Index: xz/src/liblzma/lz/lz_encoder.c |
=================================================================== |
--- xz/src/liblzma/lz/lz_encoder.c (revision 0) |
+++ xz/src/liblzma/lz/lz_encoder.c (revision 0) |
@@ -0,0 +1,582 @@ |
+/////////////////////////////////////////////////////////////////////////////// |
+// |
+/// \file lz_encoder.c |
+/// \brief LZ in window |
+/// |
+// Authors: Igor Pavlov |
+// Lasse Collin |
+// |
+// This file has been put into the public domain. |
+// You can do whatever you want with this file. |
+// |
+/////////////////////////////////////////////////////////////////////////////// |
+ |
+#include "lz_encoder.h" |
+#include "lz_encoder_hash.h" |
+ |
+// See lz_encoder_hash.h. This is a bit hackish but avoids making |
+// endianness a conditional in makefiles. |
+#if defined(WORDS_BIGENDIAN) && !defined(HAVE_SMALL) |
+# include "lz_encoder_hash_table.h" |
+#endif |
+ |
+ |
+struct lzma_coder_s { |
+ /// LZ-based encoder e.g. LZMA |
+ lzma_lz_encoder lz; |
+ |
+ /// History buffer and match finder |
+ lzma_mf mf; |
+ |
+ /// Next coder in the chain |
+ lzma_next_coder next; |
+}; |
+ |
+ |
+/// \brief Moves the data in the input window to free space for new data |
+/// |
+/// mf->buffer is a sliding input window, which keeps mf->keep_size_before |
+/// bytes of input history available all the time. Now and then we need to |
+/// "slide" the buffer to make space for the new data to the end of the |
+/// buffer. At the same time, data older than keep_size_before is dropped. |
+/// |
+static void |
+move_window(lzma_mf *mf) |
+{ |
+ // Align the move to a multiple of 16 bytes. Some LZ-based encoders |
+ // like LZMA use the lowest bits of mf->read_pos to know the |
+ // alignment of the uncompressed data. We also get better speed |
+ // for memmove() with aligned buffers. |
+ assert(mf->read_pos > mf->keep_size_before); |
+ const uint32_t move_offset |
+ = (mf->read_pos - mf->keep_size_before) & ~UINT32_C(15); |
+ |
+ assert(mf->write_pos > move_offset); |
+ const size_t move_size = mf->write_pos - move_offset; |
+ |
+ assert(move_offset + move_size <= mf->size); |
+ |
+ memmove(mf->buffer, mf->buffer + move_offset, move_size); |
+ |
+ mf->offset += move_offset; |
+ mf->read_pos -= move_offset; |
+ mf->read_limit -= move_offset; |
+ mf->write_pos -= move_offset; |
+ |
+ return; |
+} |
+ |
+ |
+/// \brief Tries to fill the input window (mf->buffer) |
+/// |
+/// If we are the last encoder in the chain, our input data is in in[]. |
+/// Otherwise we call the next filter in the chain to process in[] and |
+/// write its output to mf->buffer. |
+/// |
+/// This function must not be called once it has returned LZMA_STREAM_END. |
+/// |
+static lzma_ret |
+fill_window(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *in, |
+ size_t *in_pos, size_t in_size, lzma_action action) |
+{ |
+ assert(coder->mf.read_pos <= coder->mf.write_pos); |
+ |
+ // Move the sliding window if needed. |
+ if (coder->mf.read_pos >= coder->mf.size - coder->mf.keep_size_after) |
