Index: trunk/src/ui/gfx/geometry/r_tree_base.cc |
=================================================================== |
--- trunk/src/ui/gfx/geometry/r_tree_base.cc (revision 277531) |
+++ trunk/src/ui/gfx/geometry/r_tree_base.cc (working copy) |
@@ -1,658 +0,0 @@ |
-// Copyright 2014 The Chromium Authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#include "ui/gfx/geometry/r_tree_base.h" |
- |
-#include <algorithm> |
- |
-#include "base/logging.h" |
- |
- |
-// Helpers -------------------------------------------------------------------- |
- |
-namespace { |
- |
-// Returns a Vector2d to allow us to do arithmetic on the result such as |
-// computing distances between centers. |
-gfx::Vector2d CenterOfRect(const gfx::Rect& rect) { |
- return rect.OffsetFromOrigin() + |
- gfx::Vector2d(rect.width() / 2, rect.height() / 2); |
-} |
- |
-} |
- |
-namespace gfx { |
- |
- |
-// RTreeBase::NodeBase -------------------------------------------------------- |
- |
-RTreeBase::NodeBase::~NodeBase() { |
-} |
- |
-void RTreeBase::NodeBase::RecomputeBoundsUpToRoot() { |
- RecomputeLocalBounds(); |
- if (parent_) |
- parent_->RecomputeBoundsUpToRoot(); |
-} |
- |
-RTreeBase::NodeBase::NodeBase(const Rect& rect, NodeBase* parent) |
- : rect_(rect), |
- parent_(parent) { |
-} |
- |
-void RTreeBase::NodeBase::RecomputeLocalBounds() { |
-} |
- |
-// RTreeBase::RecordBase ------------------------------------------------------ |
- |
-RTreeBase::RecordBase::RecordBase(const Rect& rect) : NodeBase(rect, NULL) { |
-} |
- |
-RTreeBase::RecordBase::~RecordBase() { |
-} |
- |
-void RTreeBase::RecordBase::AppendIntersectingRecords( |
- const Rect& query_rect, Records* matches_out) const { |
- if (rect().Intersects(query_rect)) |
- matches_out->push_back(this); |
-} |
- |
-void RTreeBase::RecordBase::AppendAllRecords(Records* matches_out) const { |
- matches_out->push_back(this); |
-} |
- |
-scoped_ptr<RTreeBase::NodeBase> |
-RTreeBase::RecordBase::RemoveAndReturnLastChild() { |
- return scoped_ptr<NodeBase>(); |
-} |
- |
-int RTreeBase::RecordBase::Level() const { |
- return -1; |
-} |
- |
- |
-// RTreeBase::Node ------------------------------------------------------------ |
- |
-RTreeBase::Node::Node() : NodeBase(Rect(), NULL), level_(0) { |
-} |
- |
-RTreeBase::Node::~Node() { |
-} |
- |
-scoped_ptr<RTreeBase::Node> RTreeBase::Node::ConstructParent() { |
- DCHECK(!parent()); |
- scoped_ptr<Node> new_parent(new Node(level_ + 1)); |
- new_parent->AddChild(scoped_ptr<NodeBase>(this)); |
- return new_parent.Pass(); |
-} |
- |
-void RTreeBase::Node::AppendIntersectingRecords( |
- const Rect& query_rect, Records* matches_out) const { |
- // Check own bounding box for intersection, can cull all children if no |
- // intersection. |
- if (!rect().Intersects(query_rect)) |
- return; |
- |
- // Conversely if we are completely contained within the query rect we can |
- // confidently skip all bounds checks for ourselves and all our children. |
- if (query_rect.Contains(rect())) { |
- AppendAllRecords(matches_out); |
- return; |
- } |
- |
- // We intersect the query rect but we are not are not contained within it. |
- // We must query each of our children in turn. |
- for (Nodes::const_iterator i = children_.begin(); i != children_.end(); ++i) |
- (*i)->AppendIntersectingRecords(query_rect, matches_out); |
-} |
- |
