| Index: third_party/opus/src/silk/arm/LPC_inv_pred_gain_neon_intr.c
|
| diff --git a/third_party/opus/src/silk/arm/LPC_inv_pred_gain_neon_intr.c b/third_party/opus/src/silk/arm/LPC_inv_pred_gain_neon_intr.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..27142f34cebe6946506c98c7c80ed706e60738be
|
| --- /dev/null
|
| +++ b/third_party/opus/src/silk/arm/LPC_inv_pred_gain_neon_intr.c
|
| @@ -0,0 +1,280 @@
|
| +/***********************************************************************
|
| +Copyright (c) 2017 Google Inc.
|
| +Redistribution and use in source and binary forms, with or without
|
| +modification, are permitted provided that the following conditions
|
| +are met:
|
| +- Redistributions of source code must retain the above copyright notice,
|
| +this list of conditions and the following disclaimer.
|
| +- Redistributions in binary form must reproduce the above copyright
|
| +notice, this list of conditions and the following disclaimer in the
|
| +documentation and/or other materials provided with the distribution.
|
| +- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
| +names of specific contributors, may be used to endorse or promote
|
| +products derived from this software without specific prior written
|
| +permission.
|
| +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
| +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
| +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
| +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
| +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
| +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
| +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
| +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
| +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
| +POSSIBILITY OF SUCH DAMAGE.
|
| +***********************************************************************/
|
| +
|
| +#ifdef HAVE_CONFIG_H
|
| +#include "config.h"
|
| +#endif
|
| +
|
| +#include <arm_neon.h>
|
| +#include "SigProc_FIX.h"
|
| +#include "define.h"
|
| +
|
| +#define QA 24
|
| +#define A_LIMIT SILK_FIX_CONST( 0.99975, QA )
|
| +
|
| +#define MUL32_FRAC_Q(a32, b32, Q) ((opus_int32)(silk_RSHIFT_ROUND64(silk_SMULL(a32, b32), Q)))
|
| +
|
| +/* The difficulty is how to judge a 64-bit signed integer tmp64 is 32-bit overflowed,
|
| + * since NEON has no 64-bit min, max or comparison instructions.
|
| + * A failed idea is to compare the results of vmovn(tmp64) and vqmovn(tmp64) whether they are equal or not.
|
| + * However, this idea fails when the tmp64 is something like 0xFFFFFFF980000000.
|
| + * Here we know that mult2Q >= 1, so the highest bit (bit 63, sign bit) of tmp64 must equal to bit 62.
|
| + * tmp64 was shifted left by 1 and we got tmp64'. If high_half(tmp64') != 0 and high_half(tmp64') != -1,
|
| + * then we know that bit 31 to bit 63 of tmp64 can not all be the sign bit, and therefore tmp64 is 32-bit overflowed.
|
| + * That is, we judge if tmp64' > 0x00000000FFFFFFFF, or tmp64' <= 0xFFFFFFFF00000000.
|
| + * We use narrowing shift right 31 bits to tmp32' to save data bandwidth and instructions.
