| OLD | NEW |
| 1 /*********************************************************************** | 1 /*********************************************************************** |
| 2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. | 2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
| 3 Redistribution and use in source and binary forms, with or without | 3 Redistribution and use in source and binary forms, with or without |
| 4 modification, are permitted provided that the following conditions | 4 modification, are permitted provided that the following conditions |
| 5 are met: | 5 are met: |
| 6 - Redistributions of source code must retain the above copyright notice, | 6 - Redistributions of source code must retain the above copyright notice, |
| 7 this list of conditions and the following disclaimer. | 7 this list of conditions and the following disclaimer. |
| 8 - Redistributions in binary form must reproduce the above copyright | 8 - Redistributions in binary form must reproduce the above copyright |
| 9 notice, this list of conditions and the following disclaimer in the | 9 notice, this list of conditions and the following disclaimer in the |
| 10 documentation and/or other materials provided with the distribution. | 10 documentation and/or other materials provided with the distribution. |
| (...skipping 12 matching lines...) Expand all Loading... |
| 23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 25 POSSIBILITY OF SUCH DAMAGE. | 25 POSSIBILITY OF SUCH DAMAGE. |
| 26 ***********************************************************************/ | 26 ***********************************************************************/ |
| 27 | 27 |
| 28 #ifdef HAVE_CONFIG_H | 28 #ifdef HAVE_CONFIG_H |
| 29 #include "config.h" | 29 #include "config.h" |
| 30 #endif | 30 #endif |
| 31 | 31 |
| 32 #include "SigProc_FIX.h" | 32 #include "SigProc_FIX.h" |
| 33 #include "define.h" |
| 33 | 34 |
| 34 #define QA 24 | 35 #define QA 24 |
| 35 #define A_LIMIT SILK_FIX_CONST( 0.99975, QA ) | 36 #define A_LIMIT SILK_FIX_CONST( 0.99975, QA ) |
| 36 | 37 |
| 37 #define MUL32_FRAC_Q(a32, b32, Q) ((opus_int32)(silk_RSHIFT_ROUND64(silk_SMULL
(a32, b32), Q))) | 38 #define MUL32_FRAC_Q(a32, b32, Q) ((opus_int32)(silk_RSHIFT_ROUND64(silk_SMULL
(a32, b32), Q))) |
| 38 | 39 |
| 39 /* Compute inverse of LPC prediction gain, and */ | 40 /* Compute inverse of LPC prediction gain, and */ |
| 40 /* test if LPC coefficients are stable (all poles within unit circle) */ | 41 /* test if LPC coefficients are stable (all poles within unit circle) */ |
| 41 static opus_int32 LPC_inverse_pred_gain_QA( /* O Returns inver
