| Index: src/utils/SkTextureCompressor.cpp | 
| diff --git a/src/utils/SkTextureCompressor.cpp b/src/utils/SkTextureCompressor.cpp | 
| new file mode 100644 | 
| index 0000000000000000000000000000000000000000..adbaef6515d8463a36dcb79b61178651731ee75d | 
| --- /dev/null | 
| +++ b/src/utils/SkTextureCompressor.cpp | 
| @@ -0,0 +1,208 @@ | 
| +/* | 
| + * Copyright 2014 Google Inc. | 
| + * | 
| + * Use of this source code is governed by a BSD-style license that can be | 
| + * found in the LICENSE file. | 
| + */ | 
| + | 
| +#include "SkTextureCompressor.h" | 
| + | 
| +#include "SkBitmap.h" | 
| +#include "SkData.h" | 
| +#include "SkEndian.h" | 
| + | 
| +//////////////////////////////////////////////////////////////////////////////// | 
| +// | 
| +// Utility Functions | 
| +// | 
| +//////////////////////////////////////////////////////////////////////////////// | 
| + | 
| +// Absolute difference between two values. More correct than SkTAbs(a - b) | 
| +// because it works on unsigned values. | 
| +template <typename T> inline T abs_diff(const T &a, const T &b) { | 
| +    return (a > b) ? (a - b) : (b - a); | 
| +} | 
| + | 
| +//////////////////////////////////////////////////////////////////////////////// | 
| +// | 
| +// LATC compressor | 
| +// | 
| +//////////////////////////////////////////////////////////////////////////////// | 
| + | 
| +// Return the squared minimum error cost of approximating 'pixel' using the | 
| +// provided palette. Return this in the middle 16 bits of the integer. Return | 
| +// the best index in the palette for this pixel in the bottom 8 bits. | 
| +static uint32_t compute_error(uint8_t pixel, uint8_t palette[8]) { | 
| +    int minIndex = 0; | 
| +    uint8_t error = abs_diff(palette[0], pixel); | 
| +    for (int i = 1; i < 8; ++i) { | 
| +        uint8_t diff = abs_diff(palette[i], pixel); | 
| +        if (diff < error) { | 
| +            minIndex = i; | 
| +            error = diff; | 
| +        } | 
| +    } | 
| +    uint16_t errSq = static_cast<uint16_t>(error) * static_cast<uint16_t>(error); | 
| +    SkASSERT(minIndex >= 0 && minIndex < 8); | 
| +    return (static_cast<uint32_t>(errSq) << 8) | static_cast<uint32_t>(minIndex); | 
| +} | 
| + | 
| +// Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from two | 
| +// values LUM0 and LUM1, and an index into the generated palette. LATC constructs | 
| +// a palette of eight colors from LUM0 and LUM1 using the algorithm: | 
| +// | 
| +// LUM0,              if lum0 > lum1 and code(x,y) == 0 | 
| +// LUM1,              if lum0 > lum1 and code(x,y) == 1 | 
| +// (6*LUM0+  LUM1)/7, if lum0 > lum1 and code(x,y) == 2 | 
| +// (5*LUM0+2*LUM1)/7, if lum0 > lum1 and code(x,y) == 3 | 
| +// (4*LUM0+3*LUM1)/7, if lum0 > lum1 and code(x,y) == 4 | 
| +// (3*LUM0+4*LUM1)/7, if lum0 > lum1 and code(x,y) == 5 | 
| +// (2*LUM0+5*LUM1)/7, if lum0 > lum1 and code(x,y) == 6 | 
| +// (  LUM0+6*LUM1)/7, if lum0 > lum1 and code(x,y) == 7 | 
| +// | 
| +// LUM0,              if lum0 <= lum1 and code(x,y) == 0 | 
| +// LUM1,              if lum0 <= lum1 and code(x,y) == 1 | 
| +// (4*LUM0+  LUM1)/5, if lum0 <= lum1 and code(x,y) == 2 | 
| +// (3*LUM0+2*LUM1)/5, if lum0 <= lum1 and code(x,y) == 3 | 
| +// (2*LUM0+3*LUM1)/5, if lum0 <= lum1 and code(x,y) == 4 | 
| +// (  LUM0+4*LUM1)/5, if lum0 <= lum1 and code(x,y) == 5 | 
| +// 0,                 if lum0 <= lum1 and code(x,y) == 6 | 
| +// 255,               if lum0 <= lum1 and code(x,y) == 7 | 
| +// | 
| +// We compute the LATC palette using the following simple algorithm: | 
| +// 1. Choose the minimum and maximum values in the block as LUM0 and LUM1 | 
| +// 2. Figure out which of the two possible palettes is better. | 
| + | 
| +static uint64_t compress_latc_block(uint8_t block[16]) { | 
| +    // Just do a simple min/max but choose which of the | 
| +    // two palettes is better | 
| +    uint8_t maxVal = 0; | 
| +    uint8_t minVal = 255; | 
| +    for (int i = 0; i < 16; ++i) { | 
| +        maxVal = SkMax32(maxVal, block[i]); | 
| +        minVal = SkMin32(minVal, block[i]); | 
| +    } | 
| + | 
| +    // Generate palettes | 
| +    uint8_t palettes[2][8]; | 
| + | 
| +    // Straight linear ramp | 
| +    palettes[0][0] = maxVal; | 
| +    palettes[0][1] = minVal; | 
| +    for (int i = 1; i < 7; ++i) { | 
| +        palettes[0][i+1] = ((7-i)*maxVal + i*minVal) / 7; | 
| +    } | 
| + | 
| +    // Smaller linear ramp with min and max byte values at the end. | 
| +    palettes[1][0] = minVal; | 
| +    palettes[1][1] = maxVal; | 