-void RTreeBase::Node::AppendAllRecords(Records* matches_out) const { |
- for (Nodes::const_iterator i = children_.begin(); i != children_.end(); ++i) |
- (*i)->AppendAllRecords(matches_out); |
-} |
- |
-void RTreeBase::Node::RemoveNodesForReinsert(size_t number_to_remove, |
- Nodes* nodes) { |
- DCHECK_LE(number_to_remove, children_.size()); |
- |
- std::partial_sort(children_.begin(), |
- children_.begin() + number_to_remove, |
- children_.end(), |
- &RTreeBase::Node::CompareCenterDistanceFromParent); |
- |
- // Move the lowest-distance nodes to the returned vector. |
- nodes->insert( |
- nodes->end(), children_.begin(), children_.begin() + number_to_remove); |
- children_.weak_erase(children_.begin(), children_.begin() + number_to_remove); |
-} |
- |
-scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::RemoveChild( |
- NodeBase* child_node, Nodes* orphans) { |
- DCHECK_EQ(this, child_node->parent()); |
- |
- scoped_ptr<NodeBase> orphan(child_node->RemoveAndReturnLastChild()); |
- while (orphan) { |
- orphans->push_back(orphan.release()); |
- orphan = child_node->RemoveAndReturnLastChild(); |
- } |
- |
- Nodes::iterator i = std::find(children_.begin(), children_.end(), child_node); |
- DCHECK(i != children_.end()); |
- children_.weak_erase(i); |
- |
- return scoped_ptr<NodeBase>(child_node); |
-} |
- |
-scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::RemoveAndReturnLastChild() { |
- if (children_.empty()) |
- return scoped_ptr<NodeBase>(); |
- |
- scoped_ptr<NodeBase> last_child(children_.back()); |
- children_.weak_erase(children_.end() - 1); |
- last_child->set_parent(NULL); |
- return last_child.Pass(); |
-} |
- |
-RTreeBase::Node* RTreeBase::Node::ChooseSubtree(NodeBase* node) { |
- DCHECK(node); |
- // Should never be called on a node at equal or lower level in the tree than |
- // the node to insert. |
- DCHECK_GT(level_, node->Level()); |
- |
- // If we are a parent of nodes on the provided node level, we are done. |
- if (level_ == node->Level() + 1) |
- return this; |
- |
- // Precompute a vector of expanded rects, used by both LeastOverlapIncrease |
- // and LeastAreaEnlargement. |
- Rects expanded_rects; |
- expanded_rects.reserve(children_.size()); |
- for (Nodes::iterator i = children_.begin(); i != children_.end(); ++i) |
- expanded_rects.push_back(UnionRects(node->rect(), (*i)->rect())); |
- |
- Node* best_candidate = NULL; |
- // For parents of leaf nodes, we pick the node that will cause the least |
- // increase in overlap by the addition of this new node. This may detect a |
- // tie, in which case it will return NULL. |
- if (level_ == 1) |
- best_candidate = LeastOverlapIncrease(node->rect(), expanded_rects); |
- |
- // For non-parents of leaf nodes, or for parents of leaf nodes with ties in |
- // overlap increase, we choose the subtree with least area enlargement caused |
- // by the addition of the new node. |
- if (!best_candidate) |
- best_candidate = LeastAreaEnlargement(node->rect(), expanded_rects); |
- |
- DCHECK(best_candidate); |
- return best_candidate->ChooseSubtree(node); |
-} |
- |
-size_t RTreeBase::Node::AddChild(scoped_ptr<NodeBase> node) { |
- DCHECK(node); |
- // Sanity-check that the level of the child being added is one less than ours. |
- DCHECK_EQ(level_ - 1, node->Level()); |
- node->set_parent(this); |
- set_rect(UnionRects(rect(), node->rect())); |
