| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 /* | |
| 6 * Implementation of MiniDisassembler. | |
| 7 */ | |
| 8 | |
| 9 #include "mini_disassembler.h" | |
| 10 | |
| 11 namespace sidestep { | |
| 12 | |
| 13 MiniDisassembler::MiniDisassembler(bool operand_default_is_32_bits, | |
| 14 bool address_default_is_32_bits) | |
| 15 : operand_default_is_32_bits_(operand_default_is_32_bits), | |
| 16 address_default_is_32_bits_(address_default_is_32_bits) { | |
| 17 Initialize(); | |
| 18 } | |
| 19 | |
| 20 MiniDisassembler::MiniDisassembler() | |
| 21 : operand_default_is_32_bits_(true), | |
| 22 address_default_is_32_bits_(true) { | |
| 23 Initialize(); | |
| 24 } | |
| 25 | |
| 26 InstructionType MiniDisassembler::Disassemble( | |
| 27 unsigned char* start_byte, | |
| 28 unsigned int& instruction_bytes) { | |
| 29 // Clean up any state from previous invocations. | |
| 30 Initialize(); | |
| 31 | |
| 32 // Start by processing any prefixes. | |
| 33 unsigned char* current_byte = start_byte; | |
| 34 unsigned int size = 0; | |
| 35 InstructionType instruction_type = ProcessPrefixes(current_byte, size); | |
| 36 | |
| 37 if (IT_UNKNOWN == instruction_type) | |
| 38 return instruction_type; | |
| 39 | |
| 40 current_byte += size; | |
| 41 size = 0; | |
| 42 | |
| 43 // Invariant: We have stripped all prefixes, and the operand_is_32_bits_ | |
| 44 // and address_is_32_bits_ flags are correctly set. | |
| 45 | |
| 46 instruction_type = ProcessOpcode(current_byte, 0, size); | |
| 47 | |
| 48 // Check for error processing instruction | |
| 49 if ((IT_UNKNOWN == instruction_type_) || (IT_UNUSED == instruction_type_)) { | |
| 50 return IT_UNKNOWN; | |
| 51 } | |
| 52 | |
| 53 current_byte += size; | |
| 54 | |
| 55 // Invariant: operand_bytes_ indicates the total size of operands | |
| 56 // specified by the opcode and/or ModR/M byte and/or SIB byte. | |
| 57 // pCurrentByte points to the first byte after the ModR/M byte, or after | |
| 58 // the SIB byte if it is present (i.e. the first byte of any operands | |
| 59 // encoded in the instruction). | |
| 60 | |
| 61 // We get the total length of any prefixes, the opcode, and the ModR/M and | |
| 62 // SIB bytes if present, by taking the difference of the original starting | |
| 63 // address and the current byte (which points to the first byte of the | |
| 64 // operands if present, or to the first byte of the next instruction if | |
| 65 // they are not). Adding the count of bytes in the operands encoded in | |
| 66 // the instruction gives us the full length of the instruction in bytes. | |
| 67 instruction_bytes += operand_bytes_ + (current_byte - start_byte); | |
| 68 | |
| 69 // Return the instruction type, which was set by ProcessOpcode(). | |
| 70 return instruction_type_; | |
| 71 } | |
| 72 | |
| 73 void MiniDisassembler::Initialize() { | |
| 74 operand_is_32_bits_ = operand_default_is_32_bits_; | |
| 75 address_is_32_bits_ = address_default_is_32_bits_; | |
| 76 operand_bytes_ = 0; | |
| 77 have_modrm_ = false; | |
| 78 should_decode_modrm_ = false; | |
| 79 instruction_type_ = IT_UNKNOWN; | |
| 80 got_f2_prefix_ = false; | |
| 81 got_f3_prefix_ = false; | |