+ move_window(&coder->mf); |
+ |
+ // Maybe this is ugly, but lzma_mf uses uint32_t for most things |
+ // (which I find cleanest), but we need size_t here when filling |
+ // the history window. |
+ size_t write_pos = coder->mf.write_pos; |
+ lzma_ret ret; |
+ if (coder->next.code == NULL) { |
+ // Not using a filter, simply memcpy() as much as possible. |
+ lzma_bufcpy(in, in_pos, in_size, coder->mf.buffer, |
+ &write_pos, coder->mf.size); |
+ |
+ ret = action != LZMA_RUN && *in_pos == in_size |
+ ? LZMA_STREAM_END : LZMA_OK; |
+ |
+ } else { |
+ ret = coder->next.code(coder->next.coder, allocator, |
+ in, in_pos, in_size, |
+ coder->mf.buffer, &write_pos, |
+ coder->mf.size, action); |
+ } |
+ |
+ coder->mf.write_pos = write_pos; |
+ |
+ // If end of stream has been reached or flushing completed, we allow |
+ // the encoder to process all the input (that is, read_pos is allowed |
+ // to reach write_pos). Otherwise we keep keep_size_after bytes |
+ // available as prebuffer. |
+ if (ret == LZMA_STREAM_END) { |
+ assert(*in_pos == in_size); |
+ ret = LZMA_OK; |
+ coder->mf.action = action; |
+ coder->mf.read_limit = coder->mf.write_pos; |
+ |
+ } else if (coder->mf.write_pos > coder->mf.keep_size_after) { |
+ // This needs to be done conditionally, because if we got |
+ // only little new input, there may be too little input |
+ // to do any encoding yet. |
+ coder->mf.read_limit = coder->mf.write_pos |
+ - coder->mf.keep_size_after; |
+ } |
+ |
+ // Restart the match finder after finished LZMA_SYNC_FLUSH. |
+ if (coder->mf.pending > 0 |
+ && coder->mf.read_pos < coder->mf.read_limit) { |
+ // Match finder may update coder->pending and expects it to |
+ // start from zero, so use a temporary variable. |
+ const size_t pending = coder->mf.pending; |
+ coder->mf.pending = 0; |
+ |
+ // Rewind read_pos so that the match finder can hash |
+ // the pending bytes. |
+ assert(coder->mf.read_pos >= pending); |
+ coder->mf.read_pos -= pending; |
+ |
+ // Call the skip function directly instead of using |
+ // mf_skip(), since we don't want to touch mf->read_ahead. |
+ coder->mf.skip(&coder->mf, pending); |
+ } |
+ |
+ return ret; |
+} |
+ |
+ |
+static lzma_ret |
+lz_encode(lzma_coder *coder, lzma_allocator *allocator, |
+ const uint8_t *restrict in, size_t *restrict in_pos, |
+ size_t in_size, |
+ uint8_t *restrict out, size_t *restrict out_pos, |
+ size_t out_size, lzma_action action) |
+{ |
+ while (*out_pos < out_size |
+ && (*in_pos < in_size || action != LZMA_RUN)) { |
+ // Read more data to coder->mf.buffer if needed. |
+ if (coder->mf.action == LZMA_RUN && coder->mf.read_pos |
+ >= coder->mf.read_limit) |
+ return_if_error(fill_window(coder, allocator, |
+ in, in_pos, in_size, action)); |
+ |
+ // Encode |
+ const lzma_ret ret = coder->lz.code(coder->lz.coder, |
+ &coder->mf, out, out_pos, out_size); |
+ if (ret != LZMA_OK) { |
+ // Setting this to LZMA_RUN for cases when we are |
+ // flushing. It doesn't matter when finishing or if |
+ // an error occurred. |
+ coder->mf.action = LZMA_RUN; |
