Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(164)

Side by Side Diff: third_party/WebKit/Source/platform/audio/Biquad.cpp

Issue 2919503002: Revert of Compute tail time from Biquad coefficients (Closed)
Patch Set: Created 3 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « third_party/WebKit/Source/platform/audio/Biquad.h ('k') | no next file » | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 * Copyright (C) 2010 Google Inc. All rights reserved. 2 * Copyright (C) 2010 Google Inc. All rights reserved.
3 * 3 *
4 * Redistribution and use in source and binary forms, with or without 4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions 5 * modification, are permitted provided that the following conditions
6 * are met: 6 * are met:
7 * 7 *
8 * 1. Redistributions of source code must retain the above copyright 8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer. 9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright 10 * 2. Redistributions in binary form must reproduce the above copyright
(...skipping 567 matching lines...) Expand 10 before | Expand all | Expand 10 after
578 std::complex<double> numerator = b0 + (b1 + b2 * z) * z; 578 std::complex<double> numerator = b0 + (b1 + b2 * z) * z;
579 std::complex<double> denominator = 579 std::complex<double> denominator =
580 std::complex<double>(1, 0) + (a1 + a2 * z) * z; 580 std::complex<double>(1, 0) + (a1 + a2 * z) * z;
581 std::complex<double> response = numerator / denominator; 581 std::complex<double> response = numerator / denominator;
582 mag_response[k] = static_cast<float>(abs(response)); 582 mag_response[k] = static_cast<float>(abs(response));
583 phase_response[k] = 583 phase_response[k] =
584 static_cast<float>(atan2(imag(response), real(response))); 584 static_cast<float>(atan2(imag(response), real(response)));
585 } 585 }
586 } 586 }
587 587
588 static double RepeatedRootResponse(double n,
589 double c1,
590 double c2,
591 double r,
592 double log_eps) {
593 // The response is h(n) = r^(n-2)*[c1*(n+1)*r^2+c2]. We're looking
594 // for n such that |h(n)| = eps. Equivalently, we want a root
595 // of the equation log(|h(n)|) - log(eps) = 0 or
596 //
597 // (n-2)*log(r) + log(|c1*(n+1)*r^2+c2|) - log(eps)
598 //
599 // This helps with finding a nuemrical solution because this
600 // approximately linearizes the response for large n.
601
602 return (n - 2) * log(r) + log(fabs(c1 * (n + 1) * r * r + c2)) - log_eps;
603 }
604
605 // Regula Falsi root finder, Illinois variant
606 // (https://en.wikipedia.org/wiki/False_position_method#The_Illinois_algorithm).
607 //
608 // This finds a root of the repeated root response where the root is
609 // assumed to lie between |low| and |high|. The response is given by
610 // |c1|, |c2|, and |r| as determined by |RepeatedRootResponse|.
611 // |log_eps| is the log the the maximum allowed amplitude in the
612 // response.
613 static double RootFinder(double low,
614 double high,
615 double log_eps,
616 double c1,
617 double c2,
618 double r) {
619 // Desired accuray of the root (in frames). This doesn't need to be
620 // super-accurate, so half frame is good enough, and should be less
621 // than 1 because the algorithm may prematurely terminate.
622 const double kAccuracyThreshold = 0.5;
623 // Max number of iterations to do. If we haven't converged by now,
624 // just return whatever we've found.
625 const int kMaxIterations = 10;
626
627 int side = 0;
628 double root = 0;
629 double f_low = RepeatedRootResponse(low, c1, c2, r, log_eps);
630 double f_high = RepeatedRootResponse(high, c1, c2, r, log_eps);
631
632 // The function values must be finite and have opposite signs!
633 DCHECK(std::isfinite(f_low));
634 DCHECK(std::isfinite(f_high));
635 DCHECK_LE(f_low * f_high, 0);
636
637 int iteration;
638 for (iteration = 0; iteration < kMaxIterations; ++iteration) {
639 root = (f_low * high - f_high * low) / (f_low - f_high);
640 if (fabs(high - low) < kAccuracyThreshold * fabs(high + low))
641 break;
642 double fr = RepeatedRootResponse(root, c1, c2, r, log_eps);
643
644 DCHECK(std::isfinite(fr));
645
646 if (fr * f_high > 0) {
647 // fr and f_high have same sign. Copy root to f_high
648 high = root;
649 f_high = fr;
650 side = -1;
651 } else if (f_low * fr > 0) {
652 // fr and f_low have same sign. Copy root to f_low
653 low = root;
654 f_low = fr;
655 if (side == 1)
656 f_high /= 2;
657 side = 1;
658 } else {
659 // f_low * fr looks like zero, so assume we've converged.
