OLD | NEW |
| (Empty) |
1 // Copyright 2014 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "ui/gfx/geometry/r_tree_base.h" | |
6 | |
7 #include <algorithm> | |
8 | |
9 #include "base/logging.h" | |
10 | |
11 | |
12 // Helpers -------------------------------------------------------------------- | |
13 | |
14 namespace { | |
15 | |
16 // Returns a Vector2d to allow us to do arithmetic on the result such as | |
17 // computing distances between centers. | |
18 gfx::Vector2d CenterOfRect(const gfx::Rect& rect) { | |
19 return rect.OffsetFromOrigin() + | |
20 gfx::Vector2d(rect.width() / 2, rect.height() / 2); | |
21 } | |
22 | |
23 } | |
24 | |
25 namespace gfx { | |
26 | |
27 | |
28 // RTreeBase::NodeBase -------------------------------------------------------- | |
29 | |
30 RTreeBase::NodeBase::~NodeBase() { | |
31 } | |
32 | |
33 void RTreeBase::NodeBase::RecomputeBoundsUpToRoot() { | |
34 RecomputeLocalBounds(); | |
35 if (parent_) | |
36 parent_->RecomputeBoundsUpToRoot(); | |
37 } | |
38 | |
39 RTreeBase::NodeBase::NodeBase(const Rect& rect, NodeBase* parent) | |
40 : rect_(rect), | |
41 parent_(parent) { | |
42 } | |
43 | |
44 void RTreeBase::NodeBase::RecomputeLocalBounds() { | |
45 } | |
46 | |
47 // RTreeBase::RecordBase ------------------------------------------------------ | |
48 | |
49 RTreeBase::RecordBase::RecordBase(const Rect& rect) : NodeBase(rect, NULL) { | |
50 } | |
51 | |
52 RTreeBase::RecordBase::~RecordBase() { | |
53 } | |
54 | |
55 void RTreeBase::RecordBase::AppendIntersectingRecords( | |
56 const Rect& query_rect, Records* matches_out) const { | |
57 if (rect().Intersects(query_rect)) | |
58 matches_out->push_back(this); | |
59 } | |
60 | |
61 void RTreeBase::RecordBase::AppendAllRecords(Records* matches_out) const { | |
62 matches_out->push_back(this); | |
63 } | |
64 | |
65 scoped_ptr<RTreeBase::NodeBase> | |
66 RTreeBase::RecordBase::RemoveAndReturnLastChild() { | |
67 return scoped_ptr<NodeBase>(); | |
68 } | |
69 | |
70 int RTreeBase::RecordBase::Level() const { | |
71 return -1; | |
72 } | |
73 | |
74 | |
75 // RTreeBase::Node ------------------------------------------------------------ | |
76 | |
77 RTreeBase::Node::Node() : NodeBase(Rect(), NULL), level_(0) { | |
78 } | |
79 | |
80 RTreeBase::Node::~Node() { | |
81 } | |
82 | |
83 scoped_ptr<RTreeBase::Node> RTreeBase::Node::ConstructParent() { | |
84 DCHECK(!parent()); | |
85 scoped_ptr<Node> new_parent(new Node(level_ + 1)); | |
86 new_parent->AddChild(scoped_ptr<NodeBase>(this)); | |
87 return new_parent.Pass(); | |
88 } | |
89 | |
90 void RTreeBase::Node::AppendIntersectingRecords( | |
91 const Rect& query_rect, Records* matches_out) const { | |
92 // Check own bounding box for intersection, can cull all children if no | |
93 // intersection. | |
94 if (!rect().Intersects(query_rect)) | |
95 return; | |
96 | |
97 // Conversely if we are completely contained within the query rect we can | |
98 // confidently skip all bounds checks for ourselves and all our children. | |
99 if (query_rect.Contains(rect())) { | |
100 AppendAllRecords(matches_out); | |
101 return; | |
102 } | |
103 | |
104 // We intersect the query rect but we are not are not contained within it. | |
105 // We must query each of our children in turn. | |
106 for (Nodes::const_iterator i = children_.begin(); i != children_.end(); ++i) | |
107 (*i)->AppendIntersectingRecords(query_rect, matches_out); | |
108 } | |
109 | |
110 void RTreeBase::Node::AppendAllRecords(Records* matches_out) const { | |
111 for (Nodes::const_iterator i = children_.begin(); i != children_.end(); ++i) | |
112 (*i)->AppendAllRecords(matches_out); | |
113 } | |
114 | |
115 void RTreeBase::Node::RemoveNodesForReinsert(size_t number_to_remove, | |