| 82 got_66_prefix_ = false; | |
| 83 } | |
| 84 | |
| 85 InstructionType MiniDisassembler::ProcessPrefixes(unsigned char* start_byte, | |
| 86 unsigned int& size) { | |
| 87 InstructionType instruction_type = IT_GENERIC; | |
| 88 const Opcode& opcode = s_ia32_opcode_map_[0].table_[*start_byte]; | |
| 89 | |
| 90 switch (opcode.type_) { | |
| 91 case IT_PREFIX_ADDRESS: | |
| 92 address_is_32_bits_ = !address_default_is_32_bits_; | |
| 93 goto nochangeoperand; | |
| 94 case IT_PREFIX_OPERAND: | |
| 95 operand_is_32_bits_ = !operand_default_is_32_bits_; | |
| 96 nochangeoperand: | |
| 97 case IT_PREFIX: | |
| 98 | |
| 99 if (0xF2 == (*start_byte)) | |
| 100 got_f2_prefix_ = true; | |
| 101 else if (0xF3 == (*start_byte)) | |
| 102 got_f3_prefix_ = true; | |
| 103 else if (0x66 == (*start_byte)) | |
| 104 got_66_prefix_ = true; | |
| 105 | |
| 106 instruction_type = opcode.type_; | |
| 107 size ++; | |
| 108 // we got a prefix, so add one and check next byte | |
| 109 ProcessPrefixes(start_byte + 1, size); | |
| 110 default: | |
| 111 break; // not a prefix byte | |
| 112 } | |
| 113 | |
| 114 return instruction_type; | |
| 115 } | |
| 116 | |
| 117 InstructionType MiniDisassembler::ProcessOpcode(unsigned char* start_byte, | |
| 118 unsigned int table_index, | |
| 119 unsigned int& size) { | |
| 120 const OpcodeTable& table = s_ia32_opcode_map_[table_index]; // Get our table | |
| 121 unsigned char current_byte = (*start_byte) >> table.shift_; | |
| 122 current_byte = current_byte & table.mask_; // Mask out the bits we will use | |
| 123 | |
| 124 // Check whether the byte we have is inside the table we have. | |
| 125 if (current_byte < table.min_lim_ || current_byte > table.max_lim_) { | |
| 126 instruction_type_ = IT_UNKNOWN; | |
| 127 return instruction_type_; | |
| 128 } | |
| 129 | |
| 130 const Opcode& opcode = table.table_[current_byte]; | |
| 131 if (IT_UNUSED == opcode.type_) { | |
| 132 // This instruction is not used by the IA-32 ISA, so we indicate | |
| 133 // this to the user. Probably means that we were pointed to | |
| 134 // a byte in memory that was not the start of an instruction. | |
| 135 instruction_type_ = IT_UNUSED; | |
| 136 return instruction_type_; | |
| 137 } else if (IT_REFERENCE == opcode.type_) { | |
| 138 // We are looking at an opcode that has more bytes (or is continued | |
| 139 // in the ModR/M byte). Recursively find the opcode definition in | |
| 140 // the table for the opcode's next byte. | |
| 141 size++; | |
| 142 ProcessOpcode(start_byte + 1, opcode.table_index_, size); | |
| 143 return instruction_type_; | |
| 144 } | |
| 145 | |
| 146 const SpecificOpcode* specific_opcode = (SpecificOpcode*)&opcode; | |
| 147 if (opcode.is_prefix_dependent_) { | |
| 148 if (got_f2_prefix_ && opcode.opcode_if_f2_prefix_.mnemonic_ != 0) { | |
| 149 specific_opcode = &opcode.opcode_if_f2_prefix_; | |
| 150 } else if (got_f3_prefix_ && opcode.opcode_if_f3_prefix_.mnemonic_ != 0) { | |
| 151 specific_opcode = &opcode.opcode_if_f3_prefix_; | |
| 152 } else if (got_66_prefix_ && opcode.opcode_if_66_prefix_.mnemonic_ != 0) { | |
| 153 specific_opcode = &opcode.opcode_if_66_prefix_; | |
| 154 } | |
| 155 } | |
| 156 | |
