Index: Source/core/platform/graphics/FloatPolygon.cpp |
diff --git a/Source/core/platform/graphics/FloatPolygon.cpp b/Source/core/platform/graphics/FloatPolygon.cpp |
deleted file mode 100644 |
index c455a3e1c7f010570f83e20bb9a7c8840120a621..0000000000000000000000000000000000000000 |
--- a/Source/core/platform/graphics/FloatPolygon.cpp |
+++ /dev/null |
@@ -1,254 +0,0 @@ |
-/* |
- * Copyright (C) 2012 Adobe Systems Incorporated. All rights reserved. |
- * |
- * Redistribution and use in source and binary forms, with or without |
- * modification, are permitted provided that the following conditions |
- * are met: |
- * |
- * 1. Redistributions of source code must retain the above |
- * copyright notice, this list of conditions and the following |
- * disclaimer. |
- * 2. Redistributions in binary form must reproduce the above |
- * copyright notice, this list of conditions and the following |
- * disclaimer in the documentation and/or other materials |
- * provided with the distribution. |
- * |
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
- * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
- * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, |
- * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
- * OF THE POSSIBILITY OF SUCH DAMAGE. |
- */ |
- |
-#include "config.h" |
-#include "core/platform/graphics/FloatPolygon.h" |
- |
-#include "wtf/MathExtras.h" |
- |
-namespace WebCore { |
- |
-static inline float determinant(const FloatSize& a, const FloatSize& b) |
-{ |
- return a.width() * b.height() - a.height() * b.width(); |
-} |
- |
-static inline bool areCollinearPoints(const FloatPoint& p0, const FloatPoint& p1, const FloatPoint& p2) |
-{ |
- return !determinant(p1 - p0, p2 - p0); |
-} |
- |
-static inline bool areCoincidentPoints(const FloatPoint& p0, const FloatPoint& p1) |
-{ |
- return p0.x() == p1.x() && p0.y() == p1.y(); |
-} |
- |
-static inline bool isPointOnLineSegment(const FloatPoint& vertex1, const FloatPoint& vertex2, const FloatPoint& point) |
-{ |
- return point.x() >= std::min(vertex1.x(), vertex2.x()) |
- && point.x() <= std::max(vertex1.x(), vertex2.x()) |
- && areCollinearPoints(vertex1, vertex2, point); |
-} |
- |
-static inline unsigned nextVertexIndex(unsigned vertexIndex, unsigned nVertices, bool clockwise) |
-{ |
- return ((clockwise) ? vertexIndex + 1 : vertexIndex - 1 + nVertices) % nVertices; |
-} |
- |
-static unsigned findNextEdgeVertexIndex(const FloatPolygon& polygon, unsigned vertexIndex1, bool clockwise) |
-{ |
- unsigned nVertices = polygon.numberOfVertices(); |
- unsigned vertexIndex2 = nextVertexIndex(vertexIndex1, nVertices, clockwise); |
- |
- while (vertexIndex2 && areCoincidentPoints(polygon.vertexAt(vertexIndex1), polygon.vertexAt(vertexIndex2))) |
- vertexIndex2 = nextVertexIndex(vertexIndex2, nVertices, clockwise); |
- |
- while (vertexIndex2) { |
- unsigned vertexIndex3 = nextVertexIndex(vertexIndex2, nVertices, clockwise); |
- if (!areCollinearPoints(polygon.vertexAt(vertexIndex1), polygon.vertexAt(vertexIndex2), polygon.vertexAt(vertexIndex3))) |
- break; |
- vertexIndex2 = vertexIndex3; |
- } |
- |
- return vertexIndex2; |
-} |
- |
-FloatPolygon::FloatPolygon(PassOwnPtr<Vector<FloatPoint> > vertices, WindRule fillRule) |