116 Nodes* nodes) { | |
117 DCHECK_LE(number_to_remove, children_.size()); | |
118 | |
119 std::partial_sort(children_.begin(), | |
120 children_.begin() + number_to_remove, | |
121 children_.end(), | |
122 &RTreeBase::Node::CompareCenterDistanceFromParent); | |
123 | |
124 // Move the lowest-distance nodes to the returned vector. | |
125 nodes->insert( | |
126 nodes->end(), children_.begin(), children_.begin() + number_to_remove); | |
127 children_.weak_erase(children_.begin(), children_.begin() + number_to_remove); | |
128 } | |
129 | |
130 scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::RemoveChild( | |
131 NodeBase* child_node, Nodes* orphans) { | |
132 DCHECK_EQ(this, child_node->parent()); | |
133 | |
134 scoped_ptr<NodeBase> orphan(child_node->RemoveAndReturnLastChild()); | |
135 while (orphan) { | |
136 orphans->push_back(orphan.release()); | |
137 orphan = child_node->RemoveAndReturnLastChild(); | |
138 } | |
139 | |
140 Nodes::iterator i = std::find(children_.begin(), children_.end(), child_node); | |
141 DCHECK(i != children_.end()); | |
142 children_.weak_erase(i); | |
143 | |
144 return scoped_ptr<NodeBase>(child_node); | |
145 } | |
146 | |
147 scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::RemoveAndReturnLastChild() { | |
148 if (children_.empty()) | |
149 return scoped_ptr<NodeBase>(); | |
150 | |
151 scoped_ptr<NodeBase> last_child(children_.back()); | |
152 children_.weak_erase(children_.end() - 1); | |
153 last_child->set_parent(NULL); | |
154 return last_child.Pass(); | |
155 } | |
156 | |
157 RTreeBase::Node* RTreeBase::Node::ChooseSubtree(NodeBase* node) { | |
158 DCHECK(node); | |
159 // Should never be called on a node at equal or lower level in the tree than | |
160 // the node to insert. | |
161 DCHECK_GT(level_, node->Level()); | |
162 | |
163 // If we are a parent of nodes on the provided node level, we are done. | |
164 if (level_ == node->Level() + 1) | |
165 return this; | |
166 | |
167 // Precompute a vector of expanded rects, used by both LeastOverlapIncrease | |
168 // and LeastAreaEnlargement. | |
169 Rects expanded_rects; | |
170 expanded_rects.reserve(children_.size()); | |
171 for (Nodes::iterator i = children_.begin(); i != children_.end(); ++i) | |
172 expanded_rects.push_back(UnionRects(node->rect(), (*i)->rect())); | |
173 | |
174 Node* best_candidate = NULL; | |
175 // For parents of leaf nodes, we pick the node that will cause the least | |
176 // increase in overlap by the addition of this new node. This may detect a | |
177 // tie, in which case it will return NULL. | |
178 if (level_ == 1) | |
179 best_candidate = LeastOverlapIncrease(node->rect(), expanded_rects); | |
180 | |
181 // For non-parents of leaf nodes, or for parents of leaf nodes with ties in | |
182 // overlap increase, we choose the subtree with least area enlargement caused | |
183 // by the addition of the new node. | |
184 if (!best_candidate) | |
185 best_candidate = LeastAreaEnlargement(node->rect(), expanded_rects); | |
186 | |
187 DCHECK(best_candidate); | |
188 return best_candidate->ChooseSubtree(node); | |
189 } | |
190 | |
191 size_t RTreeBase::Node::AddChild(scoped_ptr<NodeBase> node) { | |
192 DCHECK(node); | |
193 // Sanity-check that the level of the child being added is one less than ours. | |
194 DCHECK_EQ(level_ - 1, node->Level()); | |
195 node->set_parent(this); | |
196 set_rect(UnionRects(rect(), node->rect())); | |
197 children_.push_back(node.release()); | |
198 return children_.size(); | |
199 } | |
200 | |
201 scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::Split(size_t min_children, | |
202 size_t max_children) { | |