|
| + * That is, we judge if tmp32' > 0x00000000, or tmp32' <= 0xFFFFFFFF.
|
| + */
|
| +
|
| +/* Compute inverse of LPC prediction gain, and */
|
| +/* test if LPC coefficients are stable (all poles within unit circle) */
|
| +static OPUS_INLINE opus_int32 LPC_inverse_pred_gain_QA_neon( /* O Returns inverse prediction gain in energy domain, Q30 */
|
| + opus_int32 A_QA[ SILK_MAX_ORDER_LPC ], /* I Prediction coefficients */
|
| + const opus_int order /* I Prediction order */
|
| +)
|
| +{
|
| + opus_int k, n, mult2Q;
|
| + opus_int32 invGain_Q30, rc_Q31, rc_mult1_Q30, rc_mult2, tmp1, tmp2;
|
| + opus_int32 max, min;
|
| + int32x4_t max_s32x4, min_s32x4;
|
| + int32x2_t max_s32x2, min_s32x2;
|
| +
|
| + max_s32x4 = vdupq_n_s32( silk_int32_MIN );
|
| + min_s32x4 = vdupq_n_s32( silk_int32_MAX );
|
| + invGain_Q30 = SILK_FIX_CONST( 1, 30 );
|
| + for( k = order - 1; k > 0; k-- ) {
|
| + int32x2_t rc_Q31_s32x2, rc_mult2_s32x2;
|
| + int64x2_t mult2Q_s64x2;
|
| +
|
| + /* Check for stability */
|
| + if( ( A_QA[ k ] > A_LIMIT ) || ( A_QA[ k ] < -A_LIMIT ) ) {
|
| + return 0;
|
| + }
|
| +
|
| + /* Set RC equal to negated AR coef */
|
| + rc_Q31 = -silk_LSHIFT( A_QA[ k ], 31 - QA );
|
| +
|
| + /* rc_mult1_Q30 range: [ 1 : 2^30 ] */
|
| + rc_mult1_Q30 = silk_SUB32( SILK_FIX_CONST( 1, 30 ), silk_SMMUL( rc_Q31, rc_Q31 ) );
|
| + silk_assert( rc_mult1_Q30 > ( 1 << 15 ) ); /* reduce A_LIMIT if fails */
|
| + silk_assert( rc_mult1_Q30 <= ( 1 << 30 ) );
|
| +
|
| + /* Update inverse gain */
|
| + /* invGain_Q30 range: [ 0 : 2^30 ] */
|
| + invGain_Q30 = silk_LSHIFT( silk_SMMUL( invGain_Q30, rc_mult1_Q30 ), 2 );
|
| + silk_assert( invGain_Q30 >= 0 );
|
| + silk_assert( invGain_Q30 <= ( 1 << 30 ) );
|
| + if( invGain_Q30 < SILK_FIX_CONST( 1.0f / MAX_PREDICTION_POWER_GAIN, 30 ) ) {
|
| + return 0;
|
| + }
|
| +
|
| + /* rc_mult2 range: [ 2^30 : silk_int32_MAX ] */
|
| + mult2Q = 32 - silk_CLZ32( silk_abs( rc_mult1_Q30 ) );
|
| + rc_mult2 = silk_INVERSE32_varQ( rc_mult1_Q30, mult2Q + 30 );
|
| +
|
| + /* Update AR coefficient */
|
| + rc_Q31_s32x2 = vdup_n_s32( rc_Q31 );
|
| + mult2Q_s64x2 = vdupq_n_s64( -mult2Q );
|
| + rc_mult2_s32x2 = vdup_n_s32( rc_mult2 );
|
| +
|
| + for( n = 0; n < ( ( k + 1 ) >> 1 ) - 3; n += 4 ) {
|
| + /* We always calculate extra elements of A_QA buffer when ( k % 4 ) != 0, to take the advantage of SIMD parallelization. */
|
| + int32x4_t tmp1_s32x4, tmp2_s32x4, t0_s32x4, t1_s32x4, s0_s32x4, s1_s32x4, t_QA0_s32x4, t_QA1_s32x4;
|
| + int64x2_t t0_s64x2, t1_s64x2, t2_s64x2, t3_s64x2;
|
| + tmp1_s32x4 = vld1q_s32( A_QA + n );
|
| + tmp2_s32x4 = vld1q_s32( A_QA + k - n - 4 );
|
| + tmp2_s32x4 = vrev64q_s32( tmp2_s32x4 );
|
| + tmp2_s32x4 = vcombine_s32( vget_high_s32( tmp2_s32x4 ), vget_low_s32( tmp2_s32x4 ) );
|
| + t0_s32x4 = vqrdmulhq_lane_s32( tmp2_s32x4, rc_Q31_s32x2, 0 );
|
| + t1_s32x4 = vqrdmulhq_lane_s32( tmp1_s32x4, rc_Q31_s32x2, 0 );
|
| + t_QA0_s32x4 = vqsubq_s32( tmp1_s32x4, t0_s32x4 );
|
| + t_QA1_s32x4 = vqsubq_s32( tmp2_s32x4, t1_s32x4 );
|
| + t0_s64x2 = vmull_s32( vget_low_s32 ( t_QA0_s32x4 ), rc_mult2_s32x2 );