- : m_vertices(vertices) |
- , m_fillRule(fillRule) |
-{ |
- unsigned nVertices = numberOfVertices(); |
- m_edges.resize(nVertices); |
- m_empty = nVertices < 3; |
- |
- if (nVertices) |
- m_boundingBox.setLocation(vertexAt(0)); |
- |
- if (m_empty) |
- return; |
- |
- unsigned minVertexIndex = 0; |
- for (unsigned i = 1; i < nVertices; ++i) { |
- const FloatPoint& vertex = vertexAt(i); |
- if (vertex.y() < vertexAt(minVertexIndex).y() || (vertex.y() == vertexAt(minVertexIndex).y() && vertex.x() < vertexAt(minVertexIndex).x())) |
- minVertexIndex = i; |
- } |
- FloatPoint nextVertex = vertexAt((minVertexIndex + 1) % nVertices); |
- FloatPoint prevVertex = vertexAt((minVertexIndex + nVertices - 1) % nVertices); |
- bool clockwise = determinant(vertexAt(minVertexIndex) - prevVertex, nextVertex - prevVertex) > 0; |
- |
- unsigned edgeIndex = 0; |
- unsigned vertexIndex1 = 0; |
- do { |
- m_boundingBox.extend(vertexAt(vertexIndex1)); |
- unsigned vertexIndex2 = findNextEdgeVertexIndex(*this, vertexIndex1, clockwise); |
- m_edges[edgeIndex].m_polygon = this; |
- m_edges[edgeIndex].m_vertexIndex1 = vertexIndex1; |
- m_edges[edgeIndex].m_vertexIndex2 = vertexIndex2; |
- m_edges[edgeIndex].m_edgeIndex = edgeIndex; |
- ++edgeIndex; |
- vertexIndex1 = vertexIndex2; |
- } while (vertexIndex1); |
- |
- if (edgeIndex > 3) { |
- const FloatPolygonEdge& firstEdge = m_edges[0]; |
- const FloatPolygonEdge& lastEdge = m_edges[edgeIndex - 1]; |
- if (areCollinearPoints(lastEdge.vertex1(), lastEdge.vertex2(), firstEdge.vertex2())) { |
- m_edges[0].m_vertexIndex1 = lastEdge.m_vertexIndex1; |
- edgeIndex--; |
- } |
- } |
- |
- m_edges.resize(edgeIndex); |
- m_empty = m_edges.size() < 3; |
- |
- if (m_empty) |
- return; |
- |
- for (unsigned i = 0; i < m_edges.size(); ++i) { |
- FloatPolygonEdge* edge = &m_edges[i]; |
- m_edgeTree.add(EdgeInterval(edge->minY(), edge->maxY(), edge)); |
- } |
-} |
- |
-bool FloatPolygon::overlappingEdges(float minY, float maxY, Vector<const FloatPolygonEdge*>& result) const |
-{ |
- Vector<FloatPolygon::EdgeInterval> overlappingEdgeIntervals; |
- m_edgeTree.allOverlaps(FloatPolygon::EdgeInterval(minY, maxY, 0), overlappingEdgeIntervals); |
- unsigned overlappingEdgeIntervalsSize = overlappingEdgeIntervals.size(); |
- result.resize(overlappingEdgeIntervalsSize); |
- for (unsigned i = 0; i < overlappingEdgeIntervalsSize; ++i) { |
- const FloatPolygonEdge* edge = static_cast<const FloatPolygonEdge*>(overlappingEdgeIntervals[i].data()); |
- ASSERT(edge); |
- result[i] = edge; |
- } |
- return overlappingEdgeIntervalsSize > 0; |
-} |
- |
-static inline float leftSide(const FloatPoint& vertex1, const FloatPoint& vertex2, const FloatPoint& point) |
-{ |
- return ((point.x() - vertex1.x()) * (vertex2.y() - vertex1.y())) - ((vertex2.x() - vertex1.x()) * (point.y() - vertex1.y())); |
-} |
- |
-bool FloatPolygon::containsEvenOdd(const FloatPoint& point) const |
-{ |
- unsigned crossingCount = 0; |
- for (unsigned i = 0; i < numberOfEdges(); ++i) { |
- const FloatPoint& vertex1 = edgeAt(i).vertex1(); |
- const FloatPoint& vertex2 = edgeAt(i).vertex2(); |
- if (isPointOnLineSegment(vertex1, vertex2, point)) |
- return true; |