203 // We should have too many children to begin with. | |
204 DCHECK_EQ(max_children + 1, children_.size()); | |
205 | |
206 // Determine if we should split along the horizontal or vertical axis. | |
207 std::vector<NodeBase*> vertical_sort(children_.get()); | |
208 std::vector<NodeBase*> horizontal_sort(children_.get()); | |
209 std::sort(vertical_sort.begin(), | |
210 vertical_sort.end(), | |
211 &RTreeBase::Node::CompareVertical); | |
212 std::sort(horizontal_sort.begin(), | |
213 horizontal_sort.end(), | |
214 &RTreeBase::Node::CompareHorizontal); | |
215 | |
216 Rects low_vertical_bounds; | |
217 Rects low_horizontal_bounds; | |
218 BuildLowBounds(vertical_sort, | |
219 horizontal_sort, | |
220 &low_vertical_bounds, | |
221 &low_horizontal_bounds); | |
222 | |
223 Rects high_vertical_bounds; | |
224 Rects high_horizontal_bounds; | |
225 BuildHighBounds(vertical_sort, | |
226 horizontal_sort, | |
227 &high_vertical_bounds, | |
228 &high_horizontal_bounds); | |
229 | |
230 // Choose |end_index| such that both Nodes after the split will have | |
231 // min_children <= children_.size() <= max_children. | |
232 size_t end_index = std::min(max_children, children_.size() - min_children); | |
233 bool is_vertical_split = | |
234 SmallestMarginSum(min_children, | |
235 end_index, | |
236 low_horizontal_bounds, | |
237 high_horizontal_bounds) < | |
238 SmallestMarginSum(min_children, | |
239 end_index, | |
240 low_vertical_bounds, | |
241 high_vertical_bounds); | |
242 | |
243 // Choose split index along chosen axis and perform the split. | |
244 const Rects& low_bounds( | |
245 is_vertical_split ? low_vertical_bounds : low_horizontal_bounds); | |
246 const Rects& high_bounds( | |
247 is_vertical_split ? high_vertical_bounds : high_horizontal_bounds); | |
248 size_t split_index = | |
249 ChooseSplitIndex(min_children, end_index, low_bounds, high_bounds); | |
250 | |
251 const std::vector<NodeBase*>& sort( | |
252 is_vertical_split ? vertical_sort : horizontal_sort); | |
253 return DivideChildren(low_bounds, high_bounds, sort, split_index); | |
254 } | |
255 | |
256 int RTreeBase::Node::Level() const { | |
257 return level_; | |
258 } | |
259 | |
260 RTreeBase::Node::Node(int level) : NodeBase(Rect(), NULL), level_(level) { | |
261 } | |
262 | |
263 // static | |
264 bool RTreeBase::Node::CompareVertical(const NodeBase* a, const NodeBase* b) { | |
265 const Rect& a_rect = a->rect(); | |
266 const Rect& b_rect = b->rect(); | |
267 return (a_rect.y() < b_rect.y()) || | |
268 ((a_rect.y() == b_rect.y()) && (a_rect.height() < b_rect.height())); | |
269 } | |
270 | |
271 // static | |
272 bool RTreeBase::Node::CompareHorizontal(const NodeBase* a, const NodeBase* b) { | |
273 const Rect& a_rect = a->rect(); | |
274 const Rect& b_rect = b->rect(); | |
275 return (a_rect.x() < b_rect.x()) || | |
276 ((a_rect.x() == b_rect.x()) && (a_rect.width() < b_rect.width())); | |
277 } | |
278 | |
279 // static | |
280 bool RTreeBase::Node::CompareCenterDistanceFromParent(const NodeBase* a, | |
281 const NodeBase* b) { | |
282 const NodeBase* p = a->parent(); | |
283 | |
284 DCHECK(p); | |
285 DCHECK_EQ(p, b->parent()); | |
286 | |
287 Vector2d p_center = CenterOfRect(p->rect()); | |
288 Vector2d a_center = CenterOfRect(a->rect()); | |
289 Vector2d b_center = CenterOfRect(b->rect()); | |
290 | |
291 // We don't bother with square roots because we are only comparing the two | |
292 // values for sorting purposes. | |
293 return (a_center - p_center).LengthSquared() < | |
294 (b_center - p_center).LengthSquared(); | |
295 } | |
296 | |
297 // static | |
298 void RTreeBase::Node::BuildLowBounds( | |
299 const std::vector<NodeBase*>& vertical_sort, | |
300 const std::vector<NodeBase*>& horizontal_sort, | |