| 157 // Inv: The opcode type is known. | |
| 158 instruction_type_ = specific_opcode->type_; | |
| 159 | |
| 160 // Let's process the operand types to see if we have any immediate | |
| 161 // operands, and/or a ModR/M byte. | |
| 162 | |
| 163 ProcessOperand(specific_opcode->flag_dest_); | |
| 164 ProcessOperand(specific_opcode->flag_source_); | |
| 165 ProcessOperand(specific_opcode->flag_aux_); | |
| 166 | |
| 167 // Inv: We have processed the opcode and incremented operand_bytes_ | |
| 168 // by the number of bytes of any operands specified by the opcode | |
| 169 // that are stored in the instruction (not registers etc.). Now | |
| 170 // we need to return the total number of bytes for the opcode and | |
| 171 // for the ModR/M or SIB bytes if they are present. | |
| 172 | |
| 173 if (table.mask_ != 0xff) { | |
| 174 if (have_modrm_) { | |
| 175 // we're looking at a ModR/M byte so we're not going to | |
| 176 // count that into the opcode size | |
| 177 ProcessModrm(start_byte, size); | |
| 178 return IT_GENERIC; | |
| 179 } else { | |
| 180 // need to count the ModR/M byte even if it's just being | |
| 181 // used for opcode extension | |
| 182 size++; | |
| 183 return IT_GENERIC; | |
| 184 } | |
| 185 } else { | |
| 186 if (have_modrm_) { | |
| 187 // The ModR/M byte is the next byte. | |
| 188 size++; | |
| 189 ProcessModrm(start_byte + 1, size); | |
| 190 return IT_GENERIC; | |
| 191 } else { | |
| 192 size++; | |
| 193 return IT_GENERIC; | |
| 194 } | |
| 195 } | |
| 196 } | |
| 197 | |
| 198 bool MiniDisassembler::ProcessOperand(int flag_operand) { | |
| 199 bool succeeded = true; | |
| 200 if (AM_NOT_USED == flag_operand) | |
| 201 return succeeded; | |
| 202 | |
| 203 // Decide what to do based on the addressing mode. | |
| 204 switch (flag_operand & AM_MASK) { | |
| 205 // No ModR/M byte indicated by these addressing modes, and no | |
| 206 // additional (e.g. immediate) parameters. | |
| 207 case AM_A: // Direct address | |
| 208 case AM_F: // EFLAGS register | |
| 209 case AM_X: // Memory addressed by the DS:SI register pair | |
| 210 case AM_Y: // Memory addressed by the ES:DI register pair | |
| 211 case AM_IMPLICIT: // Parameter is implicit, occupies no space in | |
| 212 // instruction | |
| 213 break; | |
| 214 | |
| 215 // There is a ModR/M byte but it does not necessarily need | |
| 216 // to be decoded. | |
| 217 case AM_C: // reg field of ModR/M selects a control register | |
| 218 case AM_D: // reg field of ModR/M selects a debug register | |
| 219 case AM_G: // reg field of ModR/M selects a general register | |
| 220 case AM_P: // reg field of ModR/M selects an MMX register | |
| 221 case AM_R: // mod field of ModR/M may refer only to a general register | |
| 222 case AM_S: // reg field of ModR/M selects a segment register | |
| 223 case AM_T: // reg field of ModR/M selects a test register | |
| 224 case AM_V: // reg field of ModR/M selects a 128-bit XMM register | |
| 225 have_modrm_ = true; | |
| 226 break; | |
| 227 | |
| 228 // In these addressing modes, there is a ModR/M byte and it needs to be | |
| 229 // decoded. No other (e.g. immediate) params than indicated in ModR/M. | |