- children_.push_back(node.release()); |
- return children_.size(); |
-} |
- |
-scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::Split(size_t min_children, |
- size_t max_children) { |
- // We should have too many children to begin with. |
- DCHECK_EQ(max_children + 1, children_.size()); |
- |
- // Determine if we should split along the horizontal or vertical axis. |
- std::vector<NodeBase*> vertical_sort(children_.get()); |
- std::vector<NodeBase*> horizontal_sort(children_.get()); |
- std::sort(vertical_sort.begin(), |
- vertical_sort.end(), |
- &RTreeBase::Node::CompareVertical); |
- std::sort(horizontal_sort.begin(), |
- horizontal_sort.end(), |
- &RTreeBase::Node::CompareHorizontal); |
- |
- Rects low_vertical_bounds; |
- Rects low_horizontal_bounds; |
- BuildLowBounds(vertical_sort, |
- horizontal_sort, |
- &low_vertical_bounds, |
- &low_horizontal_bounds); |
- |
- Rects high_vertical_bounds; |
- Rects high_horizontal_bounds; |
- BuildHighBounds(vertical_sort, |
- horizontal_sort, |
- &high_vertical_bounds, |
- &high_horizontal_bounds); |
- |
- // Choose |end_index| such that both Nodes after the split will have |
- // min_children <= children_.size() <= max_children. |
- size_t end_index = std::min(max_children, children_.size() - min_children); |
- bool is_vertical_split = |
- SmallestMarginSum(min_children, |
- end_index, |
- low_horizontal_bounds, |
- high_horizontal_bounds) < |
- SmallestMarginSum(min_children, |
- end_index, |
- low_vertical_bounds, |
- high_vertical_bounds); |
- |
- // Choose split index along chosen axis and perform the split. |
- const Rects& low_bounds( |
- is_vertical_split ? low_vertical_bounds : low_horizontal_bounds); |
- const Rects& high_bounds( |
- is_vertical_split ? high_vertical_bounds : high_horizontal_bounds); |
- size_t split_index = |
- ChooseSplitIndex(min_children, end_index, low_bounds, high_bounds); |
- |
- const std::vector<NodeBase*>& sort( |
- is_vertical_split ? vertical_sort : horizontal_sort); |
- return DivideChildren(low_bounds, high_bounds, sort, split_index); |
-} |
- |
-int RTreeBase::Node::Level() const { |
- return level_; |
-} |
- |
-RTreeBase::Node::Node(int level) : NodeBase(Rect(), NULL), level_(level) { |
-} |
- |
-// static |
-bool RTreeBase::Node::CompareVertical(const NodeBase* a, const NodeBase* b) { |
- const Rect& a_rect = a->rect(); |
- const Rect& b_rect = b->rect(); |
- return (a_rect.y() < b_rect.y()) || |
- ((a_rect.y() == b_rect.y()) && (a_rect.height() < b_rect.height())); |
-} |
- |
-// static |
-bool RTreeBase::Node::CompareHorizontal(const NodeBase* a, const NodeBase* b) { |
- const Rect& a_rect = a->rect(); |
- const Rect& b_rect = b->rect(); |
- return (a_rect.x() < b_rect.x()) || |
- ((a_rect.x() == b_rect.x()) && (a_rect.width() < b_rect.width())); |
-} |
- |
-// static |
-bool RTreeBase::Node::CompareCenterDistanceFromParent(const NodeBase* a, |
- const NodeBase* b) { |
- const NodeBase* p = a->parent(); |
- |
- DCHECK(p); |
- DCHECK_EQ(p, b->parent()); |
- |
- Vector2d p_center = CenterOfRect(p->rect()); |
- Vector2d a_center = CenterOfRect(a->rect()); |
- Vector2d b_center = CenterOfRect(b->rect()); |
- |
- // We don't bother with square roots because we are only comparing the two |
- // values for sorting purposes. |
- return (a_center - p_center).LengthSquared() < |
- (b_center - p_center).LengthSquared(); |
-} |
- |