| +    for (int i = 1; i < 5; ++i) { | 
| +        palettes[1][i+1] = ((5-i)*maxVal + i*minVal) / 5; | 
| +    } | 
| +    palettes[1][6] = 0; | 
| +    palettes[1][7] = 255; | 
| + | 
| +    // Figure out which of the two is better: | 
| +    //  -  accumError holds the accumulated error for each pixel from | 
| +    //     the associated palette | 
| +    //  -  indices holds the best indices for each palette in the | 
| +    //     bottom 48 (16*3) bits. | 
| +    uint32_t accumError[2] = { 0, 0 }; | 
| +    uint64_t indices[2] = { 0, 0 }; | 
| +    for (int i = 15; i >= 0; ++i) { | 
| +        // For each palette: | 
| +        // 1. Retreive the result of this pixel | 
| +        // 2. Store the error in accumError | 
| +        // 3. Store the minimum palette index in indices. | 
| +        for (int p = 0; p < 2; ++p) { | 
| +            uint32_t result = compute_error(block[i], palettes[p]); | 
| +            accumError[p] += (result >> 8); | 
| +            indices[p] <<= 3; | 
| +            indices[p] |= result & ~7; | 
| +        } | 
| +    } | 
| + | 
| +    SkASSERT(indices[0] < (static_cast<uint64_t>(1) << 48)); | 
| +    SkASSERT(indices[1] < (static_cast<uint64_t>(1) << 48)); | 
| + | 
| +    uint8_t paletteIdx = (accumError[0] > accumError[1]) ? 0 : 1; | 
| + | 
| +    // Assemble the compressed block. | 
| +    uint64_t result = 0; | 
| + | 
| +    // Jam the first two palette entries into the bottom 16 bits of | 
| +    // a 64 bit integer. Based on the palette that we chose, one will | 
| +    // be larger than the other and it will select the proper palette. | 
| +    result |= static_cast<uint64_t>(palettes[paletteIdx][0]); | 
| +    result |= static_cast<uint64_t>(palettes[paletteIdx][1]) << 8; | 
| + | 
| +    // Jam the indices into the top 48 bits. | 
| +    result |= indices[paletteIdx] << 16; | 
| + | 
| +    // We assume everything is little endian, if it's not then make it so. | 
| +    return SkEndian_SwapLE64(result); | 
| +} | 
| + | 
| +static SkData *compress_a8_to_latc(const SkBitmap &bm) { | 
| +    // LATC compressed texels down into square 4x4 blocks | 
| +    static const int kLATCBlockSize = 4; | 
| + | 
| +    // Make sure that our data is well-formed enough to be | 
| +    // considered for LATC compression | 
| +    if (bm.width() == 0 || bm.height() == 0 || | 
| +        (bm.width() % kLATCBlockSize) != 0 || | 
| +        (bm.height() % kLATCBlockSize) != 0 || | 
| +        (bm.colorType() != kAlpha_8_SkColorType)) { | 
| +        return NULL; | 
| +    } | 
| + | 
| +    // The LATC format is 64 bits per 4x4 block. | 
| +    static const int kLATCEncodedBlockSize = 8; | 
| + | 
| +    int blocksX = bm.width() / kLATCBlockSize; | 
| +    int blocksY = bm.height() / kLATCBlockSize; | 
| + | 
| +    int compressedDataSize = blocksX * blocksY * kLATCEncodedBlockSize; | 
| +    uint64_t* dst = reinterpret_cast<uint64_t*>(sk_malloc_throw(compressedDataSize)); | 
| + | 
| +    uint8_t block[16]; | 
| +    const uint8_t* row = reinterpret_cast<const uint8_t*>(bm.getPixels()); | 
| +    uint64_t* encPtr = dst; | 
| +    for (int y = 0; y < blocksY; ++y) { | 
| +        for (int x = 0; x < blocksX; ++x) { | 
| +            memcpy(block, row + (kLATCBlockSize * x), 4); | 
| +            memcpy(block + 4, row + bm.rowBytes() + (kLATCBlockSize * x), 4); | 
| +            memcpy(block + 8, row + 2*bm.rowBytes() + (kLATCBlockSize * x), 4); | 
| +            memcpy(block + 12, row + 3*bm.rowBytes() + (kLATCBlockSize * x), 4); | 
| + | 
| +            *encPtr = compress_latc_block(block); | 
| +            ++encPtr; | 
| +        } | 
| +        row += kLATCBlockSize * bm.rowBytes(); | 
| +    } | 
| + | 
| +    return SkData::NewFromMalloc(dst, compressedDataSize); | 
| +} | 
| + | 
| +//////////////////////////////////////////////////////////////////////////////// | 
| + | 
| +namespace SkTextureCompressor { | 
| + | 
| +typedef SkData *(*CompressBitmapProc)(const SkBitmap &bitmap); | 
| + | 
| +SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) { | 
| +    CompressBitmapProc kProcMap[kLastEnum_SkColorType + 1][kFormatCnt]; | 
| +    memset(kProcMap, 0, sizeof(kProcMap)); | 
| + | 
| +    // Map available bitmap configs to compression functions | 
| +    kProcMap[SkBitmap::kA8_Config][kLATC_Format] = compress_a8_to_latc; | 
| + | 
| +    CompressBitmapProc proc = kProcMap[bitmap.colorType()][format]; | 
| +    if (NULL != proc) { | 
| +        return proc(bitmap); | 
| +    } | 
| + | 
| +    return NULL; | 
| +} | 
| + | 
| +}  // namespace SkTextureCompressor | 
|  |