| 230 case AM_E: // Operand is either a general-purpose register or memory, | |
| 231 // specified by ModR/M byte | |
| 232 case AM_M: // ModR/M byte will refer only to memory | |
| 233 case AM_Q: // Operand is either an MMX register or memory (complex | |
| 234 // evaluation), specified by ModR/M byte | |
| 235 case AM_W: // Operand is either a 128-bit XMM register or memory (complex | |
| 236 // eval), specified by ModR/M byte | |
| 237 have_modrm_ = true; | |
| 238 should_decode_modrm_ = true; | |
| 239 break; | |
| 240 | |
| 241 // These addressing modes specify an immediate or an offset value | |
| 242 // directly, so we need to look at the operand type to see how many | |
| 243 // bytes. | |
| 244 case AM_I: // Immediate data. | |
| 245 case AM_J: // Jump to offset. | |
| 246 case AM_O: // Operand is at offset. | |
| 247 switch (flag_operand & OT_MASK) { | |
| 248 case OT_B: // Byte regardless of operand-size attribute. | |
| 249 operand_bytes_ += OS_BYTE; | |
| 250 break; | |
| 251 case OT_C: // Byte or word, depending on operand-size attribute. | |
| 252 if (operand_is_32_bits_) | |
| 253 operand_bytes_ += OS_WORD; | |
| 254 else | |
| 255 operand_bytes_ += OS_BYTE; | |
| 256 break; | |
| 257 case OT_D: // Doubleword, regardless of operand-size attribute. | |
| 258 operand_bytes_ += OS_DOUBLE_WORD; | |
| 259 break; | |
| 260 case OT_DQ: // Double-quadword, regardless of operand-size attribute. | |
| 261 operand_bytes_ += OS_DOUBLE_QUAD_WORD; | |
| 262 break; | |
| 263 case OT_P: // 32-bit or 48-bit pointer, depending on operand-size | |
| 264 // attribute. | |
| 265 if (operand_is_32_bits_) | |
| 266 operand_bytes_ += OS_48_BIT_POINTER; | |
| 267 else | |
| 268 operand_bytes_ += OS_32_BIT_POINTER; | |
| 269 break; | |
| 270 case OT_PS: // 128-bit packed single-precision floating-point data. | |
| 271 operand_bytes_ += OS_128_BIT_PACKED_SINGLE_PRECISION_FLOATING; | |
| 272 break; | |
| 273 case OT_Q: // Quadword, regardless of operand-size attribute. | |
| 274 operand_bytes_ += OS_QUAD_WORD; | |
| 275 break; | |
| 276 case OT_S: // 6-byte pseudo-descriptor. | |
| 277 operand_bytes_ += OS_PSEUDO_DESCRIPTOR; | |
| 278 break; | |
| 279 case OT_SD: // Scalar Double-Precision Floating-Point Value | |
| 280 case OT_PD: // Unaligned packed double-precision floating point value | |
| 281 operand_bytes_ += OS_DOUBLE_PRECISION_FLOATING; | |
| 282 break; | |
| 283 case OT_SS: | |
| 284 // Scalar element of a 128-bit packed single-precision | |
| 285 // floating data. | |
| 286 // We simply return enItUnknown since we don't have to support | |
| 287 // floating point | |
| 288 succeeded = false; | |
| 289 break; | |
| 290 case OT_V: // Word or doubleword, depending on operand-size attribute. | |
| 291 if (operand_is_32_bits_) | |
| 292 operand_bytes_ += OS_DOUBLE_WORD; | |
| 293 else | |
| 294 operand_bytes_ += OS_WORD; | |
| 295 break; | |
| 296 case OT_W: // Word, regardless of operand-size attribute. | |
| 297 operand_bytes_ += OS_WORD; | |
| 298 break; | |
| 299 | |
| 300 // Can safely ignore these. | |
| 301 case OT_A: // Two one-word operands in memory or two double-word | |
| 302 // operands in memory | |
| 303 case OT_PI: // Quadword MMX technology register (e.g. mm0) | |
