| Index: Source/core/platform/graphics/FloatPolygon.cpp
|
| diff --git a/Source/core/platform/graphics/FloatPolygon.cpp b/Source/core/platform/graphics/FloatPolygon.cpp
|
| deleted file mode 100644
|
| index c455a3e1c7f010570f83e20bb9a7c8840120a621..0000000000000000000000000000000000000000
|
| --- a/Source/core/platform/graphics/FloatPolygon.cpp
|
| +++ /dev/null
|
| @@ -1,254 +0,0 @@
|
| -/*
|
| - * Copyright (C) 2012 Adobe Systems Incorporated. All rights reserved.
|
| - *
|
| - * Redistribution and use in source and binary forms, with or without
|
| - * modification, are permitted provided that the following conditions
|
| - * are met:
|
| - *
|
| - * 1. Redistributions of source code must retain the above
|
| - * copyright notice, this list of conditions and the following
|
| - * disclaimer.
|
| - * 2. Redistributions in binary form must reproduce the above
|
| - * copyright notice, this list of conditions and the following
|
| - * disclaimer in the documentation and/or other materials
|
| - * provided with the distribution.
|
| - *
|
| - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
| - * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
| - * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
| - * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
| - * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
| - * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
| - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
| - * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
| - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
| - * OF THE POSSIBILITY OF SUCH DAMAGE.
|
| - */
|
| -
|
| -#include "config.h"
|
| -#include "core/platform/graphics/FloatPolygon.h"
|
| -
|
| -#include "wtf/MathExtras.h"
|
| -
|
| -namespace WebCore {
|
| -
|
| -static inline float determinant(const FloatSize& a, const FloatSize& b)
|
| -{
|
| - return a.width() * b.height() - a.height() * b.width();
|
| -}
|
| -
|
| -static inline bool areCollinearPoints(const FloatPoint& p0, const FloatPoint& p1, const FloatPoint& p2)
|
| -{
|
| - return !determinant(p1 - p0, p2 - p0);
|
| -}
|
| -
|
| -static inline bool areCoincidentPoints(const FloatPoint& p0, const FloatPoint& p1)
|
| -{
|
| - return p0.x() == p1.x() && p0.y() == p1.y();
|
| -}
|
| -
|
| -static inline bool isPointOnLineSegment(const FloatPoint& vertex1, const FloatPoint& vertex2, const FloatPoint& point)
|
| -{
|
| - return point.x() >= std::min(vertex1.x(), vertex2.x())
|
| - && point.x() <= std::max(vertex1.x(), vertex2.x())
|
| - && areCollinearPoints(vertex1, vertex2, point);
|
| -}
|
| -
|
| -static inline unsigned nextVertexIndex(unsigned vertexIndex, unsigned nVertices, bool clockwise)
|
| -{
|
| - return ((clockwise) ? vertexIndex + 1 : vertexIndex - 1 + nVertices) % nVertices;
|
| -}
|
| -
|
| -static unsigned findNextEdgeVertexIndex(const FloatPolygon& polygon, unsigned vertexIndex1, bool clockwise)
|
| -{
|
| - unsigned nVertices = polygon.numberOfVertices();
|
| - unsigned vertexIndex2 = nextVertexIndex(vertexIndex1, nVertices, clockwise);
|
| -
|
| - while (vertexIndex2 && areCoincidentPoints(polygon.vertexAt(vertexIndex1), polygon.vertexAt(vertexIndex2)))
|
| - vertexIndex2 = nextVertexIndex(vertexIndex2, nVertices, clockwise);
|
| -
|
| - while (vertexIndex2) {
|
| - unsigned vertexIndex3 = nextVertexIndex(vertexIndex2, nVertices, clockwise);
|
| - if (!areCollinearPoints(polygon.vertexAt(vertexIndex1), polygon.vertexAt(vertexIndex2), polygon.vertexAt(vertexIndex3)))