|
| + t1_s64x2 = vmull_s32( vget_high_s32( t_QA0_s32x4 ), rc_mult2_s32x2 );
|
| + t2_s64x2 = vmull_s32( vget_low_s32 ( t_QA1_s32x4 ), rc_mult2_s32x2 );
|
| + t3_s64x2 = vmull_s32( vget_high_s32( t_QA1_s32x4 ), rc_mult2_s32x2 );
|
| + t0_s64x2 = vrshlq_s64( t0_s64x2, mult2Q_s64x2 );
|
| + t1_s64x2 = vrshlq_s64( t1_s64x2, mult2Q_s64x2 );
|
| + t2_s64x2 = vrshlq_s64( t2_s64x2, mult2Q_s64x2 );
|
| + t3_s64x2 = vrshlq_s64( t3_s64x2, mult2Q_s64x2 );
|
| + t0_s32x4 = vcombine_s32( vmovn_s64( t0_s64x2 ), vmovn_s64( t1_s64x2 ) );
|
| + t1_s32x4 = vcombine_s32( vmovn_s64( t2_s64x2 ), vmovn_s64( t3_s64x2 ) );
|
| + s0_s32x4 = vcombine_s32( vshrn_n_s64( t0_s64x2, 31 ), vshrn_n_s64( t1_s64x2, 31 ) );
|
| + s1_s32x4 = vcombine_s32( vshrn_n_s64( t2_s64x2, 31 ), vshrn_n_s64( t3_s64x2, 31 ) );
|
| + max_s32x4 = vmaxq_s32( max_s32x4, s0_s32x4 );
|
| + min_s32x4 = vminq_s32( min_s32x4, s0_s32x4 );
|
| + max_s32x4 = vmaxq_s32( max_s32x4, s1_s32x4 );
|
| + min_s32x4 = vminq_s32( min_s32x4, s1_s32x4 );
|
| + t1_s32x4 = vrev64q_s32( t1_s32x4 );
|
| + t1_s32x4 = vcombine_s32( vget_high_s32( t1_s32x4 ), vget_low_s32( t1_s32x4 ) );
|
| + vst1q_s32( A_QA + n, t0_s32x4 );
|
| + vst1q_s32( A_QA + k - n - 4, t1_s32x4 );
|
| + }
|
| + for( ; n < (k + 1) >> 1; n++ ) {
|
| + opus_int64 tmp64;
|
| + tmp1 = A_QA[ n ];
|
| + tmp2 = A_QA[ k - n - 1 ];
|
| + tmp64 = silk_RSHIFT_ROUND64( silk_SMULL( silk_SUB_SAT32(tmp1,
|
| + MUL32_FRAC_Q( tmp2, rc_Q31, 31 ) ), rc_mult2 ), mult2Q);
|
| + if( tmp64 > silk_int32_MAX || tmp64 < silk_int32_MIN ) {
|
| + return 0;
|
| + }
|
| + A_QA[ n ] = ( opus_int32 )tmp64;
|
| + tmp64 = silk_RSHIFT_ROUND64( silk_SMULL( silk_SUB_SAT32(tmp2,
|
| + MUL32_FRAC_Q( tmp1, rc_Q31, 31 ) ), rc_mult2), mult2Q);
|
| + if( tmp64 > silk_int32_MAX || tmp64 < silk_int32_MIN ) {
|
| + return 0;
|
| + }
|
| + A_QA[ k - n - 1 ] = ( opus_int32 )tmp64;
|
| + }
|
| + }
|
| +
|
| + /* Check for stability */
|
| + if( ( A_QA[ k ] > A_LIMIT ) || ( A_QA[ k ] < -A_LIMIT ) ) {
|
| + return 0;
|
| + }
|
| +
|
| + max_s32x2 = vmax_s32( vget_low_s32( max_s32x4 ), vget_high_s32( max_s32x4 ) );
|
| + min_s32x2 = vmin_s32( vget_low_s32( min_s32x4 ), vget_high_s32( min_s32x4 ) );
|
| + max_s32x2 = vmax_s32( max_s32x2, vreinterpret_s32_s64( vshr_n_s64( vreinterpret_s64_s32( max_s32x2 ), 32 ) ) );
|
| + min_s32x2 = vmin_s32( min_s32x2, vreinterpret_s32_s64( vshr_n_s64( vreinterpret_s64_s32( min_s32x2 ), 32 ) ) );
|
| + max = vget_lane_s32( max_s32x2, 0 );
|
| + min = vget_lane_s32( min_s32x2, 0 );
|
| + if( ( max > 0 ) || ( min < -1 ) ) {
|
| + return 0;
|
| + }
|
| +
|
| + /* Set RC equal to negated AR coef */
|
| + rc_Q31 = -silk_LSHIFT( A_QA[ 0 ], 31 - QA );
|
| +
|
| + /* Range: [ 1 : 2^30 ] */
|
| + rc_mult1_Q30 = silk_SUB32( SILK_FIX_CONST( 1, 30 ), silk_SMMUL( rc_Q31, rc_Q31 ) );
|
| +
|
| + /* Update inverse gain */
|
| + /* Range: [ 0 : 2^30 ] */
|
| + invGain_Q30 = silk_LSHIFT( silk_SMMUL( invGain_Q30, rc_mult1_Q30 ), 2 );
|
| + silk_assert( invGain_Q30 >= 0 );
|
| + silk_assert( invGain_Q30 <= ( 1 << 30 ) );
|
| + if( invGain_Q30 < SILK_FIX_CONST( 1.0f / MAX_PREDICTION_POWER_GAIN, 30 ) ) {