301 Rects* vertical_bounds, | |
302 Rects* horizontal_bounds) { | |
303 Rect vertical_bounds_rect; | |
304 vertical_bounds->reserve(vertical_sort.size()); | |
305 for (std::vector<NodeBase*>::const_iterator i = vertical_sort.begin(); | |
306 i != vertical_sort.end(); | |
307 ++i) { | |
308 vertical_bounds_rect.Union((*i)->rect()); | |
309 vertical_bounds->push_back(vertical_bounds_rect); | |
310 } | |
311 | |
312 Rect horizontal_bounds_rect; | |
313 horizontal_bounds->reserve(horizontal_sort.size()); | |
314 for (std::vector<NodeBase*>::const_iterator i = horizontal_sort.begin(); | |
315 i != horizontal_sort.end(); | |
316 ++i) { | |
317 horizontal_bounds_rect.Union((*i)->rect()); | |
318 horizontal_bounds->push_back(horizontal_bounds_rect); | |
319 } | |
320 } | |
321 | |
322 // static | |
323 void RTreeBase::Node::BuildHighBounds( | |
324 const std::vector<NodeBase*>& vertical_sort, | |
325 const std::vector<NodeBase*>& horizontal_sort, | |
326 Rects* vertical_bounds, | |
327 Rects* horizontal_bounds) { | |
328 Rect vertical_bounds_rect; | |
329 vertical_bounds->reserve(vertical_sort.size()); | |
330 for (std::vector<NodeBase*>::const_reverse_iterator i = | |
331 vertical_sort.rbegin(); | |
332 i != vertical_sort.rend(); | |
333 ++i) { | |
334 vertical_bounds_rect.Union((*i)->rect()); | |
335 vertical_bounds->push_back(vertical_bounds_rect); | |
336 } | |
337 std::reverse(vertical_bounds->begin(), vertical_bounds->end()); | |
338 | |
339 Rect horizontal_bounds_rect; | |
340 horizontal_bounds->reserve(horizontal_sort.size()); | |
341 for (std::vector<NodeBase*>::const_reverse_iterator i = | |
342 horizontal_sort.rbegin(); | |
343 i != horizontal_sort.rend(); | |
344 ++i) { | |
345 horizontal_bounds_rect.Union((*i)->rect()); | |
346 horizontal_bounds->push_back(horizontal_bounds_rect); | |
347 } | |
348 std::reverse(horizontal_bounds->begin(), horizontal_bounds->end()); | |
349 } | |
350 | |
351 size_t RTreeBase::Node::ChooseSplitIndex(size_t start_index, | |
352 size_t end_index, | |
353 const Rects& low_bounds, | |
354 const Rects& high_bounds) { | |
355 DCHECK_EQ(low_bounds.size(), high_bounds.size()); | |
356 | |
357 int smallest_overlap_area = UnionRects( | |
358 low_bounds[start_index], high_bounds[start_index]).size().GetArea(); | |
359 int smallest_combined_area = low_bounds[start_index].size().GetArea() + | |
360 high_bounds[start_index].size().GetArea(); | |
361 size_t optimal_split_index = start_index; | |
362 for (size_t p = start_index + 1; p < end_index; ++p) { | |
363 const int overlap_area = | |
364 UnionRects(low_bounds[p], high_bounds[p]).size().GetArea(); | |
365 const int combined_area = | |
366 low_bounds[p].size().GetArea() + high_bounds[p].size().GetArea(); | |
367 if ((overlap_area < smallest_overlap_area) || | |
368 ((overlap_area == smallest_overlap_area) && | |
369 (combined_area < smallest_combined_area))) { | |
370 smallest_overlap_area = overlap_area; | |
371 smallest_combined_area = combined_area; | |
372 optimal_split_index = p; | |
373 } | |
374 } | |
375 | |
376 // optimal_split_index currently points at the last element in the first set, | |
377 // so advance it by 1 to point at the first element in the second set. | |
378 return optimal_split_index + 1; | |
379 } | |
380 | |
381 // static | |
382 int RTreeBase::Node::SmallestMarginSum(size_t start_index, | |
383 size_t end_index, | |
384 const Rects& low_bounds, | |
385 const Rects& high_bounds) { | |
386 DCHECK_EQ(low_bounds.size(), high_bounds.size()); | |
387 DCHECK_LT(start_index, low_bounds.size()); | |
388 DCHECK_LE(start_index, end_index); | |
389 DCHECK_LE(end_index, low_bounds.size()); | |
