizontal_sort.size());
+ for (std::vector<NodeBase*>::const_reverse_iterator i =
+ horizontal_sort.rbegin();
+ i != horizontal_sort.rend();
+ ++i) {
+ horizontal_bounds_rect.Union((*i)->rect());
+ horizontal_bounds->push_back(horizontal_bounds_rect);
+ }
+ std::reverse(horizontal_bounds->begin(), horizontal_bounds->end());
+}
+
+size_t RTreeBase::Node::ChooseSplitIndex(size_t start_index,
+ size_t end_index,
+ const Rects& low_bounds,
+ const Rects& high_bounds) {
+ DCHECK_EQ(low_bounds.size(), high_bounds.size());
+
+ int smallest_overlap_area = UnionRects(
+ low_bounds[start_index], high_bounds[start_index]).size().GetArea();
+ int smallest_combined_area = low_bounds[start_index].size().GetArea() +
+ high_bounds[start_index].size().GetArea();
+ size_t optimal_split_index = start_index;
+ for (size_t p = start_index + 1; p < end_index; ++p) {
+ const int overlap_area =
+ UnionRects(low_bounds[p], high_bounds[p]).size().GetArea();
+ const int combined_area =
+ low_bounds[p].size().GetArea() + high_bounds[p].size().GetArea();
+ if ((overlap_area < smallest_overlap_area) ||
+ ((overlap_area == smallest_overlap_area) &&
+ (combined_area < smallest_combined_area))) {
+ smallest_overlap_area = overlap_area;
+ smallest_combined_area = combined_area;
+ optimal_split_index = p;
+ }
+ }
+
+ // optimal_split_index currently points at the last element in the first set,
+ // so advance it by 1 to point at the first element in the second set.
+ return optimal_split_index + 1;
+}
+
+// static
+int RTreeBase::Node::SmallestMarginSum(size_t start_index,
+ size_t end_index,
+ const Rects& low_bounds,
+ const Rects& high_bounds) {
+ DCHECK_EQ(low_bounds.size(), high_bounds.size());
+ DCHECK_LT(start_index, low_bounds.size());
+ DCHECK_LE(start_index, end_index);
+ DCHECK_LE(end_index, low_bounds.size());
+ Rects::const_iterator i(low_bounds.begin() + start_index);
+ Rects::const_iterator j(high_bounds.begin() + start_index);
+ int smallest_sum = i->width() + i->height() + j->width() + j->height();
+ for (; i != (low_bounds.begin() + end_index); ++i, ++j) {
+ smallest_sum = std::min(
+ smallest_sum, i->width() + i->height() + j->width() + j->height());
+ }
+
+ return smallest_sum;
+}
+
+void RTreeBase::Node::RecomputeLocalBounds() {
+ Rect bounds;
+ for (size_t i = 0; i < children_.size(); ++i)
+ bounds.Union(children_[i]->rect());
+
+ set_rect(bounds);
+}
+
+int RTreeBase::Node::OverlapIncreaseToAdd(const Rect& rect,
+ const NodeBase* candidate_node,
+ const Rect& expanded_rect) const {
+ DCHECK(candidate_node);
+
+ // Early-out when |rect| is contained completely within |candidate|.
+ if (candidate_node->rect().Contains(rect))
+ return 0;
+
+ int total_original_overlap = 0;
+ int total_expanded_overlap = 0;
+
+ // Now calculate overlap with all other rects in this node.
+ for (Nodes::const_iterator it = children_.begin();
+ it != children_.end(); ++it) {
+ // Skip calculating overlap with the candidate rect.
+ if ((*it) == candidate_node)
+ continue;
+ NodeBase* overlap_node = (*it);
+ total_original_overlap += IntersectRects(
+ candidate_node->rect(), overlap_node->rect()).size().GetArea();
+ Rect expanded_overlap_rect = expanded_rect;
+ expanded_overlap_rect.Intersect(overlap_node->rect());
+ total_expanded_overlap += expanded_overlap_rect.size().GetArea();
+ }
+
+ return total_expanded_overlap - total_original_overlap;
+}
+
+scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::DivideChildren(
+ const Rects& low_bounds,
+ const Rects& high_bounds,
+ const std::vector<NodeBase*>& sorted_children,
+ size_t split_index) {
+ DCHECK_EQ(low_bounds.size(), high_bounds.size());
+ DCHECK_EQ(low_bounds.size(), sorted_children.size());
+ DCHECK_LT(split_index, low_bounds.size());
+ DCHECK_GT(split_index, 0U);
+
+ scoped_ptr<Node> sibling(new Node(level_));
+ sibling->set_parent(parent());
+ set_rect(low_bounds[split_index - 1]);
+ sibling->set_rect(high_bounds[split_index]);
+
+ // Our own children_ vector is unsorted, so we wipe it out and divide the
+ // sorted bounds rects between ourselves and our sibling.
