Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(137)

Unified Diff: third_party/WebKit/Source/platform/audio/Biquad.cpp

Issue 2919503002: Revert of Compute tail time from Biquad coefficients (Closed)
Patch Set: Created 3 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « third_party/WebKit/Source/platform/audio/Biquad.h ('k') | no next file » | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: third_party/WebKit/Source/platform/audio/Biquad.cpp
diff --git a/third_party/WebKit/Source/platform/audio/Biquad.cpp b/third_party/WebKit/Source/platform/audio/Biquad.cpp
index 4876bf26283ea3a39e88a37c70c7a3b540196090..51944e38075bc7937dade8c185be5132509e24f5 100644
--- a/third_party/WebKit/Source/platform/audio/Biquad.cpp
+++ b/third_party/WebKit/Source/platform/audio/Biquad.cpp
@@ -585,298 +585,4 @@
}
}
-static double RepeatedRootResponse(double n,
- double c1,
- double c2,
- double r,
- double log_eps) {
- // The response is h(n) = r^(n-2)*[c1*(n+1)*r^2+c2]. We're looking
- // for n such that |h(n)| = eps. Equivalently, we want a root
- // of the equation log(|h(n)|) - log(eps) = 0 or
- //
- // (n-2)*log(r) + log(|c1*(n+1)*r^2+c2|) - log(eps)
- //
- // This helps with finding a nuemrical solution because this
- // approximately linearizes the response for large n.
-
- return (n - 2) * log(r) + log(fabs(c1 * (n + 1) * r * r + c2)) - log_eps;
-}
-
-// Regula Falsi root finder, Illinois variant
-// (https://en.wikipedia.org/wiki/False_position_method#The_Illinois_algorithm).
-//
-// This finds a root of the repeated root response where the root is
-// assumed to lie between |low| and |high|. The response is given by
-// |c1|, |c2|, and |r| as determined by |RepeatedRootResponse|.
-// |log_eps| is the log the the maximum allowed amplitude in the
-// response.
-static double RootFinder(double low,
- double high,
- double log_eps,
- double c1,
- double c2,
- double r) {
- // Desired accuray of the root (in frames). This doesn't need to be
- // super-accurate, so half frame is good enough, and should be less
- // than 1 because the algorithm may prematurely terminate.
- const double kAccuracyThreshold = 0.5;
- // Max number of iterations to do. If we haven't converged by now,
- // just return whatever we've found.
- const int kMaxIterations = 10;
-
- int side = 0;
- double root = 0;
- double f_low = RepeatedRootResponse(low, c1, c2, r, log_eps);
- double f_high = RepeatedRootResponse(high, c1, c2, r, log_eps);
-
- // The function values must be finite and have opposite signs!
- DCHECK(std::isfinite(f_low));
- DCHECK(std::isfinite(f_high));
- DCHECK_LE(f_low * f_high, 0);
-
- int iteration;
- for (iteration = 0; iteration < kMaxIterations; ++iteration) {
- root = (f_low * high - f_high * low) / (f_low - f_high);
- if (fabs(high - low) < kAccuracyThreshold * fabs(high + low))
- break;
- double fr = RepeatedRootResponse(root, c1, c2, r, log_eps);
-
- DCHECK(std::isfinite(fr));
-
- if (fr * f_high > 0) {
- // fr and f_high have same sign. Copy root to f_high
- high = root;
- f_high = fr;
- side = -1;
- } else if (f_low * fr > 0) {
- // fr and f_low have same sign. Copy root to f_low
- low = root;
- f_low = fr;
- if (side == 1)
- f_high /= 2;
- side = 1;
- } else {
- // f_low * fr looks like zero, so assume we've converged.
- break;
- }
- }
-
- // Want to know if the max number of iterations is ever exceeded so
- // we can understand why that happened.
- DCHECK_LT(iteration, kMaxIterations);
-
- return root;
-}
-
-double Biquad::TailFrame(int coef_index, double max_frame) {
- // The Biquad filter is given by
- //
- // H(z) = (b0 + b1/z + b2/z^2)/(1 + a1/z + a2/z^2).
- //
- // To compute the tail time, compute the impulse response, h(n), of
- // H(z), which we can do analytically. From this impulse response,
- // find the value n0 where |h(n)| <= eps for n >= n0.