390 Rects::const_iterator i(low_bounds.begin() + start_index); | |
391 Rects::const_iterator j(high_bounds.begin() + start_index); | |
392 int smallest_sum = i->width() + i->height() + j->width() + j->height(); | |
393 for (; i != (low_bounds.begin() + end_index); ++i, ++j) { | |
394 smallest_sum = std::min( | |
395 smallest_sum, i->width() + i->height() + j->width() + j->height()); | |
396 } | |
397 | |
398 return smallest_sum; | |
399 } | |
400 | |
401 void RTreeBase::Node::RecomputeLocalBounds() { | |
402 Rect bounds; | |
403 for (size_t i = 0; i < children_.size(); ++i) | |
404 bounds.Union(children_[i]->rect()); | |
405 | |
406 set_rect(bounds); | |
407 } | |
408 | |
409 int RTreeBase::Node::OverlapIncreaseToAdd(const Rect& rect, | |
410 const NodeBase* candidate_node, | |
411 const Rect& expanded_rect) const { | |
412 DCHECK(candidate_node); | |
413 | |
414 // Early-out when |rect| is contained completely within |candidate|. | |
415 if (candidate_node->rect().Contains(rect)) | |
416 return 0; | |
417 | |
418 int total_original_overlap = 0; | |
419 int total_expanded_overlap = 0; | |
420 | |
421 // Now calculate overlap with all other rects in this node. | |
422 for (Nodes::const_iterator it = children_.begin(); | |
423 it != children_.end(); ++it) { | |
424 // Skip calculating overlap with the candidate rect. | |
425 if ((*it) == candidate_node) | |
426 continue; | |
427 NodeBase* overlap_node = (*it); | |
428 total_original_overlap += IntersectRects( | |
429 candidate_node->rect(), overlap_node->rect()).size().GetArea(); | |
430 Rect expanded_overlap_rect = expanded_rect; | |
431 expanded_overlap_rect.Intersect(overlap_node->rect()); | |
432 total_expanded_overlap += expanded_overlap_rect.size().GetArea(); | |
433 } | |
434 | |
435 return total_expanded_overlap - total_original_overlap; | |
436 } | |
437 | |
438 scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::DivideChildren( | |
439 const Rects& low_bounds, | |
440 const Rects& high_bounds, | |
441 const std::vector<NodeBase*>& sorted_children, | |
442 size_t split_index) { | |
443 DCHECK_EQ(low_bounds.size(), high_bounds.size()); | |
444 DCHECK_EQ(low_bounds.size(), sorted_children.size()); | |
445 DCHECK_LT(split_index, low_bounds.size()); | |
446 DCHECK_GT(split_index, 0U); | |
447 | |
448 scoped_ptr<Node> sibling(new Node(level_)); | |
449 sibling->set_parent(parent()); | |
450 set_rect(low_bounds[split_index - 1]); | |
451 sibling->set_rect(high_bounds[split_index]); | |
452 | |
453 // Our own children_ vector is unsorted, so we wipe it out and divide the | |
454 // sorted bounds rects between ourselves and our sibling. | |
455 children_.weak_clear(); | |
456 children_.insert(children_.end(), | |
457 sorted_children.begin(), | |
458 sorted_children.begin() + split_index); | |
459 sibling->children_.insert(sibling->children_.end(), | |
460 sorted_children.begin() + split_index, | |
461 sorted_children.end()); | |
462 | |
463 for (size_t i = 0; i < sibling->children_.size(); ++i) | |
464 sibling->children_[i]->set_parent(sibling.get()); | |
465 | |
466 return sibling.PassAs<NodeBase>(); | |
467 } | |
468 | |
469 RTreeBase::Node* RTreeBase::Node::LeastOverlapIncrease( | |
470 const Rect& node_rect, | |
471 const Rects& expanded_rects) { | |
472 NodeBase* best_node = children_.front(); | |
473 int least_overlap_increase = | |
474 OverlapIncreaseToAdd(node_rect, children_[0], expanded_rects[0]); | |
475 for (size_t i = 1; i < children_.size(); ++i) { | |
476 int overlap_increase = | |
477 OverlapIncreaseToAdd(node_rect, children_[i], expanded_rects[i]); | |
478 if (overlap_increase < least_overlap_increase) { | |
479 least_overlap_increase = overlap_increase; | |
480 best_node = children_[i]; | |