se prediction gain in energy domain, Q30 */ | 42 static opus_int32 LPC_inverse_pred_gain_QA_c( /* O Returns inver
se prediction gain in energy domain, Q30 */ |
| 42 opus_int32 A_QA[ 2 ][ SILK_MAX_ORDER_LPC ], /* I Prediction co
efficients */ | 43 opus_int32 A_QA[ SILK_MAX_ORDER_LPC ], /* I Prediction co
efficients */ |
| 43 const opus_int order /* I Prediction or
der */ | 44 const opus_int order /* I Prediction or
der */ |
| 44 ) | 45 ) |
| 45 { | 46 { |
| 46 opus_int k, n, mult2Q; | 47 opus_int k, n, mult2Q; |
| 47 opus_int32 invGain_Q30, rc_Q31, rc_mult1_Q30, rc_mult2, tmp_QA; | 48 opus_int32 invGain_Q30, rc_Q31, rc_mult1_Q30, rc_mult2, tmp1, tmp2; |
| 48 opus_int32 *Aold_QA, *Anew_QA; | |
| 49 | 49 |
| 50 Anew_QA = A_QA[ order & 1 ]; | 50 invGain_Q30 = SILK_FIX_CONST( 1, 30 ); |
| 51 | |
| 52 invGain_Q30 = (opus_int32)1 << 30; | |
| 53 for( k = order - 1; k > 0; k-- ) { | 51 for( k = order - 1; k > 0; k-- ) { |
| 54 /* Check for stability */ | 52 /* Check for stability */ |
| 55 if( ( Anew_QA[ k ] > A_LIMIT ) || ( Anew_QA[ k ] < -A_LIMIT ) ) { | 53 if( ( A_QA[ k ] > A_LIMIT ) || ( A_QA[ k ] < -A_LIMIT ) ) { |
| 56 return 0; | 54 return 0; |
| 57 } | 55 } |
| 58 | 56 |
| 59 /* Set RC equal to negated AR coef */ | 57 /* Set RC equal to negated AR coef */ |
| 60 rc_Q31 = -silk_LSHIFT( Anew_QA[ k ], 31 - QA ); | 58 rc_Q31 = -silk_LSHIFT( A_QA[ k ], 31 - QA ); |
| 61 | 59 |
| 62 /* rc_mult1_Q30 range: [ 1 : 2^30 ] */ | 60 /* rc_mult1_Q30 range: [ 1 : 2^30 ] */ |
| 63 rc_mult1_Q30 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 ); | 61 rc_mult1_Q30 = silk_SUB32( SILK_FIX_CONST( 1, 30 ), silk_SMMUL( rc_Q31,
rc_Q31 ) ); |
| 64 silk_assert( rc_mult1_Q30 > ( 1 << 15 ) ); /* reduce A
_LIMIT if fails */ | 62 silk_assert( rc_mult1_Q30 > ( 1 << 15 ) ); /* reduce A
_LIMIT if fails */ |
| 65 silk_assert( rc_mult1_Q30 <= ( 1 << 30 ) ); | 63 silk_assert( rc_mult1_Q30 <= ( 1 << 30 ) ); |
| 66 | 64 |
| 67 /* rc_mult2 range: [ 2^30 : silk_int32_MAX ] */ | |
| 68 mult2Q = 32 - silk_CLZ32( silk_abs( rc_mult1_Q30 ) ); | |
| 69 rc_mult2 = silk_INVERSE32_varQ( rc_mult1_Q30, mult2Q + 30 ); | |
| 70 | |
| 71 /* Update inverse gain */ | 65 /* Update inverse gain */ |
| 72 /* invGain_Q30 range: [ 0 : 2^30 ] */ | 66 /* invGain_Q30 range: [ 0 : 2^30 ] */ |
| 73 invGain_Q30 = silk_LSHIFT( silk_SMMUL( invGain_Q30, rc_mult1_Q30 ), 2 ); | 67 invGain_Q30 = silk_LSHIFT( silk_SMMUL( invGain_Q30, rc_mult1_Q30 ), 2 ); |
| 74 silk_assert( invGain_Q30 >= 0 ); | 68 silk_assert( invGain_Q30 >= 0 ); |
| 75 silk_assert( invGain_Q30 <= ( 1 << 30 ) ); | 69 silk_assert( invGain_Q30 <= ( 1 << 30 ) ); |