660 break;
661 }
662 }
663
664 // Want to know if the max number of iterations is ever exceeded so
665 // we can understand why that happened.
666 DCHECK_LT(iteration, kMaxIterations);
667
668 return root;
669 }
670
671 double Biquad::TailFrame(int coef_index, double max_frame) {
672 // The Biquad filter is given by
673 //
674 // H(z) = (b0 + b1/z + b2/z^2)/(1 + a1/z + a2/z^2).
675 //
676 // To compute the tail time, compute the impulse response, h(n), of
677 // H(z), which we can do analytically. From this impulse response,
678 // find the value n0 where |h(n)| <= eps for n >= n0.
679 //
680 // Assume first that the two poles of H(z) are not repeated, say r1
681 // and r2. Then, we can compute a partial fraction expansion of
682 // H(z):
683 //
684 // H(z) = (b0+b1/z+b2/z^2)/[(1-r1/z)*(1-r2/z)]
685 // = b0 + C2/(z-r2) - C1/(z-r1)
686 //
687 // where
688 // C2 = (b0*r2^2+b1*r2+b2)/(r2-r1)
689 // C1 = (b0*r1^2+b1*r1+b2)/(r2-r1)
690 //
691 // Expand H(z) then this in powers of 1/z gives:
692 //
693 // H(z) = b0 -(C2/r2+C1/r1) + sum(C2*r2^(i-1)/z^i + C1*r1^(i-1)/z^i)
694 //
695 // Thus, for n > 1 (we don't care about small n),
696 //
697 // h(n) = C2*r2^(n-1) + C1*r1^(n-1)
698 //
699 // We need to find n0 such that |h(n)| < eps for n > n0.
700 //
701 // Case 1: r1 and r2 are real and distinct, with |r1|>=|r2|.
702 //
703 // Then
704 //
705 // h(n) = C1*r1^(n-1)*(1 + C2/C1*(r2/r1)^(n-1))
706 //
707 // so
708 //
709 // |h(n)| = |C1|*|r|^(n-1)*|1+C2/C1*(r2/r1)^(n-1)|
710 // <= |C1|*|r|^(n-1)*[1 + |C2/C1|*|r2/r1|^(n-1)]
711 // <= |C1|*|r|^(n-1)*[1 + |C2/C1|]
712 //
713 // by using the triangle inequality and the fact that |r2|<=|r1|.
714 // And we want |h(n)|<=eps which is true if
715 //
716 // |C1|*|r|^(n-1)*[1 + |C2/C1|] <= eps
717 //
718 // or
719 //
720 // n >= 1 + log(eps/C)/log(|r1|)
721 //
722 // where C = |C1|*[1+|C2/C1|] = |C1| + |C2|.
723 //
724 // Case 2: r1 and r2 are complex
725 //
726 // Thne we can write r1=r*exp(i*p) and r2=r*exp(-i*p). So,
727 //
728 // |h(n)| = |C2*r^(n-1)*exp(-i*p*(n-1)) + C1*r^(n-1)*exp(i*p*(n-1))|
729 // = |C1|*r^(n-1)*|1 + C2/C1*exp(-i*p*(n-1))/exp(i*n*(n-1))|
730 // <= |C1|*r^(n-1)*[1 + |C2/C1|]
731 //
732 // Again, this is easily solved to give
733 //
734 // n >= 1 + log(eps/C)/log(r)
735 //
736 // where C = |C1|*[1+|C2/C1|] = |C1| + |C2|.
737 //
738 // Case 3: Repeated roots, r1=r2=r.
739 //
740 // In this case,
741 //
742 // H(z) = (b0+b1/z+b2/z^2)/[(1-r/z)^2
743 //
744 // Expanding this in powers of 1/z gives:
745 //
746 // H(z) = C1*sum((i+1)*r^i/z^i) - C2 * sum(r^(i-2)/z^i) + b2/r^2
747 // = b2/r^2 + sum([C1*(i+1)*r^i + C2*r^(i-2)]/z^i)
748 // where
749 // C1 = (b0*r^2+b1*r+b2)/r^2
750 // C2 = b1*r+2*b2
751 //
752 // Thus, the impulse response is
753 //
754 // h(n) = C1*(n+1)*r^n + C2*r^(n-2)
755 // = r^(n-2)*[C1*(n+1)*r^2+C2]
756 //
757 // So
758 //
759 // |h(n)| = |r|^(n-2)*|C1*(n+1)*r^2+C2|
760 //
761 // To find n such that |h(n)| < eps, we need a numerical method in
762 // general, so there's no real reason to simplify this or use other
763 // approximations. Just solve |h(n)|=eps directly.
764 //
765 // Thus, for an set of filter coefficients, we can compute the tail
766 // time.