+ return ret; |
+ } |
+ } |
+ |
+ return LZMA_OK; |
+} |
+ |
+ |
+static bool |
+lz_encoder_prepare(lzma_mf *mf, lzma_allocator *allocator, |
+ const lzma_lz_options *lz_options) |
+{ |
+ // For now, the dictionary size is limited to 1.5 GiB. This may grow |
+ // in the future if needed, but it needs a little more work than just |
+ // changing this check. |
+ if (lz_options->dict_size < LZMA_DICT_SIZE_MIN |
+ || lz_options->dict_size |
+ > (UINT32_C(1) << 30) + (UINT32_C(1) << 29) |
+ || lz_options->nice_len > lz_options->match_len_max) |
+ return true; |
+ |
+ mf->keep_size_before = lz_options->before_size + lz_options->dict_size; |
+ |
+ mf->keep_size_after = lz_options->after_size |
+ + lz_options->match_len_max; |
+ |
+ // To avoid constant memmove()s, allocate some extra space. Since |
+ // memmove()s become more expensive when the size of the buffer |
+ // increases, we reserve more space when a large dictionary is |
+ // used to make the memmove() calls rarer. |
+ // |
+ // This works with dictionaries up to about 3 GiB. If bigger |
+ // dictionary is wanted, some extra work is needed: |
+ // - Several variables in lzma_mf have to be changed from uint32_t |
+ // to size_t. |
+ // - Memory usage calculation needs something too, e.g. use uint64_t |
+ // for mf->size. |
+ uint32_t reserve = lz_options->dict_size / 2; |
+ if (reserve > (UINT32_C(1) << 30)) |
+ reserve /= 2; |
+ |
+ reserve += (lz_options->before_size + lz_options->match_len_max |
+ + lz_options->after_size) / 2 + (UINT32_C(1) << 19); |
+ |
+ const uint32_t old_size = mf->size; |
+ mf->size = mf->keep_size_before + reserve + mf->keep_size_after; |
+ |
+ // Deallocate the old history buffer if it exists but has different |
+ // size than what is needed now. |
+ if (mf->buffer != NULL && old_size != mf->size) { |
+ lzma_free(mf->buffer, allocator); |
+ mf->buffer = NULL; |
+ } |
+ |
+ // Match finder options |
+ mf->match_len_max = lz_options->match_len_max; |
+ mf->nice_len = lz_options->nice_len; |
+ |
+ // cyclic_size has to stay smaller than 2 Gi. Note that this doesn't |
+ // mean limiting dictionary size to less than 2 GiB. With a match |
+ // finder that uses multibyte resolution (hashes start at e.g. every |
+ // fourth byte), cyclic_size would stay below 2 Gi even when |
+ // dictionary size is greater than 2 GiB. |
+ // |
+ // It would be possible to allow cyclic_size >= 2 Gi, but then we |
+ // would need to be careful to use 64-bit types in various places |
+ // (size_t could do since we would need bigger than 32-bit address |
+ // space anyway). It would also require either zeroing a multigigabyte |
+ // buffer at initialization (waste of time and RAM) or allow |
+ // normalization in lz_encoder_mf.c to access uninitialized |
+ // memory to keep the code simpler. The current way is simple and |
+ // still allows pretty big dictionaries, so I don't expect these |
+ // limits to change. |
+ mf->cyclic_size = lz_options->dict_size + 1; |
+ |
+ // Validate the match finder ID and setup the function pointers. |