481 } else if (overlap_increase == least_overlap_increase) { | |
482 // If we are tied at zero there is no possible better overlap increase, | |
483 // so we can report a tie early. | |
484 if (overlap_increase == 0) | |
485 return NULL; | |
486 | |
487 best_node = NULL; | |
488 } | |
489 } | |
490 | |
491 // Ensure that our children are always Nodes and not Records. | |
492 DCHECK_GE(level_, 1); | |
493 return static_cast<Node*>(best_node); | |
494 } | |
495 | |
496 RTreeBase::Node* RTreeBase::Node::LeastAreaEnlargement( | |
497 const Rect& node_rect, | |
498 const Rects& expanded_rects) { | |
499 DCHECK(!children_.empty()); | |
500 DCHECK_EQ(children_.size(), expanded_rects.size()); | |
501 | |
502 NodeBase* best_node = children_.front(); | |
503 int least_area_enlargement = | |
504 expanded_rects[0].size().GetArea() - best_node->rect().size().GetArea(); | |
505 for (size_t i = 1; i < children_.size(); ++i) { | |
506 NodeBase* candidate_node = children_[i]; | |
507 int area_change = expanded_rects[i].size().GetArea() - | |
508 candidate_node->rect().size().GetArea(); | |
509 DCHECK_GE(area_change, 0); | |
510 if (area_change < least_area_enlargement) { | |
511 best_node = candidate_node; | |
512 least_area_enlargement = area_change; | |
513 } else if (area_change == least_area_enlargement && | |
514 candidate_node->rect().size().GetArea() < | |
515 best_node->rect().size().GetArea()) { | |
516 // Ties are broken by choosing the entry with the least area. | |
517 best_node = candidate_node; | |
518 } | |
519 } | |
520 | |
521 // Ensure that our children are always Nodes and not Records. | |
522 DCHECK_GE(level_, 1); | |
523 return static_cast<Node*>(best_node); | |
524 } | |
525 | |
526 | |
527 // RTreeBase ------------------------------------------------------------------ | |
528 | |
529 RTreeBase::RTreeBase(size_t min_children, size_t max_children) | |
530 : root_(new Node()), | |
531 min_children_(min_children), | |
532 max_children_(max_children) { | |
533 DCHECK_GE(min_children_, 2U); | |
534 DCHECK_LE(min_children_, max_children_ / 2U); | |
535 } | |
536 | |
537 RTreeBase::~RTreeBase() { | |
538 } | |
539 | |
540 void RTreeBase::InsertNode( | |
541 scoped_ptr<NodeBase> node, int* highest_reinsert_level) { | |
542 // Find the most appropriate parent to insert node into. | |
543 Node* parent = root_->ChooseSubtree(node.get()); | |
544 DCHECK(parent); | |
545 // Verify ChooseSubtree returned a Node at the correct level. | |
546 DCHECK_EQ(parent->Level(), node->Level() + 1); | |
547 Node* insert_parent = static_cast<Node*>(parent); | |
548 NodeBase* needs_bounds_recomputed = insert_parent->parent(); | |
549 Nodes reinserts; | |
550 // Attempt to insert the Node, if this overflows the Node we must handle it. | |
551 while (insert_parent && | |
552 insert_parent->AddChild(node.Pass()) > max_children_) { | |
553 // If we have yet to re-insert nodes at this level during this data insert, | |
554 // and we're not at the root, R*-Tree calls for re-insertion of some of the | |
555 // nodes, resulting in a better balance on the tree. | |
556 if (insert_parent->parent() && | |
557 insert_parent->Level() > *highest_reinsert_level) { | |
558 insert_parent->RemoveNodesForReinsert(max_children_ / 3, &reinserts); | |
559 // Adjust highest_reinsert_level to this level. | |
560 *highest_reinsert_level = insert_parent->Level(); | |
561 // RemoveNodesForReinsert() does not recompute bounds, so mark it. | |
562 needs_bounds_recomputed = insert_parent; | |
563 break; | |
564 } | |
565 | |
566 // Split() will create a sibling to insert_parent both of which will have | |
567 // valid bounds, but this invalidates their parent's bounds. | |