767 //
768
769 // If the maximum amplitude of the impulse response is less than
770 // this, we assume that we've reached the tail of the response.
771 // Currently, this means that the impulse is less than 1 bit of a
772 // 16-bit PCM value.
773 const double kMaxTailAmplitude = 1 / 32768.0;
774
775 // Find the roots of 1+a1/z+a2/z^2 = 0. Or equivalently,
776 // z^2+a1*z+a2 = 0. From the quadratic formula the roots are
777 // (-a1+/-sqrt(a1^2-4*a2))/2.
778
779 double a1 = a1_[coef_index];
780 double a2 = a2_[coef_index];
781 double b0 = b0_[coef_index];
782 double b1 = b1_[coef_index];
783 double b2 = b2_[coef_index];
784
785 double tail_frame = 0;
786 double discrim = a1 * a1 - 4 * a2;
787
788 if (discrim > 0) {
789 // Compute the real roots so that r1 has the largest magnitude.
790 double r1;
791 double r2;
792 if (a1 < 0) {
793 r1 = (-a1 + sqrt(discrim)) / 2;
794 } else {
795 r1 = (-a1 - sqrt(discrim)) / 2;
796 }
797 r2 = a2 / r1;
798
799 double c1 = (b0 * r1 * r1 + b1 * r1 + b2) / (r2 - r1);
800 double c2 = (b0 * r2 * r2 + b1 * r2 + b2) / (r2 - r1);
801
802 DCHECK(std::isfinite(r1));
803 DCHECK(std::isfinite(r2));
804 DCHECK(std::isfinite(c1));
805 DCHECK(std::isfinite(c2));
806
807 // It's possible for kMaxTailAmplitude to be greater than c1 + c2.
808 // This may produce a negative tail frame. Just clamp the tail
809 // frame to 0.
810 tail_frame = clampTo(
811 1 + log(kMaxTailAmplitude / (fabs(c1) + fabs(c2))) / log(r1), 0);
812
813 DCHECK(std::isfinite(tail_frame));
814 } else if (discrim < 0) {
815 // Two complex roots.
816 // One root is -a1/2 + i*sqrt(-discrim)/2.
817 double x = -a1 / 2;
818 double y = sqrt(-discrim) / 2;
819 std::complex<double> r1(x, y);
820 std::complex<double> r2(x, -y);
821 double r = hypot(x, y);
822
823 DCHECK(std::isfinite(r));
824
825 // It's possible for r to be 1. (LPF with Q very large can cause this.)
826 if (r == 1) {
827 tail_frame = max_frame;
828 } else {
829 double c1 = abs((b0 * r1 * r1 + b1 * r1 + b2) / (r2 - r1));
830 double c2 = abs((b0 * r2 * r2 + b1 * r2 + b2) / (r2 - r1));
831
832 DCHECK(std::isfinite(c1));
833 DCHECK(std::isfinite(c2));
834
835 tail_frame = 1 + log(kMaxTailAmplitude / (c1 + c2)) / log(r);
836 DCHECK(std::isfinite(tail_frame));
837 }
838 } else {
839 // Repeated roots. This should be pretty rare because all the
840 // coefficients need to be just the right values to get a
841 // discriminant of exactly zero.
842 double r = -a1 / 2;
843
844 if (r == 0) {
845 // Double pole at 0. This just delays the signal by 2 frames,
846 // so set the tail frame to 2.
847 tail_frame = 2;
848 } else {
849 double c1 = (b0 * r * r + b1 * r + b2) / (r * r);
850 double c2 = b1 * r + 2 * b2;
851
852 DCHECK(std::isfinite(c1));
853 DCHECK(std::isfinite(c2));
854
855 // It can happen that c1=c2=0. This basically means that H(z) =
856 // constant, which is the limiting case for several of the
857 // biquad filters.
858 if (c1 == 0 && c2 == 0) {
859 tail_frame = 0;
860 } else {
861 // The function c*(n+1)*r^n is not monotonic, but it's easy to
862 // find the max point since the derivative is
863 // c*r^n*(1+(n+1)*log(r)). This has a root at
864 // -(1+log(r))/log(r). so we can start our search from that
865 // point to max_frames.
866
867 double low = clampTo(-(1 + log(r)) / log(r), 1.0,
868 static_cast<double>(max_frame - 1));
869 double high = max_frame;
870
871 DCHECK(std::isfinite(low));
872 DCHECK(std::isfinite(high));
873
874 tail_frame = RootFinder(low, high, log(kMaxTailAmplitude), c1, c2, r);
875 }
876 }
877 }
878
879 return tail_frame;
880 }
881
882 } // namespace blink 588 } // namespace blink
OLDNEW
« no previous file with comments | « third_party/WebKit/Source/platform/audio/Biquad.h ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698