| Index: third_party/WebKit/Source/platform/audio/Biquad.cpp
|
| diff --git a/third_party/WebKit/Source/platform/audio/Biquad.cpp b/third_party/WebKit/Source/platform/audio/Biquad.cpp
|
| index 4876bf26283ea3a39e88a37c70c7a3b540196090..51944e38075bc7937dade8c185be5132509e24f5 100644
|
| --- a/third_party/WebKit/Source/platform/audio/Biquad.cpp
|
| +++ b/third_party/WebKit/Source/platform/audio/Biquad.cpp
|
| @@ -585,298 +585,4 @@
|
| }
|
| }
|
|
|
| -static double RepeatedRootResponse(double n,
|
| - double c1,
|
| - double c2,
|
| - double r,
|
| - double log_eps) {
|
| - // The response is h(n) = r^(n-2)*[c1*(n+1)*r^2+c2]. We're looking
|
| - // for n such that |h(n)| = eps. Equivalently, we want a root
|
| - // of the equation log(|h(n)|) - log(eps) = 0 or
|
| - //
|
| - // (n-2)*log(r) + log(|c1*(n+1)*r^2+c2|) - log(eps)
|
| - //
|
| - // This helps with finding a nuemrical solution because this
|
| - // approximately linearizes the response for large n.
|
| -
|
| - return (n - 2) * log(r) + log(fabs(c1 * (n + 1) * r * r + c2)) - log_eps;
|
| -}
|
| -
|
| -// Regula Falsi root finder, Illinois variant
|
| -// (https://en.wikipedia.org/wiki/False_position_method#The_Illinois_algorithm).
|
| -//
|
| -// This finds a root of the repeated root response where the root is
|
| -// assumed to lie between |low| and |high|. The response is given by
|
| -// |c1|, |c2|, and |r| as determined by |RepeatedRootResponse|.
|
| -// |log_eps| is the log the the maximum allowed amplitude in the
|
| -// response.
|
| -static double RootFinder(double low,
|
| - double high,
|
| - double log_eps,
|
| - double c1,
|
| - double c2,
|
| - double r) {
|
| - // Desired accuray of the root (in frames). This doesn't need to be
|
| - // super-accurate, so half frame is good enough, and should be less
|
| - // than 1 because the algorithm may prematurely terminate.
|
| - const double kAccuracyThreshold = 0.5;
|
| - // Max number of iterations to do. If we haven't converged by now,
|
| - // just return whatever we've found.
|
| - const int kMaxIterations = 10;
|
| -
|
| - int side = 0;
|
| - double root = 0;
|
| - double f_low = RepeatedRootResponse(low, c1, c2, r, log_eps);
|
| - double f_high = RepeatedRootResponse(high, c1, c2, r, log_eps);
|
| -
|
| - // The function values must be finite and have opposite signs!
|
| - DCHECK(std::isfinite(f_low));
|
| - DCHECK(std::isfinite(f_high));
|
| - DCHECK_LE(f_low * f_high, 0);
|
| -
|
| - int iteration;
|
| - for (iteration = 0; iteration < kMaxIterations; ++iteration) {
|
| - root = (f_low * high - f_high * low) / (f_low - f_high);
|
| - if (fabs(high - low) < kAccuracyThreshold * fabs(high + low))
|
| - break;
|
| - double fr = RepeatedRootResponse(root, c1, c2, r, log_eps);
|
| -
|
| - DCHECK(std::isfinite(fr));
|
| -
|
| - if (fr * f_high > 0) {
|
| - // fr and f_high have same sign. Copy root to f_high
|
| - high = root;
|
| - f_high = fr;
|
| - side = -1;
|
| - } else if (f_low * fr > 0) {
|
| - // fr and f_low have same sign. Copy root to f_low
|
| - low = root;
|
| - f_low = fr;
|
| - if (side == 1)
|
| - f_high /= 2;
|
| - side = 1;
|
| - } else {
|
| - // f_low * fr looks like zero, so assume we've converged.
|
| - break;
|
| - }
|
| - }
|
| -
|
| - // Want to know if the max number of iterations is ever exceeded so
|
| - // we can understand why that happened.
|
| - DCHECK_LT(iteration, kMaxIterations);
|
| -
|
| - return root;
|
| -}
|
| -
|
| -double Biquad::TailFrame(int coef_index, double max_frame) {
|
| - // The Biquad filter is given by
|
| - //
|
| - // H(z) = (b0 + b1/z + b2/z^2)/(1 + a1/z + a2/z^2).
|
| - //
|
| - // To compute the tail time, compute the impulse response, h(n), of
|
| - // H(z), which we can do analytically. From this impulse response,
|
| - // find the value n0 where |h(n)| <= eps for n >= n0.