568 node = insert_parent->Split(min_children_, max_children_); | |
569 insert_parent = static_cast<Node*>(insert_parent->parent()); | |
570 needs_bounds_recomputed = insert_parent; | |
571 } | |
572 | |
573 // If we have a Node to insert, and we hit the root of the current tree, | |
574 // we create a new root which is the parent of the current root and the | |
575 // insert_node. Note that we must release() the |root_| since | |
576 // ConstructParent() will take ownership of it. | |
577 if (!insert_parent && node) { | |
578 root_ = root_.release()->ConstructParent(); | |
579 root_->AddChild(node.Pass()); | |
580 } | |
581 | |
582 // Recompute bounds along insertion path. | |
583 if (needs_bounds_recomputed) | |
584 needs_bounds_recomputed->RecomputeBoundsUpToRoot(); | |
585 | |
586 // Complete re-inserts, if any. The algorithm only allows for one invocation | |
587 // of RemoveNodesForReinsert() per level of the tree in an overall call to | |
588 // Insert(). | |
589 while (!reinserts.empty()) { | |
590 Nodes::iterator last_element = reinserts.end() - 1; | |
591 NodeBase* temp_ptr(*last_element); | |
592 reinserts.weak_erase(last_element); | |
593 InsertNode(make_scoped_ptr(temp_ptr), highest_reinsert_level); | |
594 } | |
595 } | |
596 | |
597 scoped_ptr<RTreeBase::NodeBase> RTreeBase::RemoveNode(NodeBase* node) { | |
598 // We need to remove this node from its parent. | |
599 Node* parent = static_cast<Node*>(node->parent()); | |
600 // Record nodes are never allowed as the root, so we should always have a | |
601 // parent. | |
602 DCHECK(parent); | |
603 // Should always be a leaf that had the record. | |
604 DCHECK_EQ(0, parent->Level()); | |
605 | |
606 Nodes orphans; | |
607 scoped_ptr<NodeBase> removed_node(parent->RemoveChild(node, &orphans)); | |
608 | |
609 // It's possible that by removing |node| from |parent| we have made |parent| | |
610 // have less than the minimum number of children, in which case we will need | |
611 // to remove and delete |parent| while reinserting any other children that it | |
612 // had. We traverse up the tree doing this until we remove a child from a | |
613 // parent that still has greater than or equal to the minimum number of Nodes. | |
614 while (parent->count() < min_children_) { | |
615 NodeBase* child = parent; | |
616 parent = static_cast<Node*>(parent->parent()); | |
617 | |
618 // If we've hit the root, stop. | |
619 if (!parent) | |
620 break; | |
621 | |
622 parent->RemoveChild(child, &orphans); | |
623 } | |
624 | |
625 // If we stopped deleting nodes up the tree before encountering the root, | |
626 // we'll need to fix up the bounds from the first parent we didn't delete | |
627 // up to the root. | |
628 if (parent) | |
629 parent->RecomputeBoundsUpToRoot(); | |
630 else | |
631 root_->RecomputeBoundsUpToRoot(); | |
632 | |
633 while (!orphans.empty()) { | |
634 Nodes::iterator last_element = orphans.end() - 1; | |
635 NodeBase* temp_ptr(*last_element); | |
636 orphans.weak_erase(last_element); | |
637 int starting_level = -1; | |
638 InsertNode(make_scoped_ptr(temp_ptr), &starting_level); | |
639 } | |
640 | |
641 return removed_node.Pass(); | |
642 } | |
643 | |
644 void RTreeBase::PruneRootIfNecessary() { | |
645 if (root()->count() == 1 && root()->Level() > 0) { | |
646 // Awkward reset(cast(release)) pattern here because there's no better way | |
647 // to downcast the scoped_ptr from RemoveAndReturnLastChild() from NodeBase | |
648 // to Node. | |
649 root_.reset( | |
650 static_cast<Node*>(root_->RemoveAndReturnLastChild().release())); | |
651 } | |
652 } | |
653 | |
654 void RTreeBase::ResetRoot() { | |
655 root_.reset(new Node()); | |
656 } | |
657 | |
658 } // namespace gfx | |
OLD | NEW |