Index: tools/memory_watcher/mini_disassembler.cc |
diff --git a/tools/memory_watcher/mini_disassembler.cc b/tools/memory_watcher/mini_disassembler.cc |
deleted file mode 100644 |
index c97ae6f3e2bd1f1a3f035da003857933aa50ea1d..0000000000000000000000000000000000000000 |
--- a/tools/memory_watcher/mini_disassembler.cc |
+++ /dev/null |
@@ -1,392 +0,0 @@ |
-// Copyright (c) 2012 The Chromium Authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-/* |
- * Implementation of MiniDisassembler. |
- */ |
- |
-#include "mini_disassembler.h" |
- |
-namespace sidestep { |
- |
-MiniDisassembler::MiniDisassembler(bool operand_default_is_32_bits, |
- bool address_default_is_32_bits) |
- : operand_default_is_32_bits_(operand_default_is_32_bits), |
- address_default_is_32_bits_(address_default_is_32_bits) { |
- Initialize(); |
-} |
- |
-MiniDisassembler::MiniDisassembler() |
- : operand_default_is_32_bits_(true), |
- address_default_is_32_bits_(true) { |
- Initialize(); |
-} |
- |
-InstructionType MiniDisassembler::Disassemble( |
- unsigned char* start_byte, |
- unsigned int& instruction_bytes) { |
- // Clean up any state from previous invocations. |
- Initialize(); |
- |
- // Start by processing any prefixes. |
- unsigned char* current_byte = start_byte; |
- unsigned int size = 0; |
- InstructionType instruction_type = ProcessPrefixes(current_byte, size); |
- |
- if (IT_UNKNOWN == instruction_type) |
- return instruction_type; |
- |
- current_byte += size; |
- size = 0; |
- |
- // Invariant: We have stripped all prefixes, and the operand_is_32_bits_ |
- // and address_is_32_bits_ flags are correctly set. |
- |
- instruction_type = ProcessOpcode(current_byte, 0, size); |
- |
- // Check for error processing instruction |
- if ((IT_UNKNOWN == instruction_type_) || (IT_UNUSED == instruction_type_)) { |
- return IT_UNKNOWN; |
- } |
- |
- current_byte += size; |
- |
- // Invariant: operand_bytes_ indicates the total size of operands |
- // specified by the opcode and/or ModR/M byte and/or SIB byte. |
- // pCurrentByte points to the first byte after the ModR/M byte, or after |
- // the SIB byte if it is present (i.e. the first byte of any operands |
- // encoded in the instruction). |
- |
- // We get the total length of any prefixes, the opcode, and the ModR/M and |
- // SIB bytes if present, by taking the difference of the original starting |
- // address and the current byte (which points to the first byte of the |
- // operands if present, or to the first byte of the next instruction if |
- // they are not). Adding the count of bytes in the operands encoded in |
- // the instruction gives us the full length of the instruction in bytes. |
- instruction_bytes += operand_bytes_ + (current_byte - start_byte); |
- |
- // Return the instruction type, which was set by ProcessOpcode(). |
- return instruction_type_; |
-} |
- |
-void MiniDisassembler::Initialize() { |
- operand_is_32_bits_ = operand_default_is_32_bits_; |
- address_is_32_bits_ = address_default_is_32_bits_; |
- operand_bytes_ = 0; |
- have_modrm_ = false; |
- should_decode_modrm_ = false; |
- instruction_type_ = IT_UNKNOWN; |
- got_f2_prefix_ = false; |
- got_f3_prefix_ = false; |
- got_66_prefix_ = false; |
-} |
- |
-InstructionType MiniDisassembler::ProcessPrefixes(unsigned char* start_byte, |
- unsigned int& size) { |
- InstructionType instruction_type = IT_GENERIC; |
- const Opcode& opcode = s_ia32_opcode_map_[0].table_[*start_byte]; |
- |
- switch (opcode.type_) { |
- case IT_PREFIX_ADDRESS: |