|
| - //
|
| - // Assume first that the two poles of H(z) are not repeated, say r1
|
| - // and r2. Then, we can compute a partial fraction expansion of
|
| - // H(z):
|
| - //
|
| - // H(z) = (b0+b1/z+b2/z^2)/[(1-r1/z)*(1-r2/z)]
|
| - // = b0 + C2/(z-r2) - C1/(z-r1)
|
| - //
|
| - // where
|
| - // C2 = (b0*r2^2+b1*r2+b2)/(r2-r1)
|
| - // C1 = (b0*r1^2+b1*r1+b2)/(r2-r1)
|
| - //
|
| - // Expand H(z) then this in powers of 1/z gives:
|
| - //
|
| - // H(z) = b0 -(C2/r2+C1/r1) + sum(C2*r2^(i-1)/z^i + C1*r1^(i-1)/z^i)
|
| - //
|
| - // Thus, for n > 1 (we don't care about small n),
|
| - //
|
| - // h(n) = C2*r2^(n-1) + C1*r1^(n-1)
|
| - //
|
| - // We need to find n0 such that |h(n)| < eps for n > n0.
|
| - //
|
| - // Case 1: r1 and r2 are real and distinct, with |r1|>=|r2|.
|
| - //
|
| - // Then
|
| - //
|
| - // h(n) = C1*r1^(n-1)*(1 + C2/C1*(r2/r1)^(n-1))
|
| - //
|
| - // so
|
| - //
|
| - // |h(n)| = |C1|*|r|^(n-1)*|1+C2/C1*(r2/r1)^(n-1)|
|
| - // <= |C1|*|r|^(n-1)*[1 + |C2/C1|*|r2/r1|^(n-1)]
|
| - // <= |C1|*|r|^(n-1)*[1 + |C2/C1|]
|
| - //
|
| - // by using the triangle inequality and the fact that |r2|<=|r1|.
|
| - // And we want |h(n)|<=eps which is true if
|
| - //
|
| - // |C1|*|r|^(n-1)*[1 + |C2/C1|] <= eps
|
| - //
|
| - // or
|
| - //
|
| - // n >= 1 + log(eps/C)/log(|r1|)
|
| - //
|
| - // where C = |C1|*[1+|C2/C1|] = |C1| + |C2|.
|
| - //
|
| - // Case 2: r1 and r2 are complex
|
| - //
|
| - // Thne we can write r1=r*exp(i*p) and r2=r*exp(-i*p). So,
|
| - //
|
| - // |h(n)| = |C2*r^(n-1)*exp(-i*p*(n-1)) + C1*r^(n-1)*exp(i*p*(n-1))|
|
| - // = |C1|*r^(n-1)*|1 + C2/C1*exp(-i*p*(n-1))/exp(i*n*(n-1))|
|
| - // <= |C1|*r^(n-1)*[1 + |C2/C1|]
|
| - //
|
| - // Again, this is easily solved to give
|
| - //
|
| - // n >= 1 + log(eps/C)/log(r)
|
| - //
|
| - // where C = |C1|*[1+|C2/C1|] = |C1| + |C2|.
|
| - //
|
| - // Case 3: Repeated roots, r1=r2=r.
|
| - //
|
| - // In this case,
|
| - //
|
| - // H(z) = (b0+b1/z+b2/z^2)/[(1-r/z)^2
|
| - //
|
| - // Expanding this in powers of 1/z gives:
|
| - //
|
| - // H(z) = C1*sum((i+1)*r^i/z^i) - C2 * sum(r^(i-2)/z^i) + b2/r^2
|
| - // = b2/r^2 + sum([C1*(i+1)*r^i + C2*r^(i-2)]/z^i)
|
| - // where
|
| - // C1 = (b0*r^2+b1*r+b2)/r^2
|
| - // C2 = b1*r+2*b2
|
| - //
|
| - // Thus, the impulse response is
|
| - //
|
| - // h(n) = C1*(n+1)*r^n + C2*r^(n-2)
|
| - // = r^(n-2)*[C1*(n+1)*r^2+C2]
|
| - //
|
| - // So
|
| - //
|
| - // |h(n)| = |r|^(n-2)*|C1*(n+1)*r^2+C2|
|
| - //
|
| - // To find n such that |h(n)| < eps, we need a numerical method in
|
| - // general, so there's no real reason to simplify this or use other
|
| - // approximations. Just solve |h(n)|=eps directly.
|
| - //
|
| - // Thus, for an set of filter coefficients, we can compute the tail
|
| - // time.
|
| - //
|
| -
|
| - // If the maximum amplitude of the impulse response is less than
|
| - // this, we assume that we've reached the tail of the response.
|
| - // Currently, this means that the impulse is less than 1 bit of a
|
| - // 16-bit PCM value.
|
| - const double kMaxTailAmplitude = 1 / 32768.0;
|
| -
|
| - // Find the roots of 1+a1/z+a2/z^2 = 0. Or equivalently,
|
| - // z^2+a1*z+a2 = 0. From the quadratic formula the roots are
|
| - // (-a1+/-sqrt(a1^2-4*a2))/2.