|
| - break;
|
| - vertexIndex2 = vertexIndex3;
|
| - }
|
| -
|
| - return vertexIndex2;
|
| -}
|
| -
|
| -FloatPolygon::FloatPolygon(PassOwnPtr<Vector<FloatPoint> > vertices, WindRule fillRule)
|
| - : m_vertices(vertices)
|
| - , m_fillRule(fillRule)
|
| -{
|
| - unsigned nVertices = numberOfVertices();
|
| - m_edges.resize(nVertices);
|
| - m_empty = nVertices < 3;
|
| -
|
| - if (nVertices)
|
| - m_boundingBox.setLocation(vertexAt(0));
|
| -
|
| - if (m_empty)
|
| - return;
|
| -
|
| - unsigned minVertexIndex = 0;
|
| - for (unsigned i = 1; i < nVertices; ++i) {
|
| - const FloatPoint& vertex = vertexAt(i);
|
| - if (vertex.y() < vertexAt(minVertexIndex).y() || (vertex.y() == vertexAt(minVertexIndex).y() && vertex.x() < vertexAt(minVertexIndex).x()))
|
| - minVertexIndex = i;
|
| - }
|
| - FloatPoint nextVertex = vertexAt((minVertexIndex + 1) % nVertices);
|
| - FloatPoint prevVertex = vertexAt((minVertexIndex + nVertices - 1) % nVertices);
|
| - bool clockwise = determinant(vertexAt(minVertexIndex) - prevVertex, nextVertex - prevVertex) > 0;
|
| -
|
| - unsigned edgeIndex = 0;
|
| - unsigned vertexIndex1 = 0;
|
| - do {
|
| - m_boundingBox.extend(vertexAt(vertexIndex1));
|
| - unsigned vertexIndex2 = findNextEdgeVertexIndex(*this, vertexIndex1, clockwise);
|
| - m_edges[edgeIndex].m_polygon = this;
|
| - m_edges[edgeIndex].m_vertexIndex1 = vertexIndex1;
|
| - m_edges[edgeIndex].m_vertexIndex2 = vertexIndex2;
|
| - m_edges[edgeIndex].m_edgeIndex = edgeIndex;
|
| - ++edgeIndex;
|
| - vertexIndex1 = vertexIndex2;
|
| - } while (vertexIndex1);
|
| -
|
| - if (edgeIndex > 3) {
|
| - const FloatPolygonEdge& firstEdge = m_edges[0];
|
| - const FloatPolygonEdge& lastEdge = m_edges[edgeIndex - 1];
|
| - if (areCollinearPoints(lastEdge.vertex1(), lastEdge.vertex2(), firstEdge.vertex2())) {
|
| - m_edges[0].m_vertexIndex1 = lastEdge.m_vertexIndex1;
|
| - edgeIndex--;
|
| - }
|
| - }
|
| -
|
| - m_edges.resize(edgeIndex);
|
| - m_empty = m_edges.size() < 3;
|
| -
|
| - if (m_empty)
|
| - return;
|
| -
|
| - for (unsigned i = 0; i < m_edges.size(); ++i) {
|
| - FloatPolygonEdge* edge = &m_edges[i];
|
| - m_edgeTree.add(EdgeInterval(edge->minY(), edge->maxY(), edge));
|
| - }
|
| -}
|
| -
|
| -bool FloatPolygon::overlappingEdges(float minY, float maxY, Vector<const FloatPolygonEdge*>& result) const
|
| -{
|
| - Vector<FloatPolygon::EdgeInterval> overlappingEdgeIntervals;
|
| - m_edgeTree.allOverlaps(FloatPolygon::EdgeInterval(minY, maxY, 0), overlappingEdgeIntervals);
|
| - unsigned overlappingEdgeIntervalsSize = overlappingEdgeIntervals.size();
|
| - result.resize(overlappingEdgeIntervalsSize);
|
| - for (unsigned i = 0; i < overlappingEdgeIntervalsSize; ++i) {
|
| - const FloatPolygonEdge* edge = static_cast<const FloatPolygonEdge*>(overlappingEdgeIntervals[i].data());
|
| - ASSERT(edge);
|
| - result[i] = edge;
|
| - }
|
| - return overlappingEdgeIntervalsSize > 0;
|
| -}
|
| -
|
| -static inline float leftSide(const FloatPoint& vertex1, const FloatPoint& vertex2, const FloatPoint& point)
|
| -{
|
| - return ((point.x() - vertex1.x()) * (vertex2.y() - vertex1.y())) - ((vertex2.x() - vertex1.x()) * (point.y() - vertex1.y()));
|
| -}
|
| -
|
| -bool FloatPolygon::containsEvenOdd(const FloatPoint& point) const
|
| -{
|
| - unsigned crossingCount = 0;
|
| - for (unsigned i = 0; i < numberOfEdges(); ++i) {
|
| - const FloatPoint& vertex1 = edgeAt(i).vertex1();
|
| - const FloatPoint& vertex2 = edgeAt(i).vertex2();
