| OLD | NEW | 
|---|
| (Empty) |  | 
|  | 1 /* | 
|  | 2  * Copyright 2014 Google Inc. | 
|  | 3  * | 
|  | 4  * Use of this source code is governed by a BSD-style license that can be | 
|  | 5  * found in the LICENSE file. | 
|  | 6  */ | 
|  | 7 | 
|  | 8 #include "SkTextureCompressor.h" | 
|  | 9 | 
|  | 10 #include "SkBitmap.h" | 
|  | 11 #include "SkData.h" | 
|  | 12 #include "SkEndian.h" | 
|  | 13 | 
|  | 14 //////////////////////////////////////////////////////////////////////////////// | 
|  | 15 // | 
|  | 16 // Utility Functions | 
|  | 17 // | 
|  | 18 //////////////////////////////////////////////////////////////////////////////// | 
|  | 19 | 
|  | 20 // Absolute difference between two values. More correct than SkTAbs(a - b) | 
|  | 21 // because it works on unsigned values. | 
|  | 22 template <typename T> inline T abs_diff(const T &a, const T &b) { | 
|  | 23     return (a > b) ? (a - b) : (b - a); | 
|  | 24 } | 
|  | 25 | 
|  | 26 //////////////////////////////////////////////////////////////////////////////// | 
|  | 27 // | 
|  | 28 // LATC compressor | 
|  | 29 // | 
|  | 30 //////////////////////////////////////////////////////////////////////////////// | 
|  | 31 | 
|  | 32 // Return the squared minimum error cost of approximating 'pixel' using the | 
|  | 33 // provided palette. Return this in the middle 16 bits of the integer. Return | 
|  | 34 // the best index in the palette for this pixel in the bottom 8 bits. | 
|  | 35 static uint32_t compute_error(uint8_t pixel, uint8_t palette[8]) { | 
|  | 36     int minIndex = 0; | 
|  | 37     uint8_t error = abs_diff(palette[0], pixel); | 
|  | 38     for (int i = 1; i < 8; ++i) { | 
|  | 39         uint8_t diff = abs_diff(palette[i], pixel); | 
|  | 40         if (diff < error) { | 
|  | 41             minIndex = i; | 
|  | 42             error = diff; | 
|  | 43         } | 
|  | 44     } | 
|  | 45     uint16_t errSq = static_cast<uint16_t>(error) * static_cast<uint16_t>(error)
     ; | 
|  | 46     SkASSERT(minIndex >= 0 && minIndex < 8); | 
|  | 47     return (static_cast<uint32_t>(errSq) << 8) | static_cast<uint32_t>(minIndex)
     ; | 
|  | 48 } | 
|  | 49 | 
|  | 50 // Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from tw
     o | 
|  | 51 // values LUM0 and LUM1, and an index into the generated palette. LATC construct
     s | 
|  | 52 // a palette of eight colors from LUM0 and LUM1 using the algorithm: | 
|  | 53 // | 
|  | 54 // LUM0,              if lum0 > lum1 and code(x,y) == 0 | 
|  | 55 // LUM1,              if lum0 > lum1 and code(x,y) == 1 | 
|  | 56 // (6*LUM0+  LUM1)/7, if lum0 > lum1 and code(x,y) == 2 | 
|  | 57 // (5*LUM0+2*LUM1)/7, if lum0 > lum1 and code(x,y) == 3 | 
|  | 58 // (4*LUM0+3*LUM1)/7, if lum0 > lum1 and code(x,y) == 4 | 
|  | 59 // (3*LUM0+4*LUM1)/7, if lum0 > lum1 and code(x,y) == 5 | 
|  | 60 // (2*LUM0+5*LUM1)/7, if lum0 > lum1 and code(x,y) == 6 | 
|  | 61 // (  LUM0+6*LUM1)/7, if lum0 > lum1 and code(x,y) == 7 | 
|  | 62 // | 
|  | 63 // LUM0,              if lum0 <= lum1 and code(x,y) == 0 | 
|  | 64 // LUM1,              if lum0 <= lum1 and code(x,y) == 1 | 
|  | 65 // (4*LUM0+  LUM1)/5, if lum0 <= lum1 and code(x,y) == 2 | 
|  | 66 // (3*LUM0+2*LUM1)/5, if lum0 <= lum1 and code(x,y) == 3 | 
|  | 67 // (2*LUM0+3*LUM1)/5, if lum0 <= lum1 and code(x,y) == 4 | 