+ switch (lz_options->match_finder) { |
+#ifdef HAVE_MF_HC3 |
+ case LZMA_MF_HC3: |
+ mf->find = &lzma_mf_hc3_find; |
+ mf->skip = &lzma_mf_hc3_skip; |
+ break; |
+#endif |
+#ifdef HAVE_MF_HC4 |
+ case LZMA_MF_HC4: |
+ mf->find = &lzma_mf_hc4_find; |
+ mf->skip = &lzma_mf_hc4_skip; |
+ break; |
+#endif |
+#ifdef HAVE_MF_BT2 |
+ case LZMA_MF_BT2: |
+ mf->find = &lzma_mf_bt2_find; |
+ mf->skip = &lzma_mf_bt2_skip; |
+ break; |
+#endif |
+#ifdef HAVE_MF_BT3 |
+ case LZMA_MF_BT3: |
+ mf->find = &lzma_mf_bt3_find; |
+ mf->skip = &lzma_mf_bt3_skip; |
+ break; |
+#endif |
+#ifdef HAVE_MF_BT4 |
+ case LZMA_MF_BT4: |
+ mf->find = &lzma_mf_bt4_find; |
+ mf->skip = &lzma_mf_bt4_skip; |
+ break; |
+#endif |
+ |
+ default: |
+ return true; |
+ } |
+ |
+ // Calculate the sizes of mf->hash and mf->son and check that |
+ // nice_len is big enough for the selected match finder. |
+ const uint32_t hash_bytes = lz_options->match_finder & 0x0F; |
+ if (hash_bytes > mf->nice_len) |
+ return true; |
+ |
+ const bool is_bt = (lz_options->match_finder & 0x10) != 0; |
+ uint32_t hs; |
+ |
+ if (hash_bytes == 2) { |
+ hs = 0xFFFF; |
+ } else { |
+ // Round dictionary size up to the next 2^n - 1 so it can |
+ // be used as a hash mask. |
+ hs = lz_options->dict_size - 1; |
+ hs |= hs >> 1; |
+ hs |= hs >> 2; |
+ hs |= hs >> 4; |
+ hs |= hs >> 8; |
+ hs >>= 1; |
+ hs |= 0xFFFF; |
+ |
+ if (hs > (UINT32_C(1) << 24)) { |
+ if (hash_bytes == 3) |
+ hs = (UINT32_C(1) << 24) - 1; |
+ else |
+ hs >>= 1; |
+ } |
+ } |
+ |
+ mf->hash_mask = hs; |
+ |
+ ++hs; |
+ if (hash_bytes > 2) |
+ hs += HASH_2_SIZE; |
+ if (hash_bytes > 3) |
+ hs += HASH_3_SIZE; |
+/* |
+ No match finder uses this at the moment. |
+ if (mf->hash_bytes > 4) |
+ hs += HASH_4_SIZE; |
+*/ |
+ |
+ // If the above code calculating hs is modified, make sure that |
+ // this assertion stays valid (UINT32_MAX / 5 is not strictly the |
+ // exact limit). If it doesn't, you need to calculate that |
+ // hash_size_sum + sons_count cannot overflow. |
+ assert(hs < UINT32_MAX / 5); |
+ |
+ const uint32_t old_count = mf->hash_size_sum + mf->sons_count; |
+ mf->hash_size_sum = hs; |
+ mf->sons_count = mf->cyclic_size; |
+ if (is_bt) |
+ mf->sons_count *= 2; |
+ |
+ const uint32_t new_count = mf->hash_size_sum + mf->sons_count; |
+ |
+ // Deallocate the old hash array if it exists and has different size |
+ // than what is needed now. |
+ if (old_count != new_count) { |
+ lzma_free(mf->hash, allocator); |
+ mf->hash = NULL; |
+ } |
+ |
+ // Maximum number of match finder cycles |
+ mf->depth = lz_options->depth; |
+ if (mf->depth == 0) { |
+ mf->depth = 16 + (mf->nice_len / 2); |
+ if (!is_bt) |
+ mf->depth /= 2; |
+ } |
+ |
+ return false; |
+} |
+ |
+ |
+static bool |
+lz_encoder_init(lzma_mf *mf, lzma_allocator *allocator, |
+ const lzma_lz_options *lz_options) |
+{ |
+ // Allocate the history buffer. |
+ if (mf->buffer == NULL) { |
+ mf->buffer = lzma_alloc(mf->size, allocator); |
+ if (mf->buffer == NULL) |
+ return true; |
+ } |
+ |
+ // Use cyclic_size as initial mf->offset. This allows |