+ children_.weak_clear();
+ children_.insert(children_.end(),
+ sorted_children.begin(),
+ sorted_children.begin() + split_index);
+ sibling->children_.insert(sibling->children_.end(),
+ sorted_children.begin() + split_index,
+ sorted_children.end());
+
+ for (size_t i = 0; i < sibling->children_.size(); ++i)
+ sibling->children_[i]->set_parent(sibling.get());
+
+ return sibling.PassAs<NodeBase>();
+}
+
+RTreeBase::Node* RTreeBase::Node::LeastOverlapIncrease(
+ const Rect& node_rect,
+ const Rects& expanded_rects) {
+ NodeBase* best_node = children_.front();
+ int least_overlap_increase =
+ OverlapIncreaseToAdd(node_rect, children_[0], expanded_rects[0]);
+ for (size_t i = 1; i < children_.size(); ++i) {
+ int overlap_increase =
+ OverlapIncreaseToAdd(node_rect, children_[i], expanded_rects[i]);
+ if (overlap_increase < least_overlap_increase) {
+ least_overlap_increase = overlap_increase;
+ best_node = children_[i];
+ } else if (overlap_increase == least_overlap_increase) {
+ // If we are tied at zero there is no possible better overlap increase,
+ // so we can report a tie early.
+ if (overlap_increase == 0)
+ return NULL;
+
+ best_node = NULL;
+ }
+ }
+
+ // Ensure that our children are always Nodes and not Records.
+ DCHECK_GE(level_, 1);
+ return static_cast<Node*>(best_node);
+}
+
+RTreeBase::Node* RTreeBase::Node::LeastAreaEnlargement(
+ const Rect& node_rect,
+ const Rects& expanded_rects) {
+ DCHECK(!children_.empty());
+ DCHECK_EQ(children_.size(), expanded_rects.size());
+
+ NodeBase* best_node = children_.front();
+ int least_area_enlargement =
+ expanded_rects[0].size().GetArea() - best_node->rect().size().GetArea();
+ for (size_t i = 1; i < children_.size(); ++i) {
+ NodeBase* candidate_node = children_[i];
+ int area_change = expanded_rects[i].size().GetArea() -
+ candidate_node->rect().size().GetArea();
+ DCHECK_GE(area_change, 0);
+ if (area_change < least_area_enlargement) {
+ best_node = candidate_node;
+ least_area_enlargement = area_change;
+ } else if (area_change == least_area_enlargement &&
+ candidate_node->rect().size().GetArea() <
+ best_node->rect().size().GetArea()) {
+ // Ties are broken by choosing the entry with the least area.
+ best_node = candidate_node;
+ }
+ }
+
+ // Ensure that our children are always Nodes and not Records.
+ DCHECK_GE(level_, 1);
+ return static_cast<Node*>(best_node);
+}
+
+
+// RTreeBase ------------------------------------------------------------------
+
+RTreeBase::RTreeBase(size_t min_children, size_t max_children)
+ : root_(new Node()),
+ min_children_(min_children),
+ max_children_(max_children) {
+ DCHECK_GE(min_children_, 2U);
+ DCHECK_LE(min_children_, max_children_ / 2U);
+}
+
+RTreeBase::~RTreeBase() {
+}
+
+void RTreeBase::InsertNode(
+ scoped_ptr<NodeBase> node, int* highest_reinsert_level) {
+ // Find the most appropriate parent to insert node into.
+ Node* parent = root_->ChooseSubtree(node.get());
+ DCHECK(parent);
+ // Verify ChooseSubtree returned a Node at the correct level.
+ DCHECK_EQ(parent->Level(), node->Level() + 1);
+ Node* insert_parent = static_cast<Node*>(parent);
+ NodeBase* needs_bounds_recomputed = insert_parent->parent();
+ Nodes reinserts;
+ // Attempt to insert the Node, if this overflows the Node we must handle it.