|  | 68 // (  LUM0+4*LUM1)/5, if lum0 <= lum1 and code(x,y) == 5 | 
|  | 69 // 0,                 if lum0 <= lum1 and code(x,y) == 6 | 
|  | 70 // 255,               if lum0 <= lum1 and code(x,y) == 7 | 
|  | 71 // | 
|  | 72 // We compute the LATC palette using the following simple algorithm: | 
|  | 73 // 1. Choose the minimum and maximum values in the block as LUM0 and LUM1 | 
|  | 74 // 2. Figure out which of the two possible palettes is better. | 
|  | 75 | 
|  | 76 static uint64_t compress_latc_block(uint8_t block[16]) { | 
|  | 77     // Just do a simple min/max but choose which of the | 
|  | 78     // two palettes is better | 
|  | 79     uint8_t maxVal = 0; | 
|  | 80     uint8_t minVal = 255; | 
|  | 81     for (int i = 0; i < 16; ++i) { | 
|  | 82         maxVal = SkMax32(maxVal, block[i]); | 
|  | 83         minVal = SkMin32(minVal, block[i]); | 
|  | 84     } | 
|  | 85 | 
|  | 86     // Generate palettes | 
|  | 87     uint8_t palettes[2][8]; | 
|  | 88 | 
|  | 89     // Straight linear ramp | 
|  | 90     palettes[0][0] = maxVal; | 
|  | 91     palettes[0][1] = minVal; | 
|  | 92     for (int i = 1; i < 7; ++i) { | 
|  | 93         palettes[0][i+1] = ((7-i)*maxVal + i*minVal) / 7; | 
|  | 94     } | 
|  | 95 | 
|  | 96     // Smaller linear ramp with min and max byte values at the end. | 
|  | 97     palettes[1][0] = minVal; | 
|  | 98     palettes[1][1] = maxVal; | 
|  | 99     for (int i = 1; i < 5; ++i) { | 
|  | 100         palettes[1][i+1] = ((5-i)*maxVal + i*minVal) / 5; | 
|  | 101     } | 
|  | 102     palettes[1][6] = 0; | 
|  | 103     palettes[1][7] = 255; | 
|  | 104 | 
|  | 105     // Figure out which of the two is better: | 
|  | 106     //  -  accumError holds the accumulated error for each pixel from | 
|  | 107     //     the associated palette | 
|  | 108     //  -  indices holds the best indices for each palette in the | 
|  | 109     //     bottom 48 (16*3) bits. | 
|  | 110     uint32_t accumError[2] = { 0, 0 }; | 
|  | 111     uint64_t indices[2] = { 0, 0 }; | 
|  | 112     for (int i = 15; i >= 0; ++i) { | 
|  | 113         // For each palette: | 
|  | 114         // 1. Retreive the result of this pixel | 
|  | 115         // 2. Store the error in accumError | 
|  | 116         // 3. Store the minimum palette index in indices. | 
|  | 117         for (int p = 0; p < 2; ++p) { | 
|  | 118             uint32_t result = compute_error(block[i], palettes[p]); | 
|  | 119             accumError[p] += (result >> 8); | 
|  | 120             indices[p] <<= 3; | 
|  | 121             indices[p] |= result & ~7; | 
|  | 122         } | 
|  | 123     } | 
|  | 124 | 
|  | 125     SkASSERT(indices[0] < (static_cast<uint64_t>(1) << 48)); | 
|  | 126     SkASSERT(indices[1] < (static_cast<uint64_t>(1) << 48)); | 
|  | 127 | 
|  | 128     uint8_t paletteIdx = (accumError[0] > accumError[1]) ? 0 : 1; | 
|  | 129 | 
|  | 130     // Assemble the compressed block. | 
|  | 131     uint64_t result = 0; | 
|  | 132 | 
|  | 133     // Jam the first two palette entries into the bottom 16 bits of | 
|  | 134     // a 64 bit integer. Based on the palette that we chose, one will | 
|  | 135     // be larger than the other and it will select the proper palette. | 
|  | 136     result |= static_cast<uint64_t>(palettes[paletteIdx][0]); | 