+ // avoiding a few branches in the match finders. The downside is |
+ // that match finder needs to be normalized more often, which may |
+ // hurt performance with huge dictionaries. |
+ mf->offset = mf->cyclic_size; |
+ mf->read_pos = 0; |
+ mf->read_ahead = 0; |
+ mf->read_limit = 0; |
+ mf->write_pos = 0; |
+ mf->pending = 0; |
+ |
+ // Allocate match finder's hash array. |
+ const size_t alloc_count = mf->hash_size_sum + mf->sons_count; |
+ |
+#if UINT32_MAX >= SIZE_MAX / 4 |
+ // Check for integer overflow. (Huge dictionaries are not |
+ // possible on 32-bit CPU.) |
+ if (alloc_count > SIZE_MAX / sizeof(uint32_t)) |
+ return true; |
+#endif |
+ |
+ if (mf->hash == NULL) { |
+ mf->hash = lzma_alloc(alloc_count * sizeof(uint32_t), |
+ allocator); |
+ if (mf->hash == NULL) |
+ return true; |
+ } |
+ |
+ mf->son = mf->hash + mf->hash_size_sum; |
+ mf->cyclic_pos = 0; |
+ |
+ // Initialize the hash table. Since EMPTY_HASH_VALUE is zero, we |
+ // can use memset(). |
+/* |
+ for (uint32_t i = 0; i < hash_size_sum; ++i) |
+ mf->hash[i] = EMPTY_HASH_VALUE; |
+*/ |
+ memzero(mf->hash, (size_t)(mf->hash_size_sum) * sizeof(uint32_t)); |
+ |
+ // We don't need to initialize mf->son, but not doing that will |
+ // make Valgrind complain in normalization (see normalize() in |
+ // lz_encoder_mf.c). |
+ // |
+ // Skipping this initialization is *very* good when big dictionary is |
+ // used but only small amount of data gets actually compressed: most |
+ // of the mf->hash won't get actually allocated by the kernel, so |
+ // we avoid wasting RAM and improve initialization speed a lot. |
+ //memzero(mf->son, (size_t)(mf->sons_count) * sizeof(uint32_t)); |
+ |
+ // Handle preset dictionary. |
+ if (lz_options->preset_dict != NULL |
+ && lz_options->preset_dict_size > 0) { |
+ // If the preset dictionary is bigger than the actual |
+ // dictionary, use only the tail. |
+ mf->write_pos = my_min(lz_options->preset_dict_size, mf->size); |
+ memcpy(mf->buffer, lz_options->preset_dict |
+ + lz_options->preset_dict_size - mf->write_pos, |
+ mf->write_pos); |
+ mf->action = LZMA_SYNC_FLUSH; |
+ mf->skip(mf, mf->write_pos); |
+ } |
+ |
+ mf->action = LZMA_RUN; |
+ |
+ return false; |
+} |
+ |
+ |
+extern uint64_t |
+lzma_lz_encoder_memusage(const lzma_lz_options *lz_options) |
+{ |
+ // Old buffers must not exist when calling lz_encoder_prepare(). |
+ lzma_mf mf = { |
+ .buffer = NULL, |
+ .hash = NULL, |
+ .hash_size_sum = 0, |
+ .sons_count = 0, |
+ }; |
+ |
+ // Setup the size information into mf. |
+ if (lz_encoder_prepare(&mf, NULL, lz_options)) |
+ return UINT64_MAX; |
+ |
+ // Calculate the memory usage. |
+ return (uint64_t)(mf.hash_size_sum + mf.sons_count) |
+ * sizeof(uint32_t) |
+ + (uint64_t)(mf.size) + sizeof(lzma_coder); |
+} |
+ |
+ |
+static void |
+lz_encoder_end(lzma_coder *coder, lzma_allocator *allocator) |
+{ |
+ lzma_next_end(&coder->next, allocator); |
+ |
+ lzma_free(coder->mf.hash, allocator); |
+ lzma_free(coder->mf.buffer, allocator); |
+ |