-// static |
-void RTreeBase::Node::BuildLowBounds( |
- const std::vector<NodeBase*>& vertical_sort, |
- const std::vector<NodeBase*>& horizontal_sort, |
- Rects* vertical_bounds, |
- Rects* horizontal_bounds) { |
- Rect vertical_bounds_rect; |
- vertical_bounds->reserve(vertical_sort.size()); |
- for (std::vector<NodeBase*>::const_iterator i = vertical_sort.begin(); |
- i != vertical_sort.end(); |
- ++i) { |
- vertical_bounds_rect.Union((*i)->rect()); |
- vertical_bounds->push_back(vertical_bounds_rect); |
- } |
- |
- Rect horizontal_bounds_rect; |
- horizontal_bounds->reserve(horizontal_sort.size()); |
- for (std::vector<NodeBase*>::const_iterator i = horizontal_sort.begin(); |
- i != horizontal_sort.end(); |
- ++i) { |
- horizontal_bounds_rect.Union((*i)->rect()); |
- horizontal_bounds->push_back(horizontal_bounds_rect); |
- } |
-} |
- |
-// static |
-void RTreeBase::Node::BuildHighBounds( |
- const std::vector<NodeBase*>& vertical_sort, |
- const std::vector<NodeBase*>& horizontal_sort, |
- Rects* vertical_bounds, |
- Rects* horizontal_bounds) { |
- Rect vertical_bounds_rect; |
- vertical_bounds->reserve(vertical_sort.size()); |
- for (std::vector<NodeBase*>::const_reverse_iterator i = |
- vertical_sort.rbegin(); |
- i != vertical_sort.rend(); |
- ++i) { |
- vertical_bounds_rect.Union((*i)->rect()); |
- vertical_bounds->push_back(vertical_bounds_rect); |
- } |
- std::reverse(vertical_bounds->begin(), vertical_bounds->end()); |
- |
- Rect horizontal_bounds_rect; |
- horizontal_bounds->reserve(horizontal_sort.size()); |
- for (std::vector<NodeBase*>::const_reverse_iterator i = |
- horizontal_sort.rbegin(); |
- i != horizontal_sort.rend(); |
- ++i) { |
- horizontal_bounds_rect.Union((*i)->rect()); |
- horizontal_bounds->push_back(horizontal_bounds_rect); |
- } |
- std::reverse(horizontal_bounds->begin(), horizontal_bounds->end()); |
-} |
- |
-size_t RTreeBase::Node::ChooseSplitIndex(size_t start_index, |
- size_t end_index, |
- const Rects& low_bounds, |
- const Rects& high_bounds) { |
- DCHECK_EQ(low_bounds.size(), high_bounds.size()); |
- |
- int smallest_overlap_area = UnionRects( |
- low_bounds[start_index], high_bounds[start_index]).size().GetArea(); |
- int smallest_combined_area = low_bounds[start_index].size().GetArea() + |
- high_bounds[start_index].size().GetArea(); |
- size_t optimal_split_index = start_index; |
- for (size_t p = start_index + 1; p < end_index; ++p) { |
- const int overlap_area = |
- UnionRects(low_bounds[p], high_bounds[p]).size().GetArea(); |
- const int combined_area = |
- low_bounds[p].size().GetArea() + high_bounds[p].size().GetArea(); |
- if ((overlap_area < smallest_overlap_area) || |
- ((overlap_area == smallest_overlap_area) && |
- (combined_area < smallest_combined_area))) { |
- smallest_overlap_area = overlap_area; |
- smallest_combined_area = combined_area; |
- optimal_split_index = p; |
- } |
- } |
- |
- // optimal_split_index currently points at the last element in the first set, |
- // so advance it by 1 to point at the first element in the second set. |
- return optimal_split_index + 1; |
-} |
- |
-// static |
-int RTreeBase::Node::SmallestMarginSum(size_t start_index, |
- size_t end_index, |
- const Rects& low_bounds, |
- const Rects& high_bounds) { |
- DCHECK_EQ(low_bounds.size(), high_bounds.size()); |
- DCHECK_LT(start_index, low_bounds.size()); |
