Index: Source/wtf/asm/SaturatedArithmeticARM.h |
diff --git a/Source/wtf/asm/SaturatedArithmeticARM.h b/Source/wtf/asm/SaturatedArithmeticARM.h |
deleted file mode 100644 |
index ea48efca7cfa7ac333dafd6239c96dd781818428..0000000000000000000000000000000000000000 |
--- a/Source/wtf/asm/SaturatedArithmeticARM.h |
+++ /dev/null |
@@ -1,105 +0,0 @@ |
-// Copyright 2014 The Chromium Authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#ifndef SaturatedArithmeticARM_h |
-#define SaturatedArithmeticARM_h |
- |
-#include "wtf/CPU.h" |
-#include <limits> |
-#include <stdint.h> |
- |
-ALWAYS_INLINE int32_t saturatedAddition(int32_t a, int32_t b) |
-{ |
- int32_t result; |
- |
- asm("qadd %[output],%[first],%[second]" |
- : [output] "=r" (result) |
- : [first] "r" (a), |
- [second] "r" (b)); |
- |
- return result; |
-} |
- |
-ALWAYS_INLINE int32_t saturatedSubtraction(int32_t a, int32_t b) |
-{ |
- int32_t result; |
- |
- asm("qsub %[output],%[first],%[second]" |
- : [output] "=r" (result) |
- : [first] "r" (a), |
- [second] "r" (b)); |
- |
- return result; |
-} |
- |
-inline int getMaxSaturatedSetResultForTesting(int FractionalShift) |
-{ |
- // For ARM Asm version the set function maxes out to the biggest |
- // possible integer part with the fractional part zero'd out. |
- // e.g. 0x7fffffc0. |
- return std::numeric_limits<int>::max() & ~((1 << FractionalShift)-1); |
-} |
- |
-inline int getMinSaturatedSetResultForTesting(int FractionalShift) |
-{ |
- return std::numeric_limits<int>::min(); |
-} |
- |
-ALWAYS_INLINE int saturatedSet(int value, int FractionalShift) |
-{ |
- // Figure out how many bits are left for storing the integer part of |
- // the fixed point number, and saturate our input to that |
- const int saturate = 32 - FractionalShift; |
- |
- int result; |
- |
- // The following ARM code will Saturate the passed value to the number of |
- // bits used for the whole part of the fixed point representation, then |
- // shift it up into place. This will result in the low <FractionShift> bits |
- // all being 0's. When the value saturates this gives a different result |
- // to from the C++ case; in the C++ code a saturated value has all the low |
- // bits set to 1 (for a +ve number at least). This cannot be done rapidly |
- // in ARM ... we live with the difference, for the sake of speed. |
- |
- asm("ssat %[output],%[saturate],%[value]\n\t" |
- "lsl %[output],%[shift]" |
- : [output] "=r" (result) |
- : [value] "r" (value), |
- [saturate] "n" (saturate), |
- [shift] "n" (FractionalShift)); |
- |
- return result; |
-} |
- |
- |
-ALWAYS_INLINE unsigned saturatedSet(unsigned value, int FractionalShift) |
-{ |
- // Here we are being passed an unsigned value to saturate, |
- // even though the result is returned as a signed integer. The ARM |
- // instruction for unsigned saturation therefore needs to be given one |
- // less bit (i.e. the sign bit) for the saturation to work correctly; hence |
- // the '31' below. |
- const int saturate = 31 - FractionalShift; |
- |
- // The following ARM code will Saturate the passed value to the number of |
- // bits used for the whole part of the fixed point representation, then |
- // shift it up into place. This will result in the low <FractionShift> bits |
- // all being 0's. When the value saturates this gives a different result |
- // to from the C++ case; in the C++ code a saturated value has all the low |
- // bits set to 1. This cannot be done rapidly in ARM, so we live with the |
- // difference, for the sake of speed. |
- |
- unsigned result; |
- |
- asm("usat %[output],%[saturate],%[value]\n\t" |
- "lsl %[output],%[shift]" |
- : [output] "=r" (result) |
- : [value] "r" (value), |
- [saturate] "n" (saturate), |
- [shift] "n" (FractionalShift)); |
- |
- return result; |
-} |
- |
-#endif // SaturatedArithmeticARM_h |