- if ((vertex1.y() <= point.y() && vertex2.y() > point.y()) || (vertex1.y() > point.y() && vertex2.y() <= point.y())) { |
- float vt = (point.y() - vertex1.y()) / (vertex2.y() - vertex1.y()); |
- if (point.x() < vertex1.x() + vt * (vertex2.x() - vertex1.x())) |
- ++crossingCount; |
- } |
- } |
- return crossingCount & 1; |
-} |
- |
-bool FloatPolygon::containsNonZero(const FloatPoint& point) const |
-{ |
- int windingNumber = 0; |
- for (unsigned i = 0; i < numberOfEdges(); ++i) { |
- const FloatPoint& vertex1 = edgeAt(i).vertex1(); |
- const FloatPoint& vertex2 = edgeAt(i).vertex2(); |
- if (isPointOnLineSegment(vertex1, vertex2, point)) |
- return true; |
- if (vertex2.y() < point.y()) { |
- if ((vertex1.y() > point.y()) && (leftSide(vertex1, vertex2, point) > 0)) |
- ++windingNumber; |
- } else if (vertex2.y() > point.y()) { |
- if ((vertex1.y() <= point.y()) && (leftSide(vertex1, vertex2, point) < 0)) |
- --windingNumber; |
- } |
- } |
- return windingNumber; |
-} |
- |
-bool FloatPolygon::contains(const FloatPoint& point) const |
-{ |
- if (!m_boundingBox.contains(point)) |
- return false; |
- return (fillRule() == RULE_NONZERO) ? containsNonZero(point) : containsEvenOdd(point); |
-} |
- |
-bool VertexPair::overlapsRect(const FloatRect& rect) const |
-{ |
- bool boundsOverlap = (minX() < rect.maxX()) && (maxX() > rect.x()) && (minY() < rect.maxY()) && (maxY() > rect.y()); |
- if (!boundsOverlap) |
- return false; |
- |
- float leftSideValues[4] = { |
- leftSide(vertex1(), vertex2(), rect.minXMinYCorner()), |
- leftSide(vertex1(), vertex2(), rect.maxXMinYCorner()), |
- leftSide(vertex1(), vertex2(), rect.minXMaxYCorner()), |
- leftSide(vertex1(), vertex2(), rect.maxXMaxYCorner()) |
- }; |
- |
- int currentLeftSideSign = 0; |
- for (unsigned i = 0; i < 4; ++i) { |
- if (!leftSideValues[i]) |
- continue; |
- int leftSideSign = leftSideValues[i] > 0 ? 1 : -1; |
- if (!currentLeftSideSign) |
- currentLeftSideSign = leftSideSign; |
- else if (currentLeftSideSign != leftSideSign) |
- return true; |
- } |
- |
- return false; |
-} |
- |
-bool VertexPair::intersection(const VertexPair& other, FloatPoint& point) const |
-{ |
- // See: http://paulbourke.net/geometry/pointlineplane/, "Intersection point of two lines in 2 dimensions" |
- |
- const FloatSize& thisDelta = vertex2() - vertex1(); |
- const FloatSize& otherDelta = other.vertex2() - other.vertex1(); |
- float denominator = determinant(thisDelta, otherDelta); |
- if (!denominator) |
- return false; |
- |
- // The two line segments: "this" vertex1,vertex2 and "other" vertex1,vertex2, have been defined |
- // in parametric form. Each point on the line segment is: vertex1 + u * (vertex2 - vertex1), |
- // when 0 <= u <= 1. We're computing the values of u for each line at their intersection point. |
- |
- const FloatSize& vertex1Delta = vertex1() - other.vertex1(); |
- float uThisLine = determinant(otherDelta, vertex1Delta) / denominator; |
- float uOtherLine = determinant(thisDelta, vertex1Delta) / denominator; |
- |
- if (uThisLine < 0 || uOtherLine < 0 || uThisLine > 1 || uOtherLine > 1) |
- return false; |
- |
- point = vertex1() + uThisLine * thisDelta; |
- return true; |
-} |
- |
-} // namespace WebCore |