- //
- // Assume first that the two poles of H(z) are not repeated, say r1
- // and r2. Then, we can compute a partial fraction expansion of
- // H(z):
- //
- // H(z) = (b0+b1/z+b2/z^2)/[(1-r1/z)*(1-r2/z)]
- // = b0 + C2/(z-r2) - C1/(z-r1)
- //
- // where
- // C2 = (b0*r2^2+b1*r2+b2)/(r2-r1)
- // C1 = (b0*r1^2+b1*r1+b2)/(r2-r1)
- //
- // Expand H(z) then this in powers of 1/z gives:
- //
- // H(z) = b0 -(C2/r2+C1/r1) + sum(C2*r2^(i-1)/z^i + C1*r1^(i-1)/z^i)
- //
- // Thus, for n > 1 (we don't care about small n),
- //
- // h(n) = C2*r2^(n-1) + C1*r1^(n-1)
- //
- // We need to find n0 such that |h(n)| < eps for n > n0.
- //
- // Case 1: r1 and r2 are real and distinct, with |r1|>=|r2|.
- //
- // Then
- //
- // h(n) = C1*r1^(n-1)*(1 + C2/C1*(r2/r1)^(n-1))
- //
- // so
- //
- // |h(n)| = |C1|*|r|^(n-1)*|1+C2/C1*(r2/r1)^(n-1)|
- // <= |C1|*|r|^(n-1)*[1 + |C2/C1|*|r2/r1|^(n-1)]
- // <= |C1|*|r|^(n-1)*[1 + |C2/C1|]
- //
- // by using the triangle inequality and the fact that |r2|<=|r1|.
- // And we want |h(n)|<=eps which is true if
- //
- // |C1|*|r|^(n-1)*[1 + |C2/C1|] <= eps
- //
- // or
- //
- // n >= 1 + log(eps/C)/log(|r1|)
- //
- // where C = |C1|*[1+|C2/C1|] = |C1| + |C2|.
- //
- // Case 2: r1 and r2 are complex
- //
- // Thne we can write r1=r*exp(i*p) and r2=r*exp(-i*p). So,
- //
- // |h(n)| = |C2*r^(n-1)*exp(-i*p*(n-1)) + C1*r^(n-1)*exp(i*p*(n-1))|
- // = |C1|*r^(n-1)*|1 + C2/C1*exp(-i*p*(n-1))/exp(i*n*(n-1))|
- // <= |C1|*r^(n-1)*[1 + |C2/C1|]
- //
- // Again, this is easily solved to give
- //
- // n >= 1 + log(eps/C)/log(r)
- //
- // where C = |C1|*[1+|C2/C1|] = |C1| + |C2|.
- //
- // Case 3: Repeated roots, r1=r2=r.
- //
- // In this case,
- //
- // H(z) = (b0+b1/z+b2/z^2)/[(1-r/z)^2
- //
- // Expanding this in powers of 1/z gives:
- //
- // H(z) = C1*sum((i+1)*r^i/z^i) - C2 * sum(r^(i-2)/z^i) + b2/r^2
- // = b2/r^2 + sum([C1*(i+1)*r^i + C2*r^(i-2)]/z^i)
- // where
- // C1 = (b0*r^2+b1*r+b2)/r^2
- // C2 = b1*r+2*b2
- //
- // Thus, the impulse response is
- //
- // h(n) = C1*(n+1)*r^n + C2*r^(n-2)
- // = r^(n-2)*[C1*(n+1)*r^2+C2]
- //
- // So
- //
- // |h(n)| = |r|^(n-2)*|C1*(n+1)*r^2+C2|
- //
- // To find n such that |h(n)| < eps, we need a numerical method in
- // general, so there's no real reason to simplify this or use other
- // approximations. Just solve |h(n)|=eps directly.
- //
- // Thus, for an set of filter coefficients, we can compute the tail
- // time.
- //
-
- // If the maximum amplitude of the impulse response is less than
- // this, we assume that we've reached the tail of the response.
- // Currently, this means that the impulse is less than 1 bit of a
- // 16-bit PCM value.