- DCHECK_LE(start_index, end_index); |
- DCHECK_LE(end_index, low_bounds.size()); |
- Rects::const_iterator i(low_bounds.begin() + start_index); |
- Rects::const_iterator j(high_bounds.begin() + start_index); |
- int smallest_sum = i->width() + i->height() + j->width() + j->height(); |
- for (; i != (low_bounds.begin() + end_index); ++i, ++j) { |
- smallest_sum = std::min( |
- smallest_sum, i->width() + i->height() + j->width() + j->height()); |
- } |
- |
- return smallest_sum; |
-} |
- |
-void RTreeBase::Node::RecomputeLocalBounds() { |
- Rect bounds; |
- for (size_t i = 0; i < children_.size(); ++i) |
- bounds.Union(children_[i]->rect()); |
- |
- set_rect(bounds); |
-} |
- |
-int RTreeBase::Node::OverlapIncreaseToAdd(const Rect& rect, |
- const NodeBase* candidate_node, |
- const Rect& expanded_rect) const { |
- DCHECK(candidate_node); |
- |
- // Early-out when |rect| is contained completely within |candidate|. |
- if (candidate_node->rect().Contains(rect)) |
- return 0; |
- |
- int total_original_overlap = 0; |
- int total_expanded_overlap = 0; |
- |
- // Now calculate overlap with all other rects in this node. |
- for (Nodes::const_iterator it = children_.begin(); |
- it != children_.end(); ++it) { |
- // Skip calculating overlap with the candidate rect. |
- if ((*it) == candidate_node) |
- continue; |
- NodeBase* overlap_node = (*it); |
- total_original_overlap += IntersectRects( |
- candidate_node->rect(), overlap_node->rect()).size().GetArea(); |
- Rect expanded_overlap_rect = expanded_rect; |
- expanded_overlap_rect.Intersect(overlap_node->rect()); |
- total_expanded_overlap += expanded_overlap_rect.size().GetArea(); |
- } |
- |
- return total_expanded_overlap - total_original_overlap; |
-} |
- |
-scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::DivideChildren( |
- const Rects& low_bounds, |
- const Rects& high_bounds, |
- const std::vector<NodeBase*>& sorted_children, |
- size_t split_index) { |
- DCHECK_EQ(low_bounds.size(), high_bounds.size()); |
- DCHECK_EQ(low_bounds.size(), sorted_children.size()); |
- DCHECK_LT(split_index, low_bounds.size()); |
- DCHECK_GT(split_index, 0U); |
- |
- scoped_ptr<Node> sibling(new Node(level_)); |
- sibling->set_parent(parent()); |
- set_rect(low_bounds[split_index - 1]); |
- sibling->set_rect(high_bounds[split_index]); |
- |
- // Our own children_ vector is unsorted, so we wipe it out and divide the |
- // sorted bounds rects between ourselves and our sibling. |
- children_.weak_clear(); |
- children_.insert(children_.end(), |
- sorted_children.begin(), |
- sorted_children.begin() + split_index); |
- sibling->children_.insert(sibling->children_.end(), |
- sorted_children.begin() + split_index, |
- sorted_children.end()); |
- |
- for (size_t i = 0; i < sibling->children_.size(); ++i) |
- sibling->children_[i]->set_parent(sibling.get()); |
- |
- return sibling.PassAs<NodeBase>(); |
-} |
- |
-RTreeBase::Node* RTreeBase::Node::LeastOverlapIncrease( |
- const Rect& node_rect, |
- const Rects& expanded_rects) { |
- NodeBase* best_node = children_.front(); |
- int least_overlap_increase = |
- OverlapIncreaseToAdd(node_rect, children_[0], expanded_rects[0]); |
- for (size_t i = 1; i < children_.size(); ++i) { |
- int overlap_increase = |
- OverlapIncreaseToAdd(node_rect, children_[i], expanded_rects[i]); |
- if (overlap_increase < least_overlap_increase) { |