+ if (coder->lz.end != NULL) |
+ coder->lz.end(coder->lz.coder, allocator); |
+ else |
+ lzma_free(coder->lz.coder, allocator); |
+ |
+ lzma_free(coder, allocator); |
+ return; |
+} |
+ |
+ |
+static lzma_ret |
+lz_encoder_update(lzma_coder *coder, lzma_allocator *allocator, |
+ const lzma_filter *filters_null lzma_attribute((unused)), |
+ const lzma_filter *reversed_filters) |
+{ |
+ if (coder->lz.options_update == NULL) |
+ return LZMA_PROG_ERROR; |
+ |
+ return_if_error(coder->lz.options_update( |
+ coder->lz.coder, reversed_filters)); |
+ |
+ return lzma_next_filter_update( |
+ &coder->next, allocator, reversed_filters + 1); |
+} |
+ |
+ |
+extern lzma_ret |
+lzma_lz_encoder_init(lzma_next_coder *next, lzma_allocator *allocator, |
+ const lzma_filter_info *filters, |
+ lzma_ret (*lz_init)(lzma_lz_encoder *lz, |
+ lzma_allocator *allocator, const void *options, |
+ lzma_lz_options *lz_options)) |
+{ |
+#ifdef HAVE_SMALL |
+ // We need that the CRC32 table has been initialized. |
+ lzma_crc32_init(); |
+#endif |
+ |
+ // Allocate and initialize the base data structure. |
+ if (next->coder == NULL) { |
+ next->coder = lzma_alloc(sizeof(lzma_coder), allocator); |
+ if (next->coder == NULL) |
+ return LZMA_MEM_ERROR; |
+ |
+ next->code = &lz_encode; |
+ next->end = &lz_encoder_end; |
+ next->update = &lz_encoder_update; |
+ |
+ next->coder->lz.coder = NULL; |
+ next->coder->lz.code = NULL; |
+ next->coder->lz.end = NULL; |
+ |
+ next->coder->mf.buffer = NULL; |
+ next->coder->mf.hash = NULL; |
+ next->coder->mf.hash_size_sum = 0; |
+ next->coder->mf.sons_count = 0; |
+ |
+ next->coder->next = LZMA_NEXT_CODER_INIT; |
+ } |
+ |
+ // Initialize the LZ-based encoder. |
+ lzma_lz_options lz_options; |
+ return_if_error(lz_init(&next->coder->lz, allocator, |
+ filters[0].options, &lz_options)); |
+ |
+ // Setup the size information into next->coder->mf and deallocate |
+ // old buffers if they have wrong size. |
+ if (lz_encoder_prepare(&next->coder->mf, allocator, &lz_options)) |
+ return LZMA_OPTIONS_ERROR; |
+ |
+ // Allocate new buffers if needed, and do the rest of |
+ // the initialization. |
+ if (lz_encoder_init(&next->coder->mf, allocator, &lz_options)) |
+ return LZMA_MEM_ERROR; |
+ |
+ // Initialize the next filter in the chain, if any. |
+ return lzma_next_filter_init(&next->coder->next, allocator, |
+ filters + 1); |
+} |
+ |
+ |
+extern LZMA_API(lzma_bool) |
+lzma_mf_is_supported(lzma_match_finder mf) |
+{ |
+ bool ret = false; |
+ |
+#ifdef HAVE_MF_HC3 |
+ if (mf == LZMA_MF_HC3) |
+ ret = true; |
+#endif |
+ |
+#ifdef HAVE_MF_HC4 |
+ if (mf == LZMA_MF_HC4) |
+ ret = true; |
+#endif |
+ |
+#ifdef HAVE_MF_BT2 |
+ if (mf == LZMA_MF_BT2) |
+ ret = true; |
+#endif |
+ |
+#ifdef HAVE_MF_BT3 |
+ if (mf == LZMA_MF_BT3) |
+ ret = true; |
+#endif |
+ |
+#ifdef HAVE_MF_BT4 |
+ if (mf == LZMA_MF_BT4) |
+ ret = true; |
+#endif |
+ |
+ return ret; |
+} |
Property changes on: xz/src/liblzma/lz/lz_encoder.c |
___________________________________________________________________ |
Added: svn:eol-style |
+ LF |