OLD | NEW |
| (Empty) |
1 // Copyright 2014 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #ifndef SaturatedArithmeticARM_h | |
6 #define SaturatedArithmeticARM_h | |
7 | |
8 #include "wtf/CPU.h" | |
9 #include <limits> | |
10 #include <stdint.h> | |
11 | |
12 ALWAYS_INLINE int32_t saturatedAddition(int32_t a, int32_t b) | |
13 { | |
14 int32_t result; | |
15 | |
16 asm("qadd %[output],%[first],%[second]" | |
17 : [output] "=r" (result) | |
18 : [first] "r" (a), | |
19 [second] "r" (b)); | |
20 | |
21 return result; | |
22 } | |
23 | |
24 ALWAYS_INLINE int32_t saturatedSubtraction(int32_t a, int32_t b) | |
25 { | |
26 int32_t result; | |
27 | |
28 asm("qsub %[output],%[first],%[second]" | |
29 : [output] "=r" (result) | |
30 : [first] "r" (a), | |
31 [second] "r" (b)); | |
32 | |
33 return result; | |
34 } | |
35 | |
36 inline int getMaxSaturatedSetResultForTesting(int FractionalShift) | |
37 { | |
38 // For ARM Asm version the set function maxes out to the biggest | |
39 // possible integer part with the fractional part zero'd out. | |
40 // e.g. 0x7fffffc0. | |
41 return std::numeric_limits<int>::max() & ~((1 << FractionalShift)-1); | |
42 } | |
43 | |
44 inline int getMinSaturatedSetResultForTesting(int FractionalShift) | |
45 { | |
46 return std::numeric_limits<int>::min(); | |
47 } | |
48 | |
49 ALWAYS_INLINE int saturatedSet(int value, int FractionalShift) | |
50 { | |
51 // Figure out how many bits are left for storing the integer part of | |
52 // the fixed point number, and saturate our input to that | |
53 const int saturate = 32 - FractionalShift; | |
54 | |
55 int result; | |
56 | |
57 // The following ARM code will Saturate the passed value to the number of | |
58 // bits used for the whole part of the fixed point representation, then | |
59 // shift it up into place. This will result in the low <FractionShift> bits | |
60 // all being 0's. When the value saturates this gives a different result | |
61 // to from the C++ case; in the C++ code a saturated value has all the low | |
62 // bits set to 1 (for a +ve number at least). This cannot be done rapidly | |
63 // in ARM ... we live with the difference, for the sake of speed. | |
64 | |
65 asm("ssat %[output],%[saturate],%[value]\n\t" | |
66 "lsl %[output],%[shift]" | |
67 : [output] "=r" (result) | |
68 : [value] "r" (value), | |
69 [saturate] "n" (saturate), | |
70 [shift] "n" (FractionalShift)); | |
71 | |
72 return result; | |
73 } | |
74 | |
75 | |
76 ALWAYS_INLINE unsigned saturatedSet(unsigned value, int FractionalShift) | |
77 { | |
78 // Here we are being passed an unsigned value to saturate, | |
79 // even though the result is returned as a signed integer. The ARM | |
80 // instruction for unsigned saturation therefore needs to be given one | |
81 // less bit (i.e. the sign bit) for the saturation to work correctly; hence | |
82 // the '31' below. | |
83 const int saturate = 31 - FractionalShift; | |
84 | |
85 // The following ARM code will Saturate the passed value to the number of | |
86 // bits used for the whole part of the fixed point representation, then | |
87 // shift it up into place. This will result in the low <FractionShift> bits | |
88 // all being 0's. When the value saturates this gives a different result | |
89 // to from the C++ case; in the C++ code a saturated value has all the low | |
90 // bits set to 1. This cannot be done rapidly in ARM, so we live with the | |
91 // difference, for the sake of speed. | |
92 | |
93 unsigned result; | |
94 | |
95 asm("usat %[output],%[saturate],%[value]\n\t" | |
96 "lsl %[output],%[shift]" | |
97 : [output] "=r" (result) | |
98 : [value] "r" (value), | |
99 [saturate] "n" (saturate), | |
100 [shift] "n" (FractionalShift)); | |
101 | |
102 return result; | |
103 } | |
104 | |
105 #endif // SaturatedArithmeticARM_h | |
OLD | NEW |