- least_overlap_increase = overlap_increase; |
- best_node = children_[i]; |
- } else if (overlap_increase == least_overlap_increase) { |
- // If we are tied at zero there is no possible better overlap increase, |
- // so we can report a tie early. |
- if (overlap_increase == 0) |
- return NULL; |
- |
- best_node = NULL; |
- } |
- } |
- |
- // Ensure that our children are always Nodes and not Records. |
- DCHECK_GE(level_, 1); |
- return static_cast<Node*>(best_node); |
-} |
- |
-RTreeBase::Node* RTreeBase::Node::LeastAreaEnlargement( |
- const Rect& node_rect, |
- const Rects& expanded_rects) { |
- DCHECK(!children_.empty()); |
- DCHECK_EQ(children_.size(), expanded_rects.size()); |
- |
- NodeBase* best_node = children_.front(); |
- int least_area_enlargement = |
- expanded_rects[0].size().GetArea() - best_node->rect().size().GetArea(); |
- for (size_t i = 1; i < children_.size(); ++i) { |
- NodeBase* candidate_node = children_[i]; |
- int area_change = expanded_rects[i].size().GetArea() - |
- candidate_node->rect().size().GetArea(); |
- DCHECK_GE(area_change, 0); |
- if (area_change < least_area_enlargement) { |
- best_node = candidate_node; |
- least_area_enlargement = area_change; |
- } else if (area_change == least_area_enlargement && |
- candidate_node->rect().size().GetArea() < |
- best_node->rect().size().GetArea()) { |
- // Ties are broken by choosing the entry with the least area. |
- best_node = candidate_node; |
- } |
- } |
- |
- // Ensure that our children are always Nodes and not Records. |
- DCHECK_GE(level_, 1); |
- return static_cast<Node*>(best_node); |
-} |
- |
- |
-// RTreeBase ------------------------------------------------------------------ |
- |
-RTreeBase::RTreeBase(size_t min_children, size_t max_children) |
- : root_(new Node()), |
- min_children_(min_children), |
- max_children_(max_children) { |
- DCHECK_GE(min_children_, 2U); |
- DCHECK_LE(min_children_, max_children_ / 2U); |
-} |
- |
-RTreeBase::~RTreeBase() { |
-} |
- |
-void RTreeBase::InsertNode( |
- scoped_ptr<NodeBase> node, int* highest_reinsert_level) { |
- // Find the most appropriate parent to insert node into. |
- Node* parent = root_->ChooseSubtree(node.get()); |
- DCHECK(parent); |
- // Verify ChooseSubtree returned a Node at the correct level. |
- DCHECK_EQ(parent->Level(), node->Level() + 1); |
- Node* insert_parent = static_cast<Node*>(parent); |
- NodeBase* needs_bounds_recomputed = insert_parent->parent(); |
- Nodes reinserts; |
- // Attempt to insert the Node, if this overflows the Node we must handle it. |
- while (insert_parent && |
- insert_parent->AddChild(node.Pass()) > max_children_) { |
- // If we have yet to re-insert nodes at this level during this data insert, |
- // and we're not at the root, R*-Tree calls for re-insertion of some of the |
- // nodes, resulting in a better balance on the tree. |
- if (insert_parent->parent() && |
- insert_parent->Level() > *highest_reinsert_level) { |
- insert_parent->RemoveNodesForReinsert(max_children_ / 3, &reinserts); |
- // Adjust highest_reinsert_level to this level. |
- *highest_reinsert_level = insert_parent->Level(); |
- // RemoveNodesForReinsert() does not recompute bounds, so mark it. |
- needs_bounds_recomputed = insert_parent; |
- break; |
- } |
- |
- // Split() will create a sibling to insert_parent both of which will have |
- // valid bounds, but this invalidates their parent's bounds. |