| 70 if( invGain_Q30 < SILK_FIX_CONST( 1.0f / MAX_PREDICTION_POWER_GAIN, 30 )
) { |
| 71 return 0; |
| 72 } |
| 76 | 73 |
| 77 /* Swap pointers */ | 74 /* rc_mult2 range: [ 2^30 : silk_int32_MAX ] */ |
| 78 Aold_QA = Anew_QA; | 75 mult2Q = 32 - silk_CLZ32( silk_abs( rc_mult1_Q30 ) ); |
| 79 Anew_QA = A_QA[ k & 1 ]; | 76 rc_mult2 = silk_INVERSE32_varQ( rc_mult1_Q30, mult2Q + 30 ); |
| 80 | 77 |
| 81 /* Update AR coefficient */ | 78 /* Update AR coefficient */ |
| 82 for( n = 0; n < k; n++ ) { | 79 for( n = 0; n < (k + 1) >> 1; n++ ) { |
| 83 tmp_QA = Aold_QA[ n ] - MUL32_FRAC_Q( Aold_QA[ k - n - 1 ], rc_Q31,
31 ); | 80 opus_int64 tmp64; |
| 84 Anew_QA[ n ] = MUL32_FRAC_Q( tmp_QA, rc_mult2 , mult2Q ); | 81 tmp1 = A_QA[ n ]; |
| 82 tmp2 = A_QA[ k - n - 1 ]; |
| 83 tmp64 = silk_RSHIFT_ROUND64( silk_SMULL( silk_SUB_SAT32(tmp1, |
| 84 MUL32_FRAC_Q( tmp2, rc_Q31, 31 ) ), rc_mult2 ), mult2Q); |
| 85 if( tmp64 > silk_int32_MAX || tmp64 < silk_int32_MIN ) { |
| 86 return 0; |
| 87 } |
| 88 A_QA[ n ] = ( opus_int32 )tmp64; |
| 89 tmp64 = silk_RSHIFT_ROUND64( silk_SMULL( silk_SUB_SAT32(tmp2, |
| 90 MUL32_FRAC_Q( tmp1, rc_Q31, 31 ) ), rc_mult2), mult2Q); |
| 91 if( tmp64 > silk_int32_MAX || tmp64 < silk_int32_MIN ) { |
| 92 return 0; |
| 93 } |
| 94 A_QA[ k - n - 1 ] = ( opus_int32 )tmp64; |
| 85 } | 95 } |
| 86 } | 96 } |
| 87 | 97 |
| 88 /* Check for stability */ | 98 /* Check for stability */ |
| 89 if( ( Anew_QA[ 0 ] > A_LIMIT ) || ( Anew_QA[ 0 ] < -A_LIMIT ) ) { | 99 if( ( A_QA[ k ] > A_LIMIT ) || ( A_QA[ k ] < -A_LIMIT ) ) { |
| 90 return 0; | 100 return 0; |
| 91 } | 101 } |
| 92 | 102 |
| 93 /* Set RC equal to negated AR coef */ | 103 /* Set RC equal to negated AR coef */ |
| 94 rc_Q31 = -silk_LSHIFT( Anew_QA[ 0 ], 31 - QA ); | 104 rc_Q31 = -silk_LSHIFT( A_QA[ 0 ], 31 - QA ); |
| 95 | 105 |
| 96 /* Range: [ 1 : 2^30 ] */ | 106 /* Range: [ 1 : 2^30 ] */ |
| 97 rc_mult1_Q30 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 ); | 107 rc_mult1_Q30 = silk_SUB32( SILK_FIX_CONST( 1, 30 ), silk_SMMUL( rc_Q31, rc_Q
31 ) ); |
| 98 | 108 |
| 99 /* Update inverse gain */ | 109 /* Update inverse gain */ |
| 100 /* Range: [ 0 : 2^30 ] */ | 110 /* Range: [ 0 : 2^30 ] */ |
| 101 invGain_Q30 = silk_LSHIFT( silk_SMMUL( invGain_Q30, rc_mult1_Q30 ), 2 ); | 111 invGain_Q30 = silk_LSHIFT( silk_SMMUL( invGain_Q30, rc_mult1_Q30 ), 2 ); |
| 102 silk_assert( invGain_Q30 >= 0 ); | 112 silk_assert( invGain_Q30 >= 0 ); |
| 103 silk_assert( invGain_Q30 <= 1<<30 ); | 113 silk_assert( invGain_Q30 <= ( 1 << 30 ) ); |
| 114 if( invGain_Q30 < SILK_FIX_CONST( 1.0f / MAX_PREDICTION_POWER_GAIN, 30 ) ) { |
| 115 return 0; |
| 116 } |
| 104 | 117 |