- const double kMaxTailAmplitude = 1 / 32768.0;
-
- // Find the roots of 1+a1/z+a2/z^2 = 0. Or equivalently,
- // z^2+a1*z+a2 = 0. From the quadratic formula the roots are
- // (-a1+/-sqrt(a1^2-4*a2))/2.
-
- double a1 = a1_[coef_index];
- double a2 = a2_[coef_index];
- double b0 = b0_[coef_index];
- double b1 = b1_[coef_index];
- double b2 = b2_[coef_index];
-
- double tail_frame = 0;
- double discrim = a1 * a1 - 4 * a2;
-
- if (discrim > 0) {
- // Compute the real roots so that r1 has the largest magnitude.
- double r1;
- double r2;
- if (a1 < 0) {
- r1 = (-a1 + sqrt(discrim)) / 2;
- } else {
- r1 = (-a1 - sqrt(discrim)) / 2;
- }
- r2 = a2 / r1;
-
- double c1 = (b0 * r1 * r1 + b1 * r1 + b2) / (r2 - r1);
- double c2 = (b0 * r2 * r2 + b1 * r2 + b2) / (r2 - r1);
-
- DCHECK(std::isfinite(r1));
- DCHECK(std::isfinite(r2));
- DCHECK(std::isfinite(c1));
- DCHECK(std::isfinite(c2));
-
- // It's possible for kMaxTailAmplitude to be greater than c1 + c2.
- // This may produce a negative tail frame. Just clamp the tail
- // frame to 0.
- tail_frame = clampTo(
- 1 + log(kMaxTailAmplitude / (fabs(c1) + fabs(c2))) / log(r1), 0);
-
- DCHECK(std::isfinite(tail_frame));
- } else if (discrim < 0) {
- // Two complex roots.
- // One root is -a1/2 + i*sqrt(-discrim)/2.
- double x = -a1 / 2;
- double y = sqrt(-discrim) / 2;
- std::complex<double> r1(x, y);
- std::complex<double> r2(x, -y);
- double r = hypot(x, y);
-
- DCHECK(std::isfinite(r));
-
- // It's possible for r to be 1. (LPF with Q very large can cause this.)
- if (r == 1) {
- tail_frame = max_frame;
- } else {
- double c1 = abs((b0 * r1 * r1 + b1 * r1 + b2) / (r2 - r1));
- double c2 = abs((b0 * r2 * r2 + b1 * r2 + b2) / (r2 - r1));
-
- DCHECK(std::isfinite(c1));
- DCHECK(std::isfinite(c2));
-
- tail_frame = 1 + log(kMaxTailAmplitude / (c1 + c2)) / log(r);
- DCHECK(std::isfinite(tail_frame));
- }
- } else {
- // Repeated roots. This should be pretty rare because all the
- // coefficients need to be just the right values to get a
- // discriminant of exactly zero.
- double r = -a1 / 2;
-
- if (r == 0) {
- // Double pole at 0. This just delays the signal by 2 frames,
- // so set the tail frame to 2.
- tail_frame = 2;
- } else {
- double c1 = (b0 * r * r + b1 * r + b2) / (r * r);
- double c2 = b1 * r + 2 * b2;
-
- DCHECK(std::isfinite(c1));
- DCHECK(std::isfinite(c2));
-
- // It can happen that c1=c2=0. This basically means that H(z) =
- // constant, which is the limiting case for several of the
- // biquad filters.
- if (c1 == 0 && c2 == 0) {
- tail_frame = 0;
- } else {
- // The function c*(n+1)*r^n is not monotonic, but it's easy to
- // find the max point since the derivative is
- // c*r^n*(1+(n+1)*log(r)). This has a root at
- // -(1+log(r))/log(r). so we can start our search from that
- // point to max_frames.
-
- double low = clampTo(-(1 + log(r)) / log(r), 1.0,
- static_cast<double>(max_frame - 1));
- double high = max_frame;
-
- DCHECK(std::isfinite(low));
- DCHECK(std::isfinite(high));
-
- tail_frame = RootFinder(low, high, log(kMaxTailAmplitude), c1, c2, r);
- }
- }
- }
-
- return tail_frame;
-}
-
} // namespace blink
« no previous file with comments | « third_party/WebKit/Source/platform/audio/Biquad.h ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698