| Index: third_party/opus/src/celt/vq.c
|
| diff --git a/third_party/opus/src/celt/vq.c b/third_party/opus/src/celt/vq.c
|
| index d29f38fd8ef79015b63d8819a48d478ca8bce6e6..8ef80e507f262dad55e5eb6dbbf5ae2b143ad107 100644
|
| --- a/third_party/opus/src/celt/vq.c
|
| +++ b/third_party/opus/src/celt/vq.c
|
| @@ -67,7 +67,7 @@ static void exp_rotation1(celt_norm *X, int len, int stride, opus_val16 c, opus_
|
| }
|
| #endif /* OVERRIDE_vq_exp_rotation1 */
|
|
|
| -static void exp_rotation(celt_norm *X, int len, int dir, int stride, int K, int spread)
|
| +void exp_rotation(celt_norm *X, int len, int dir, int stride, int K, int spread)
|
| {
|
| static const int SPREAD_FACTOR[3]={15,10,5};
|
| int i;
|
| @@ -158,42 +158,27 @@ static unsigned extract_collapse_mask(int *iy, int N, int B)
|
| return collapse_mask;
|
| }
|
|
|
| -unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc
|
| -#ifdef RESYNTH
|
| - , opus_val16 gain
|
| -#endif
|
| - )
|
| +opus_val16 op_pvq_search_c(celt_norm *X, int *iy, int K, int N, int arch)
|
| {
|
| VARDECL(celt_norm, y);
|
| - VARDECL(int, iy);
|
| - VARDECL(opus_val16, signx);
|
| + VARDECL(int, signx);
|
| int i, j;
|
| - opus_val16 s;
|
| int pulsesLeft;
|
| opus_val32 sum;
|
| opus_val32 xy;
|
| opus_val16 yy;
|
| - unsigned collapse_mask;
|
| SAVE_STACK;
|
|
|
| - celt_assert2(K>0, "alg_quant() needs at least one pulse");
|
| - celt_assert2(N>1, "alg_quant() needs at least two dimensions");
|
| -
|
| + (void)arch;
|
| ALLOC(y, N, celt_norm);
|
| - ALLOC(iy, N, int);
|
| - ALLOC(signx, N, opus_val16);
|
| -
|
| - exp_rotation(X, N, 1, B, K, spread);
|
| + ALLOC(signx, N, int);
|
|
|
| /* Get rid of the sign */
|
| sum = 0;
|
| j=0; do {
|
| - if (X[j]>0)
|
| - signx[j]=1;
|
| - else {
|
| - signx[j]=-1;
|
| - X[j]=-X[j];
|
| - }
|
| + signx[j] = X[j]<0;
|
| + /* OPT: Make sure the compiler doesn't use a branch on ABS16(). */
|
| + X[j] = ABS16(X[j]);
|
| iy[j] = 0;
|
| y[j] = 0;
|
| } while (++j<N);
|
| @@ -225,7 +210,12 @@ unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc
|
| while (++j<N);
|
| sum = QCONST16(1.f,14);
|
| }
|
| - rcp = EXTRACT16(MULT16_32_Q16(K-1, celt_rcp(sum)));
|
| +#ifdef FIXED_POINT
|
| + rcp = EXTRACT16(MULT16_32_Q16(K, celt_rcp(sum)));
|
| +#else
|
| + /* Using K+e with e < 1 guarantees we cannot get more than K pulses. */
|
| + rcp = EXTRACT16(MULT16_32_Q16(K+0.8f, celt_rcp(sum)));
|
| +#endif
|
| j=0; do {
|
| #ifdef FIXED_POINT
|
| /* It's really important to round *towards zero* here */
|
| @@ -240,7 +230,7 @@ unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc
|
| pulsesLeft -= iy[j];
|
| } while (++j<N);
|
| }
|
| - celt_assert2(pulsesLeft>=1, "Allocated too many pulses in the quick pass");
|
| + celt_assert2(pulsesLeft>=0, "Allocated too many pulses in the quick pass");
|
|
|
| /* This should never happen, but just in case it does (e.g. on silence)
|
| we fill the first bin with pulses. */
|
| @@ -256,12 +246,12 @@ unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc
|
| pulsesLeft=0;
|
| }
|
|
|
| - s = 1;
|
| for (i=0;i<pulsesLeft;i++)
|
| {
|
| + opus_val16 Rxy, Ryy;
|
| int best_id;
|
| - opus_val32 best_num = -VERY_LARGE16;
|
| - opus_val16 best_den = 0;
|
| + opus_val32 best_num;
|
| + opus_val16 best_den;
|
| #ifdef FIXED_POINT
|
| int rshift;
|
| #endif
|
| @@ -272,9 +262,22 @@ unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc
|
| /* The squared magnitude term gets added anyway, so we might as well
|
| add it outside the loop */
|
| yy = ADD16(yy, 1);
|
| - j=0;
|
| +
|