|  | 137     result |= static_cast<uint64_t>(palettes[paletteIdx][1]) << 8; | 
|  | 138 | 
|  | 139     // Jam the indices into the top 48 bits. | 
|  | 140     result |= indices[paletteIdx] << 16; | 
|  | 141 | 
|  | 142     // We assume everything is little endian, if it's not then make it so. | 
|  | 143     return SkEndian_SwapLE64(result); | 
|  | 144 } | 
|  | 145 | 
|  | 146 static SkData *compress_a8_to_latc(const SkBitmap &bm) { | 
|  | 147     // LATC compressed texels down into square 4x4 blocks | 
|  | 148     static const int kLATCBlockSize = 4; | 
|  | 149 | 
|  | 150     // Make sure that our data is well-formed enough to be | 
|  | 151     // considered for LATC compression | 
|  | 152     if (bm.width() == 0 || bm.height() == 0 || | 
|  | 153         (bm.width() % kLATCBlockSize) != 0 || | 
|  | 154         (bm.height() % kLATCBlockSize) != 0 || | 
|  | 155         (bm.colorType() != kAlpha_8_SkColorType)) { | 
|  | 156         return NULL; | 
|  | 157     } | 
|  | 158 | 
|  | 159     // The LATC format is 64 bits per 4x4 block. | 
|  | 160     static const int kLATCEncodedBlockSize = 8; | 
|  | 161 | 
|  | 162     int blocksX = bm.width() / kLATCBlockSize; | 
|  | 163     int blocksY = bm.height() / kLATCBlockSize; | 
|  | 164 | 
|  | 165     int compressedDataSize = blocksX * blocksY * kLATCEncodedBlockSize; | 
|  | 166     uint64_t* dst = reinterpret_cast<uint64_t*>(sk_malloc_throw(compressedDataSi
     ze)); | 
|  | 167 | 
|  | 168     uint8_t block[16]; | 
|  | 169     const uint8_t* row = reinterpret_cast<const uint8_t*>(bm.getPixels()); | 
|  | 170     uint64_t* encPtr = dst; | 
|  | 171     for (int y = 0; y < blocksY; ++y) { | 
|  | 172         for (int x = 0; x < blocksX; ++x) { | 
|  | 173             memcpy(block, row + (kLATCBlockSize * x), 4); | 
|  | 174             memcpy(block + 4, row + bm.rowBytes() + (kLATCBlockSize * x), 4); | 
|  | 175             memcpy(block + 8, row + 2*bm.rowBytes() + (kLATCBlockSize * x), 4); | 
|  | 176             memcpy(block + 12, row + 3*bm.rowBytes() + (kLATCBlockSize * x), 4); | 
|  | 177 | 
|  | 178             *encPtr = compress_latc_block(block); | 
|  | 179             ++encPtr; | 
|  | 180         } | 
|  | 181         row += kLATCBlockSize * bm.rowBytes(); | 
|  | 182     } | 
|  | 183 | 
|  | 184     return SkData::NewFromMalloc(dst, compressedDataSize); | 
|  | 185 } | 
|  | 186 | 
|  | 187 //////////////////////////////////////////////////////////////////////////////// | 
|  | 188 | 
|  | 189 namespace SkTextureCompressor { | 
|  | 190 | 
|  | 191 typedef SkData *(*CompressBitmapProc)(const SkBitmap &bitmap); | 
|  | 192 | 
|  | 193 SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) { | 
|  | 194     CompressBitmapProc kProcMap[kLastEnum_SkColorType + 1][kFormatCnt]; | 
|  | 195     memset(kProcMap, 0, sizeof(kProcMap)); | 
|  | 196 | 
|  | 197     // Map available bitmap configs to compression functions | 
|  | 198     kProcMap[SkBitmap::kA8_Config][kLATC_Format] = compress_a8_to_latc; | 
|  | 199 | 
|  | 200     CompressBitmapProc proc = kProcMap[bitmap.colorType()][format]; | 
|  | 201     if (NULL != proc) { | 
|  | 202         return proc(bitmap); | 
|  | 203     } | 
|  | 204 | 
|  | 205     return NULL; | 
|  | 206 } | 
|  | 207 | 
|  | 208 }  // namespace SkTextureCompressor | 
| OLD | NEW | 
|---|