|
| - if (isPointOnLineSegment(vertex1, vertex2, point))
|
| - return true;
|
| - if ((vertex1.y() <= point.y() && vertex2.y() > point.y()) || (vertex1.y() > point.y() && vertex2.y() <= point.y())) {
|
| - float vt = (point.y() - vertex1.y()) / (vertex2.y() - vertex1.y());
|
| - if (point.x() < vertex1.x() + vt * (vertex2.x() - vertex1.x()))
|
| - ++crossingCount;
|
| - }
|
| - }
|
| - return crossingCount & 1;
|
| -}
|
| -
|
| -bool FloatPolygon::containsNonZero(const FloatPoint& point) const
|
| -{
|
| - int windingNumber = 0;
|
| - for (unsigned i = 0; i < numberOfEdges(); ++i) {
|
| - const FloatPoint& vertex1 = edgeAt(i).vertex1();
|
| - const FloatPoint& vertex2 = edgeAt(i).vertex2();
|
| - if (isPointOnLineSegment(vertex1, vertex2, point))
|
| - return true;
|
| - if (vertex2.y() < point.y()) {
|
| - if ((vertex1.y() > point.y()) && (leftSide(vertex1, vertex2, point) > 0))
|
| - ++windingNumber;
|
| - } else if (vertex2.y() > point.y()) {
|
| - if ((vertex1.y() <= point.y()) && (leftSide(vertex1, vertex2, point) < 0))
|
| - --windingNumber;
|
| - }
|
| - }
|
| - return windingNumber;
|
| -}
|
| -
|
| -bool FloatPolygon::contains(const FloatPoint& point) const
|
| -{
|
| - if (!m_boundingBox.contains(point))
|
| - return false;
|
| - return (fillRule() == RULE_NONZERO) ? containsNonZero(point) : containsEvenOdd(point);
|
| -}
|
| -
|
| -bool VertexPair::overlapsRect(const FloatRect& rect) const
|
| -{
|
| - bool boundsOverlap = (minX() < rect.maxX()) && (maxX() > rect.x()) && (minY() < rect.maxY()) && (maxY() > rect.y());
|
| - if (!boundsOverlap)
|
| - return false;
|
| -
|
| - float leftSideValues[4] = {
|
| - leftSide(vertex1(), vertex2(), rect.minXMinYCorner()),
|
| - leftSide(vertex1(), vertex2(), rect.maxXMinYCorner()),
|
| - leftSide(vertex1(), vertex2(), rect.minXMaxYCorner()),
|
| - leftSide(vertex1(), vertex2(), rect.maxXMaxYCorner())
|
| - };
|
| -
|
| - int currentLeftSideSign = 0;
|
| - for (unsigned i = 0; i < 4; ++i) {
|
| - if (!leftSideValues[i])
|
| - continue;
|
| - int leftSideSign = leftSideValues[i] > 0 ? 1 : -1;
|
| - if (!currentLeftSideSign)
|
| - currentLeftSideSign = leftSideSign;
|
| - else if (currentLeftSideSign != leftSideSign)
|
| - return true;
|
| - }
|
| -
|
| - return false;
|
| -}
|
| -
|
| -bool VertexPair::intersection(const VertexPair& other, FloatPoint& point) const
|
| -{
|
| - // See: http://paulbourke.net/geometry/pointlineplane/, "Intersection point of two lines in 2 dimensions"
|
| -
|
| - const FloatSize& thisDelta = vertex2() - vertex1();
|
| - const FloatSize& otherDelta = other.vertex2() - other.vertex1();
|
| - float denominator = determinant(thisDelta, otherDelta);
|
| - if (!denominator)
|
| - return false;
|
| -
|
| - // The two line segments: "this" vertex1,vertex2 and "other" vertex1,vertex2, have been defined
|
| - // in parametric form. Each point on the line segment is: vertex1 + u * (vertex2 - vertex1),
|
| - // when 0 <= u <= 1. We're computing the values of u for each line at their intersection point.
|
| -
|
| - const FloatSize& vertex1Delta = vertex1() - other.vertex1();
|
| - float uThisLine = determinant(otherDelta, vertex1Delta) / denominator;
|
| - float uOtherLine = determinant(thisDelta, vertex1Delta) / denominator;
|
| -
|
| - if (uThisLine < 0 || uOtherLine < 0 || uThisLine > 1 || uOtherLine > 1)
|
| - return false;
|
| -
|
| - point = vertex1() + uThisLine * thisDelta;
|
| - return true;
|
| -}
|
| -
|
| -} // namespace WebCore
|
|
|