- address_is_32_bits_ = !address_default_is_32_bits_; |
- goto nochangeoperand; |
- case IT_PREFIX_OPERAND: |
- operand_is_32_bits_ = !operand_default_is_32_bits_; |
- nochangeoperand: |
- case IT_PREFIX: |
- |
- if (0xF2 == (*start_byte)) |
- got_f2_prefix_ = true; |
- else if (0xF3 == (*start_byte)) |
- got_f3_prefix_ = true; |
- else if (0x66 == (*start_byte)) |
- got_66_prefix_ = true; |
- |
- instruction_type = opcode.type_; |
- size ++; |
- // we got a prefix, so add one and check next byte |
- ProcessPrefixes(start_byte + 1, size); |
- default: |
- break; // not a prefix byte |
- } |
- |
- return instruction_type; |
-} |
- |
-InstructionType MiniDisassembler::ProcessOpcode(unsigned char* start_byte, |
- unsigned int table_index, |
- unsigned int& size) { |
- const OpcodeTable& table = s_ia32_opcode_map_[table_index]; // Get our table |
- unsigned char current_byte = (*start_byte) >> table.shift_; |
- current_byte = current_byte & table.mask_; // Mask out the bits we will use |
- |
- // Check whether the byte we have is inside the table we have. |
- if (current_byte < table.min_lim_ || current_byte > table.max_lim_) { |
- instruction_type_ = IT_UNKNOWN; |
- return instruction_type_; |
- } |
- |
- const Opcode& opcode = table.table_[current_byte]; |
- if (IT_UNUSED == opcode.type_) { |
- // This instruction is not used by the IA-32 ISA, so we indicate |
- // this to the user. Probably means that we were pointed to |
- // a byte in memory that was not the start of an instruction. |
- instruction_type_ = IT_UNUSED; |
- return instruction_type_; |
- } else if (IT_REFERENCE == opcode.type_) { |
- // We are looking at an opcode that has more bytes (or is continued |
- // in the ModR/M byte). Recursively find the opcode definition in |
- // the table for the opcode's next byte. |
- size++; |
- ProcessOpcode(start_byte + 1, opcode.table_index_, size); |
- return instruction_type_; |
- } |
- |
- const SpecificOpcode* specific_opcode = (SpecificOpcode*)&opcode; |
- if (opcode.is_prefix_dependent_) { |
- if (got_f2_prefix_ && opcode.opcode_if_f2_prefix_.mnemonic_ != 0) { |
- specific_opcode = &opcode.opcode_if_f2_prefix_; |
- } else if (got_f3_prefix_ && opcode.opcode_if_f3_prefix_.mnemonic_ != 0) { |
- specific_opcode = &opcode.opcode_if_f3_prefix_; |
- } else if (got_66_prefix_ && opcode.opcode_if_66_prefix_.mnemonic_ != 0) { |
- specific_opcode = &opcode.opcode_if_66_prefix_; |
- } |
- } |
- |
- // Inv: The opcode type is known. |
- instruction_type_ = specific_opcode->type_; |
- |
- // Let's process the operand types to see if we have any immediate |
- // operands, and/or a ModR/M byte. |
- |
- ProcessOperand(specific_opcode->flag_dest_); |
- ProcessOperand(specific_opcode->flag_source_); |
- ProcessOperand(specific_opcode->flag_aux_); |
- |
- // Inv: We have processed the opcode and incremented operand_bytes_ |
- // by the number of bytes of any operands specified by the opcode |
- // that are stored in the instruction (not registers etc.). Now |
- // we need to return the total number of bytes for the opcode and |
- // for the ModR/M or SIB bytes if they are present. |
- |
- if (table.mask_ != 0xff) { |
- if (have_modrm_) { |
- // we're looking at a ModR/M byte so we're not going to |
- // count that into the opcode size |
- ProcessModrm(start_byte, size); |
- return IT_GENERIC; |
- } else { |
- // need to count the ModR/M byte even if it's just being |
- // used for opcode extension |
- size++; |
- return IT_GENERIC; |
- } |
- } else { |
- if (have_modrm_) { |