+ while (insert_parent &&
+ insert_parent->AddChild(node.Pass()) > max_children_) {
+ // If we have yet to re-insert nodes at this level during this data insert,
+ // and we're not at the root, R*-Tree calls for re-insertion of some of the
+ // nodes, resulting in a better balance on the tree.
+ if (insert_parent->parent() &&
+ insert_parent->Level() > *highest_reinsert_level) {
+ insert_parent->RemoveNodesForReinsert(max_children_ / 3, &reinserts);
+ // Adjust highest_reinsert_level to this level.
+ *highest_reinsert_level = insert_parent->Level();
+ // RemoveNodesForReinsert() does not recompute bounds, so mark it.
+ needs_bounds_recomputed = insert_parent;
+ break;
+ }
+
+ // Split() will create a sibling to insert_parent both of which will have
+ // valid bounds, but this invalidates their parent's bounds.
+ node = insert_parent->Split(min_children_, max_children_);
+ insert_parent = static_cast<Node*>(insert_parent->parent());
+ needs_bounds_recomputed = insert_parent;
+ }
+
+ // If we have a Node to insert, and we hit the root of the current tree,
+ // we create a new root which is the parent of the current root and the
+ // insert_node. Note that we must release() the |root_| since
+ // ConstructParent() will take ownership of it.
+ if (!insert_parent && node) {
+ root_ = root_.release()->ConstructParent();
+ root_->AddChild(node.Pass());
+ }
+
+ // Recompute bounds along insertion path.
+ if (needs_bounds_recomputed)
+ needs_bounds_recomputed->RecomputeBoundsUpToRoot();
+
+ // Complete re-inserts, if any. The algorithm only allows for one invocation
+ // of RemoveNodesForReinsert() per level of the tree in an overall call to
+ // Insert().
+ while (!reinserts.empty()) {
+ Nodes::iterator last_element = reinserts.end() - 1;
+ NodeBase* temp_ptr(*last_element);
+ reinserts.weak_erase(last_element);
+ InsertNode(make_scoped_ptr(temp_ptr), highest_reinsert_level);
+ }
+}
+
+scoped_ptr<RTreeBase::NodeBase> RTreeBase::RemoveNode(NodeBase* node) {
+ // We need to remove this node from its parent.
+ Node* parent = static_cast<Node*>(node->parent());
+ // Record nodes are never allowed as the root, so we should always have a
+ // parent.
+ DCHECK(parent);
+ // Should always be a leaf that had the record.
+ DCHECK_EQ(0, parent->Level());
+
+ Nodes orphans;
+ scoped_ptr<NodeBase> removed_node(parent->RemoveChild(node, &orphans));
+
+ // It's possible that by removing |node| from |parent| we have made |parent|
+ // have less than the minimum number of children, in which case we will need
+ // to remove and delete |parent| while reinserting any other children that it
+ // had. We traverse up the tree doing this until we remove a child from a
+ // parent that still has greater than or equal to the minimum number of Nodes.
+ while (parent->count() < min_children_) {
+ NodeBase* child = parent;
+ parent = static_cast<Node*>(parent->parent());
+
+ // If we've hit the root, stop.
+ if (!parent)
+ break;
+
+ parent->RemoveChild(child, &orphans);
+ }
+
+ // If we stopped deleting nodes up the tree before encountering the root,
+ // we'll need to fix up the bounds from the first parent we didn't delete
+ // up to the root.
+ if (parent)
+ parent->RecomputeBoundsUpToRoot();
+ else
+ root_->RecomputeBoundsUpToRoot();
+
+ while (!orphans.empty()) {
+ Nodes::iterator last_element = orphans.end() - 1;
+ NodeBase* temp_ptr(*last_element);
+ orphans.weak_erase(last_element);
+ int starting_level = -1;
+ InsertNode(make_scoped_ptr(temp_ptr), &starting_level);
+ }
+
+ return removed_node.Pass();
+}
+
+void RTreeBase::PruneRootIfNecessary() {
+ if (root()->count() == 1 && root()->Level() > 0) {
+ // Awkward reset(cast(release)) pattern here because there's no better way
+ // to downcast the scoped_ptr from RemoveAndReturnLastChild() from NodeBase
+ // to Node.
+ root_.reset(
+ static_cast<Node*>(root_->RemoveAndReturnLastChild().release()));
+ }
+}
+
+void RTreeBase::ResetRoot() {
+ root_.reset(new Node());
+}
+
+} // namespace gfx
« no previous file with comments | « ui/gfx/geometry/r_tree_base.h ('k') | ui/gfx/geometry/r_tree_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698