| 304 case OT_SI: // Doubleword integer register (e.g., eax) | |
| 305 break; | |
| 306 | |
| 307 default: | |
| 308 break; | |
| 309 } | |
| 310 break; | |
| 311 | |
| 312 default: | |
| 313 break; | |
| 314 } | |
| 315 | |
| 316 return succeeded; | |
| 317 } | |
| 318 | |
| 319 bool MiniDisassembler::ProcessModrm(unsigned char* start_byte, | |
| 320 unsigned int& size) { | |
| 321 // If we don't need to decode, we just return the size of the ModR/M | |
| 322 // byte (there is never a SIB byte in this case). | |
| 323 if (!should_decode_modrm_) { | |
| 324 size++; | |
| 325 return true; | |
| 326 } | |
| 327 | |
| 328 // We never care about the reg field, only the combination of the mod | |
| 329 // and r/m fields, so let's start by packing those fields together into | |
| 330 // 5 bits. | |
| 331 unsigned char modrm = (*start_byte); | |
| 332 unsigned char mod = modrm & 0xC0; // mask out top two bits to get mod field | |
| 333 modrm = modrm & 0x07; // mask out bottom 3 bits to get r/m field | |
| 334 mod = mod >> 3; // shift the mod field to the right place | |
| 335 modrm = mod | modrm; // combine the r/m and mod fields as discussed | |
| 336 mod = mod >> 3; // shift the mod field to bits 2..0 | |
| 337 | |
| 338 // Invariant: modrm contains the mod field in bits 4..3 and the r/m field | |
| 339 // in bits 2..0, and mod contains the mod field in bits 2..0 | |
| 340 | |
| 341 const ModrmEntry* modrm_entry = 0; | |
| 342 if (address_is_32_bits_) | |
| 343 modrm_entry = &s_ia32_modrm_map_[modrm]; | |
| 344 else | |
| 345 modrm_entry = &s_ia16_modrm_map_[modrm]; | |
| 346 | |
| 347 // Invariant: modrm_entry points to information that we need to decode | |
| 348 // the ModR/M byte. | |
| 349 | |
| 350 // Add to the count of operand bytes, if the ModR/M byte indicates | |
| 351 // that some operands are encoded in the instruction. | |
| 352 if (modrm_entry->is_encoded_in_instruction_) | |
| 353 operand_bytes_ += modrm_entry->operand_size_; | |
| 354 | |
| 355 // Process the SIB byte if necessary, and return the count | |
| 356 // of ModR/M and SIB bytes. | |
| 357 if (modrm_entry->use_sib_byte_) { | |
| 358 size++; | |
| 359 return ProcessSib(start_byte + 1, mod, size); | |
| 360 } else { | |
| 361 size++; | |
| 362 return true; | |
| 363 } | |
| 364 } | |
| 365 | |
| 366 bool MiniDisassembler::ProcessSib(unsigned char* start_byte, | |
| 367 unsigned char mod, | |
| 368 unsigned int& size) { | |
| 369 // get the mod field from the 2..0 bits of the SIB byte | |
| 370 unsigned char sib_base = (*start_byte) & 0x07; | |
| 371 if (0x05 == sib_base) { | |
| 372 switch (mod) { | |
| 373 case 0x00: // mod == 00 | |
| 374 case 0x02: // mod == 10 | |
| 375 operand_bytes_ += OS_DOUBLE_WORD; | |
| 376 break; | |
| 377 case 0x01: // mod == 01 | |
| 378 operand_bytes_ += OS_BYTE; | |
| 379 break; | |
| 380 case 0x03: // mod == 11 | |
| 381 // According to the IA-32 docs, there does not seem to be a disp | |
| 382 // value for this value of mod | |
| 383 default: | |
| 384 break; | |
| 385 } | |
| 386 } | |
| 387 | |
| 388 size++; | |
| 389 return true; | |
| 390 } | |
| 391 | |
| 392 }; // namespace sidestep | |
| OLD | NEW |