| 105 return invGain_Q30; | 118 return invGain_Q30; |
| 106 } | 119 } |
| 107 | 120 |
| 108 /* For input in Q12 domain */ | 121 /* For input in Q12 domain */ |
| 109 opus_int32 silk_LPC_inverse_pred_gain( /* O Returns inverse predi
ction gain in energy domain, Q30 */ | 122 opus_int32 silk_LPC_inverse_pred_gain_c( /* O Returns inverse predi
ction gain in energy domain, Q30 */ |
| 110 const opus_int16 *A_Q12, /* I Prediction coefficien
ts, Q12 [order] */ | 123 const opus_int16 *A_Q12, /* I Prediction coefficien
ts, Q12 [order] */ |
| 111 const opus_int order /* I Prediction order
*/ | 124 const opus_int order /* I Prediction order
*/ |
| 112 ) | 125 ) |
| 113 { | 126 { |
| 114 opus_int k; | 127 opus_int k; |
| 115 opus_int32 Atmp_QA[ 2 ][ SILK_MAX_ORDER_LPC ]; | 128 opus_int32 Atmp_QA[ SILK_MAX_ORDER_LPC ]; |
| 116 opus_int32 *Anew_QA; | |
| 117 opus_int32 DC_resp = 0; | 129 opus_int32 DC_resp = 0; |
| 118 | 130 |
| 119 Anew_QA = Atmp_QA[ order & 1 ]; | |
| 120 | |
| 121 /* Increase Q domain of the AR coefficients */ | 131 /* Increase Q domain of the AR coefficients */ |
| 122 for( k = 0; k < order; k++ ) { | 132 for( k = 0; k < order; k++ ) { |
| 123 DC_resp += (opus_int32)A_Q12[ k ]; | 133 DC_resp += (opus_int32)A_Q12[ k ]; |
| 124 Anew_QA[ k ] = silk_LSHIFT32( (opus_int32)A_Q12[ k ], QA - 12 ); | 134 Atmp_QA[ k ] = silk_LSHIFT32( (opus_int32)A_Q12[ k ], QA - 12 ); |
| 125 } | 135 } |
| 126 /* If the DC is unstable, we don't even need to do the full calculations */ | 136 /* If the DC is unstable, we don't even need to do the full calculations */ |
| 127 if( DC_resp >= 4096 ) { | 137 if( DC_resp >= 4096 ) { |
| 128 return 0; | 138 return 0; |
| 129 } | 139 } |
| 130 return LPC_inverse_pred_gain_QA( Atmp_QA, order ); | 140 return LPC_inverse_pred_gain_QA_c( Atmp_QA, order ); |
| 131 } | 141 } |
| 132 | |
| 133 #ifdef FIXED_POINT | |
| 134 | |
| 135 /* For input in Q24 domain */ | |
| 136 opus_int32 silk_LPC_inverse_pred_gain_Q24( /* O Returns inverse pred
iction gain in energy domain, Q30 */ | |
| 137 const opus_int32 *A_Q24, /* I Prediction coefficie
nts [order] */ | |
| 138 const opus_int order /* I Prediction order
*/ | |
| 139 ) | |
| 140 { | |
| 141 opus_int k; | |
| 142 opus_int32 Atmp_QA[ 2 ][ SILK_MAX_ORDER_LPC ]; | |
| 143 opus_int32 *Anew_QA; | |
| 144 | |
| 145 Anew_QA = Atmp_QA[ order & 1 ]; | |
| 146 | |
| 147 /* Increase Q domain of the AR coefficients */ | |
| 148 for( k = 0; k < order; k++ ) { | |
| 149 Anew_QA[ k ] = silk_RSHIFT32( A_Q24[ k ], 24 - QA ); | |
| 150 } | |
| 151 | |
| 152 return LPC_inverse_pred_gain_QA( Atmp_QA, order ); | |
| 153 } | |
| 154 #endif | |
| OLD | NEW |