- // The ModR/M byte is the next byte. |
- size++; |
- ProcessModrm(start_byte + 1, size); |
- return IT_GENERIC; |
- } else { |
- size++; |
- return IT_GENERIC; |
- } |
- } |
-} |
- |
-bool MiniDisassembler::ProcessOperand(int flag_operand) { |
- bool succeeded = true; |
- if (AM_NOT_USED == flag_operand) |
- return succeeded; |
- |
- // Decide what to do based on the addressing mode. |
- switch (flag_operand & AM_MASK) { |
- // No ModR/M byte indicated by these addressing modes, and no |
- // additional (e.g. immediate) parameters. |
- case AM_A: // Direct address |
- case AM_F: // EFLAGS register |
- case AM_X: // Memory addressed by the DS:SI register pair |
- case AM_Y: // Memory addressed by the ES:DI register pair |
- case AM_IMPLICIT: // Parameter is implicit, occupies no space in |
- // instruction |
- break; |
- |
- // There is a ModR/M byte but it does not necessarily need |
- // to be decoded. |
- case AM_C: // reg field of ModR/M selects a control register |
- case AM_D: // reg field of ModR/M selects a debug register |
- case AM_G: // reg field of ModR/M selects a general register |
- case AM_P: // reg field of ModR/M selects an MMX register |
- case AM_R: // mod field of ModR/M may refer only to a general register |
- case AM_S: // reg field of ModR/M selects a segment register |
- case AM_T: // reg field of ModR/M selects a test register |
- case AM_V: // reg field of ModR/M selects a 128-bit XMM register |
- have_modrm_ = true; |
- break; |
- |
- // In these addressing modes, there is a ModR/M byte and it needs to be |
- // decoded. No other (e.g. immediate) params than indicated in ModR/M. |
- case AM_E: // Operand is either a general-purpose register or memory, |
- // specified by ModR/M byte |
- case AM_M: // ModR/M byte will refer only to memory |
- case AM_Q: // Operand is either an MMX register or memory (complex |
- // evaluation), specified by ModR/M byte |
- case AM_W: // Operand is either a 128-bit XMM register or memory (complex |
- // eval), specified by ModR/M byte |
- have_modrm_ = true; |
- should_decode_modrm_ = true; |
- break; |
- |
- // These addressing modes specify an immediate or an offset value |
- // directly, so we need to look at the operand type to see how many |
- // bytes. |
- case AM_I: // Immediate data. |
- case AM_J: // Jump to offset. |
- case AM_O: // Operand is at offset. |
- switch (flag_operand & OT_MASK) { |
- case OT_B: // Byte regardless of operand-size attribute. |
- operand_bytes_ += OS_BYTE; |
- break; |
- case OT_C: // Byte or word, depending on operand-size attribute. |
- if (operand_is_32_bits_) |
- operand_bytes_ += OS_WORD; |
- else |
- operand_bytes_ += OS_BYTE; |
- break; |
- case OT_D: // Doubleword, regardless of operand-size attribute. |
- operand_bytes_ += OS_DOUBLE_WORD; |
- break; |
- case OT_DQ: // Double-quadword, regardless of operand-size attribute. |
- operand_bytes_ += OS_DOUBLE_QUAD_WORD; |
- break; |
- case OT_P: // 32-bit or 48-bit pointer, depending on operand-size |
- // attribute. |
- if (operand_is_32_bits_) |
- operand_bytes_ += OS_48_BIT_POINTER; |
- else |
- operand_bytes_ += OS_32_BIT_POINTER; |
- break; |
- case OT_PS: // 128-bit packed single-precision floating-point data. |
- operand_bytes_ += OS_128_BIT_PACKED_SINGLE_PRECISION_FLOATING; |
- break; |
- case OT_Q: // Quadword, regardless of operand-size attribute. |
- operand_bytes_ += OS_QUAD_WORD; |
- break; |
- case OT_S: // 6-byte pseudo-descriptor. |
- operand_bytes_ += OS_PSEUDO_DESCRIPTOR; |
- break; |