|
| + return 0;
|
| + }
|
| +
|
| + return invGain_Q30;
|
| +}
|
| +
|
| +/* For input in Q12 domain */
|
| +opus_int32 silk_LPC_inverse_pred_gain_neon( /* O Returns inverse prediction gain in energy domain, Q30 */
|
| + const opus_int16 *A_Q12, /* I Prediction coefficients, Q12 [order] */
|
| + const opus_int order /* I Prediction order */
|
| +)
|
| +{
|
| +#ifdef OPUS_CHECK_ASM
|
| + const opus_int32 invGain_Q30_c = silk_LPC_inverse_pred_gain_c( A_Q12, order );
|
| +#endif
|
| +
|
| + opus_int32 invGain_Q30;
|
| + if( ( SILK_MAX_ORDER_LPC != 24 ) || ( order & 1 )) {
|
| + invGain_Q30 = silk_LPC_inverse_pred_gain_c( A_Q12, order );
|
| + }
|
| + else {
|
| + opus_int32 Atmp_QA[ SILK_MAX_ORDER_LPC ];
|
| + opus_int32 DC_resp;
|
| + int16x8_t t0_s16x8, t1_s16x8, t2_s16x8;
|
| + int32x4_t t0_s32x4;
|
| + const opus_int leftover = order & 7;
|
| +
|
| + /* Increase Q domain of the AR coefficients */
|
| + t0_s16x8 = vld1q_s16( A_Q12 + 0 );
|
| + t1_s16x8 = vld1q_s16( A_Q12 + 8 );
|
| + t2_s16x8 = vld1q_s16( A_Q12 + 16 );
|
| + t0_s32x4 = vpaddlq_s16( t0_s16x8 );
|
| +
|
| + switch( order - leftover )
|
| + {
|
| + case 24:
|
| + t0_s32x4 = vpadalq_s16( t0_s32x4, t2_s16x8 );
|
| + /* Intend to fall through */
|
| +
|
| + case 16:
|
| + t0_s32x4 = vpadalq_s16( t0_s32x4, t1_s16x8 );
|
| + vst1q_s32( Atmp_QA + 16, vshll_n_s16( vget_low_s16 ( t2_s16x8 ), QA - 12 ) );
|
| + vst1q_s32( Atmp_QA + 20, vshll_n_s16( vget_high_s16( t2_s16x8 ), QA - 12 ) );
|
| + /* Intend to fall through */
|
| +
|
| + case 8:
|
| + {
|
| + const int32x2_t t_s32x2 = vpadd_s32( vget_low_s32( t0_s32x4 ), vget_high_s32( t0_s32x4 ) );
|
| + const int64x1_t t_s64x1 = vpaddl_s32( t_s32x2 );
|
| + DC_resp = vget_lane_s32( vreinterpret_s32_s64( t_s64x1 ), 0 );
|
| + vst1q_s32( Atmp_QA + 8, vshll_n_s16( vget_low_s16 ( t1_s16x8 ), QA - 12 ) );
|
| + vst1q_s32( Atmp_QA + 12, vshll_n_s16( vget_high_s16( t1_s16x8 ), QA - 12 ) );
|
| + }
|
| + break;
|
| +
|
| + default:
|
| + DC_resp = 0;
|
| + break;
|
| + }
|
| + A_Q12 += order - leftover;
|
| +
|
| + switch( leftover )
|
| + {
|
| + case 6:
|
| + DC_resp += (opus_int32)A_Q12[ 5 ];
|
| + DC_resp += (opus_int32)A_Q12[ 4 ];
|
| + /* Intend to fall through */
|
| +
|
| + case 4:
|
| + DC_resp += (opus_int32)A_Q12[ 3 ];
|
| + DC_resp += (opus_int32)A_Q12[ 2 ];
|
| + /* Intend to fall through */
|
| +
|
| + case 2:
|
| + DC_resp += (opus_int32)A_Q12[ 1 ];
|
| + DC_resp += (opus_int32)A_Q12[ 0 ];
|
| + /* Intend to fall through */
|
| +
|
| + default:
|
| + break;
|
| + }
|
| +
|
| + /* If the DC is unstable, we don't even need to do the full calculations */
|
| + if( DC_resp >= 4096 ) {
|
| + invGain_Q30 = 0;
|
| + } else {
|
| + vst1q_s32( Atmp_QA + 0, vshll_n_s16( vget_low_s16 ( t0_s16x8 ), QA - 12 ) );
|
| + vst1q_s32( Atmp_QA + 4, vshll_n_s16( vget_high_s16( t0_s16x8 ), QA - 12 ) );
|
| + invGain_Q30 = LPC_inverse_pred_gain_QA_neon( Atmp_QA, order );
|
| + }
|
| + }
|
| +
|
| +#ifdef OPUS_CHECK_ASM
|
| + silk_assert( invGain_Q30_c == invGain_Q30 );
|
| +#endif
|
| +
|
| + return invGain_Q30;
|
| +}
|
|
|