| + /* Calculations for position 0 are out of the loop, in part to reduce
|
| + mispredicted branches (since the if condition is usually false)
|
| + in the loop. */
|
| + /* Temporary sums of the new pulse(s) */
|
| + Rxy = EXTRACT16(SHR32(ADD32(xy, EXTEND32(X[0])),rshift));
|
| + /* We're multiplying y[j] by two so we don't have to do it here */
|
| + Ryy = ADD16(yy, y[0]);
|
| +
|
| + /* Approximate score: we maximise Rxy/sqrt(Ryy) (we're guaranteed that
|
| + Rxy is positive because the sign is pre-computed) */
|
| + Rxy = MULT16_16_Q15(Rxy,Rxy);
|
| + best_den = Ryy;
|
| + best_num = Rxy;
|
| + j=1;
|
| do {
|
| - opus_val16 Rxy, Ryy;
|
| /* Temporary sums of the new pulse(s) */
|
| Rxy = EXTRACT16(SHR32(ADD32(xy, EXTEND32(X[j])),rshift));
|
| /* We're multiplying y[j] by two so we don't have to do it here */
|
| @@ -285,8 +288,11 @@ unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc
|
| Rxy = MULT16_16_Q15(Rxy,Rxy);
|
| /* The idea is to check for num/den >= best_num/best_den, but that way
|
| we can do it without any division */
|
| - /* OPT: Make sure to use conditional moves here */
|
| - if (MULT16_16(best_den, Rxy) > MULT16_16(Ryy, best_num))
|
| + /* OPT: It's not clear whether a cmov is faster than a branch here
|
| + since the condition is more often false than true and using
|
| + a cmov introduces data dependencies across iterations. The optimal
|
| + choice may be architecture-dependent. */
|
| + if (opus_unlikely(MULT16_16(best_den, Rxy) > MULT16_16(Ryy, best_num)))
|
| {
|
| best_den = Ryy;
|
| best_num = Rxy;
|
| @@ -301,23 +307,47 @@ unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc
|
|
|
| /* Only now that we've made the final choice, update y/iy */
|
| /* Multiplying y[j] by 2 so we don't have to do it everywhere else */
|
| - y[best_id] += 2*s;
|
| + y[best_id] += 2;
|
| iy[best_id]++;
|
| }
|
|
|
| /* Put the original sign back */
|
| j=0;
|
| do {
|
| - X[j] = MULT16_16(signx[j],X[j]);
|
| - if (signx[j] < 0)
|
| - iy[j] = -iy[j];
|
| + /*iy[j] = signx[j] ? -iy[j] : iy[j];*/
|
| + /* OPT: The is more likely to be compiled without a branch than the code above
|
| + but has the same performance otherwise. */
|
| + iy[j] = (iy[j]^-signx[j]) + signx[j];
|
| } while (++j<N);
|
| + RESTORE_STACK;
|
| + return yy;
|
| +}
|
| +
|
| +unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc,
|
| + opus_val16 gain, int resynth, int arch)
|
| +{
|
| + VARDECL(int, iy);
|
| + opus_val16 yy;
|
| + unsigned collapse_mask;
|
| + SAVE_STACK;
|
| +
|
| + celt_assert2(K>0, "alg_quant() needs at least one pulse");
|
| + celt_assert2(N>1, "alg_quant() needs at least two dimensions");
|
| +
|
| + /* Covers vectorization by up to 4. */
|
| + ALLOC(iy, N+3, int);
|
| +
|
| + exp_rotation(X, N, 1, B, K, spread);
|
| +
|
| + yy = op_pvq_search(X, iy, K, N, arch);
|
| +
|
| encode_pulses(iy, N, K, enc);
|
|
|
| -#ifdef RESYNTH
|
| - normalise_residual(iy, X, N, yy, gain);
|
| - exp_rotation(X, N, -1, B, K, spread);
|
| -#endif
|
| + if (resynth)
|
| + {
|
| + normalise_residual(iy, X, N, yy, gain);
|
| + exp_rotation(X, N, -1, B, K, spread);
|
| + }
|
|
|
| collapse_mask = extract_collapse_mask(iy, N, B);
|
| RESTORE_STACK;
|
| @@ -401,7 +431,7 @@ int stereo_itheta(const celt_norm *X, const celt_norm *Y, int stereo, int N, int
|
| /* 0.63662 = 2/pi */
|
| itheta = MULT16_16_Q15(QCONST16(0.63662f,15),celt_atan2p(side, mid));
|
| #else
|
| - itheta = (int)floor(.5f+16384*0.63662f*atan2(side,mid));
|
| + itheta = (int)floor(.5f+16384*0.63662f*fast_atan2f(side,mid));
|
| #endif
|
|
|
| return itheta;
|
|
|