- node = insert_parent->Split(min_children_, max_children_); |
- insert_parent = static_cast<Node*>(insert_parent->parent()); |
- needs_bounds_recomputed = insert_parent; |
- } |
- |
- // If we have a Node to insert, and we hit the root of the current tree, |
- // we create a new root which is the parent of the current root and the |
- // insert_node. Note that we must release() the |root_| since |
- // ConstructParent() will take ownership of it. |
- if (!insert_parent && node) { |
- root_ = root_.release()->ConstructParent(); |
- root_->AddChild(node.Pass()); |
- } |
- |
- // Recompute bounds along insertion path. |
- if (needs_bounds_recomputed) |
- needs_bounds_recomputed->RecomputeBoundsUpToRoot(); |
- |
- // Complete re-inserts, if any. The algorithm only allows for one invocation |
- // of RemoveNodesForReinsert() per level of the tree in an overall call to |
- // Insert(). |
- while (!reinserts.empty()) { |
- Nodes::iterator last_element = reinserts.end() - 1; |
- NodeBase* temp_ptr(*last_element); |
- reinserts.weak_erase(last_element); |
- InsertNode(make_scoped_ptr(temp_ptr), highest_reinsert_level); |
- } |
-} |
- |
-scoped_ptr<RTreeBase::NodeBase> RTreeBase::RemoveNode(NodeBase* node) { |
- // We need to remove this node from its parent. |
- Node* parent = static_cast<Node*>(node->parent()); |
- // Record nodes are never allowed as the root, so we should always have a |
- // parent. |
- DCHECK(parent); |
- // Should always be a leaf that had the record. |
- DCHECK_EQ(0, parent->Level()); |
- |
- Nodes orphans; |
- scoped_ptr<NodeBase> removed_node(parent->RemoveChild(node, &orphans)); |
- |
- // It's possible that by removing |node| from |parent| we have made |parent| |
- // have less than the minimum number of children, in which case we will need |
- // to remove and delete |parent| while reinserting any other children that it |
- // had. We traverse up the tree doing this until we remove a child from a |
- // parent that still has greater than or equal to the minimum number of Nodes. |
- while (parent->count() < min_children_) { |
- NodeBase* child = parent; |
- parent = static_cast<Node*>(parent->parent()); |
- |
- // If we've hit the root, stop. |
- if (!parent) |
- break; |
- |
- parent->RemoveChild(child, &orphans); |
- } |
- |
- // If we stopped deleting nodes up the tree before encountering the root, |
- // we'll need to fix up the bounds from the first parent we didn't delete |
- // up to the root. |
- if (parent) |
- parent->RecomputeBoundsUpToRoot(); |
- else |
- root_->RecomputeBoundsUpToRoot(); |
- |
- while (!orphans.empty()) { |
- Nodes::iterator last_element = orphans.end() - 1; |
- NodeBase* temp_ptr(*last_element); |
- orphans.weak_erase(last_element); |
- int starting_level = -1; |
- InsertNode(make_scoped_ptr(temp_ptr), &starting_level); |
- } |
- |
- return removed_node.Pass(); |
-} |
- |
-void RTreeBase::PruneRootIfNecessary() { |
- if (root()->count() == 1 && root()->Level() > 0) { |
- // Awkward reset(cast(release)) pattern here because there's no better way |
- // to downcast the scoped_ptr from RemoveAndReturnLastChild() from NodeBase |
- // to Node. |
- root_.reset( |
- static_cast<Node*>(root_->RemoveAndReturnLastChild().release())); |
- } |
-} |
- |
-void RTreeBase::ResetRoot() { |
- root_.reset(new Node()); |
-} |
- |
-} // namespace gfx |