|
| -
|
| - double a1 = a1_[coef_index];
|
| - double a2 = a2_[coef_index];
|
| - double b0 = b0_[coef_index];
|
| - double b1 = b1_[coef_index];
|
| - double b2 = b2_[coef_index];
|
| -
|
| - double tail_frame = 0;
|
| - double discrim = a1 * a1 - 4 * a2;
|
| -
|
| - if (discrim > 0) {
|
| - // Compute the real roots so that r1 has the largest magnitude.
|
| - double r1;
|
| - double r2;
|
| - if (a1 < 0) {
|
| - r1 = (-a1 + sqrt(discrim)) / 2;
|
| - } else {
|
| - r1 = (-a1 - sqrt(discrim)) / 2;
|
| - }
|
| - r2 = a2 / r1;
|
| -
|
| - double c1 = (b0 * r1 * r1 + b1 * r1 + b2) / (r2 - r1);
|
| - double c2 = (b0 * r2 * r2 + b1 * r2 + b2) / (r2 - r1);
|
| -
|
| - DCHECK(std::isfinite(r1));
|
| - DCHECK(std::isfinite(r2));
|
| - DCHECK(std::isfinite(c1));
|
| - DCHECK(std::isfinite(c2));
|
| -
|
| - // It's possible for kMaxTailAmplitude to be greater than c1 + c2.
|
| - // This may produce a negative tail frame. Just clamp the tail
|
| - // frame to 0.
|
| - tail_frame = clampTo(
|
| - 1 + log(kMaxTailAmplitude / (fabs(c1) + fabs(c2))) / log(r1), 0);
|
| -
|
| - DCHECK(std::isfinite(tail_frame));
|
| - } else if (discrim < 0) {
|
| - // Two complex roots.
|
| - // One root is -a1/2 + i*sqrt(-discrim)/2.
|
| - double x = -a1 / 2;
|
| - double y = sqrt(-discrim) / 2;
|
| - std::complex<double> r1(x, y);
|
| - std::complex<double> r2(x, -y);
|
| - double r = hypot(x, y);
|
| -
|
| - DCHECK(std::isfinite(r));
|
| -
|
| - // It's possible for r to be 1. (LPF with Q very large can cause this.)
|
| - if (r == 1) {
|
| - tail_frame = max_frame;
|
| - } else {
|
| - double c1 = abs((b0 * r1 * r1 + b1 * r1 + b2) / (r2 - r1));
|
| - double c2 = abs((b0 * r2 * r2 + b1 * r2 + b2) / (r2 - r1));
|
| -
|
| - DCHECK(std::isfinite(c1));
|
| - DCHECK(std::isfinite(c2));
|
| -
|
| - tail_frame = 1 + log(kMaxTailAmplitude / (c1 + c2)) / log(r);
|
| - DCHECK(std::isfinite(tail_frame));
|
| - }
|
| - } else {
|
| - // Repeated roots. This should be pretty rare because all the
|
| - // coefficients need to be just the right values to get a
|
| - // discriminant of exactly zero.
|
| - double r = -a1 / 2;
|
| -
|
| - if (r == 0) {
|
| - // Double pole at 0. This just delays the signal by 2 frames,
|
| - // so set the tail frame to 2.
|
| - tail_frame = 2;
|
| - } else {
|
| - double c1 = (b0 * r * r + b1 * r + b2) / (r * r);
|
| - double c2 = b1 * r + 2 * b2;
|
| -
|
| - DCHECK(std::isfinite(c1));
|
| - DCHECK(std::isfinite(c2));
|
| -
|
| - // It can happen that c1=c2=0. This basically means that H(z) =
|
| - // constant, which is the limiting case for several of the
|
| - // biquad filters.
|
| - if (c1 == 0 && c2 == 0) {
|
| - tail_frame = 0;
|
| - } else {
|
| - // The function c*(n+1)*r^n is not monotonic, but it's easy to
|
| - // find the max point since the derivative is
|
| - // c*r^n*(1+(n+1)*log(r)). This has a root at
|
| - // -(1+log(r))/log(r). so we can start our search from that
|
| - // point to max_frames.
|
| -
|
| - double low = clampTo(-(1 + log(r)) / log(r), 1.0,
|
| - static_cast<double>(max_frame - 1));
|
| - double high = max_frame;
|
| -
|
| - DCHECK(std::isfinite(low));
|
| - DCHECK(std::isfinite(high));
|
| -
|
| - tail_frame = RootFinder(low, high, log(kMaxTailAmplitude), c1, c2, r);
|
| - }
|
| - }
|
| - }
|
| -
|
| - return tail_frame;
|
| -}
|
| -
|
| } // namespace blink
|
|
|