- case OT_SD: // Scalar Double-Precision Floating-Point Value |
- case OT_PD: // Unaligned packed double-precision floating point value |
- operand_bytes_ += OS_DOUBLE_PRECISION_FLOATING; |
- break; |
- case OT_SS: |
- // Scalar element of a 128-bit packed single-precision |
- // floating data. |
- // We simply return enItUnknown since we don't have to support |
- // floating point |
- succeeded = false; |
- break; |
- case OT_V: // Word or doubleword, depending on operand-size attribute. |
- if (operand_is_32_bits_) |
- operand_bytes_ += OS_DOUBLE_WORD; |
- else |
- operand_bytes_ += OS_WORD; |
- break; |
- case OT_W: // Word, regardless of operand-size attribute. |
- operand_bytes_ += OS_WORD; |
- break; |
- |
- // Can safely ignore these. |
- case OT_A: // Two one-word operands in memory or two double-word |
- // operands in memory |
- case OT_PI: // Quadword MMX technology register (e.g. mm0) |
- case OT_SI: // Doubleword integer register (e.g., eax) |
- break; |
- |
- default: |
- break; |
- } |
- break; |
- |
- default: |
- break; |
- } |
- |
- return succeeded; |
-} |
- |
-bool MiniDisassembler::ProcessModrm(unsigned char* start_byte, |
- unsigned int& size) { |
- // If we don't need to decode, we just return the size of the ModR/M |
- // byte (there is never a SIB byte in this case). |
- if (!should_decode_modrm_) { |
- size++; |
- return true; |
- } |
- |
- // We never care about the reg field, only the combination of the mod |
- // and r/m fields, so let's start by packing those fields together into |
- // 5 bits. |
- unsigned char modrm = (*start_byte); |
- unsigned char mod = modrm & 0xC0; // mask out top two bits to get mod field |
- modrm = modrm & 0x07; // mask out bottom 3 bits to get r/m field |
- mod = mod >> 3; // shift the mod field to the right place |
- modrm = mod | modrm; // combine the r/m and mod fields as discussed |
- mod = mod >> 3; // shift the mod field to bits 2..0 |
- |
- // Invariant: modrm contains the mod field in bits 4..3 and the r/m field |
- // in bits 2..0, and mod contains the mod field in bits 2..0 |
- |
- const ModrmEntry* modrm_entry = 0; |
- if (address_is_32_bits_) |
- modrm_entry = &s_ia32_modrm_map_[modrm]; |
- else |
- modrm_entry = &s_ia16_modrm_map_[modrm]; |
- |
- // Invariant: modrm_entry points to information that we need to decode |
- // the ModR/M byte. |
- |
- // Add to the count of operand bytes, if the ModR/M byte indicates |
- // that some operands are encoded in the instruction. |
- if (modrm_entry->is_encoded_in_instruction_) |
- operand_bytes_ += modrm_entry->operand_size_; |
- |
- // Process the SIB byte if necessary, and return the count |
- // of ModR/M and SIB bytes. |
- if (modrm_entry->use_sib_byte_) { |
- size++; |
- return ProcessSib(start_byte + 1, mod, size); |
- } else { |
- size++; |
- return true; |
- } |
-} |
- |
-bool MiniDisassembler::ProcessSib(unsigned char* start_byte, |
- unsigned char mod, |
- unsigned int& size) { |
- // get the mod field from the 2..0 bits of the SIB byte |
- unsigned char sib_base = (*start_byte) & 0x07; |
- if (0x05 == sib_base) { |
- switch (mod) { |
- case 0x00: // mod == 00 |
- case 0x02: // mod == 10 |
- operand_bytes_ += OS_DOUBLE_WORD; |
- break; |
- case 0x01: // mod == 01 |
- operand_bytes_ += OS_BYTE; |
- break; |
- case 0x03: // mod == 11 |
- // According to the IA-32 docs, there does not seem to be a disp |
- // value for this value of mod |
- default: |
- break; |
- } |
- } |
- |
- size++; |
- return true; |
-} |
- |
-}; // namespace sidestep |