| Index: xz/src/liblzma/common/index.c
|
| ===================================================================
|
| --- xz/src/liblzma/common/index.c (revision 0)
|
| +++ xz/src/liblzma/common/index.c (revision 0)
|
| @@ -0,0 +1,1241 @@
|
| +///////////////////////////////////////////////////////////////////////////////
|
| +//
|
| +/// \file index.c
|
| +/// \brief Handling of .xz Indexes and some other Stream information
|
| +//
|
| +// Author: Lasse Collin
|
| +//
|
| +// This file has been put into the public domain.
|
| +// You can do whatever you want with this file.
|
| +//
|
| +///////////////////////////////////////////////////////////////////////////////
|
| +
|
| +#include "index.h"
|
| +#include "stream_flags_common.h"
|
| +
|
| +
|
| +/// \brief How many Records to allocate at once
|
| +///
|
| +/// This should be big enough to avoid making lots of tiny allocations
|
| +/// but small enough to avoid too much unused memory at once.
|
| +#define INDEX_GROUP_SIZE 500
|
| +
|
| +
|
| +/// \brief How many Records can be allocated at once at maximum
|
| +#define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record))
|
| +
|
| +
|
| +/// \brief Base structure for index_stream and index_group structures
|
| +typedef struct index_tree_node_s index_tree_node;
|
| +struct index_tree_node_s {
|
| + /// Uncompressed start offset of this Stream (relative to the
|
| + /// beginning of the file) or Block (relative to the beginning
|
| + /// of the Stream)
|
| + lzma_vli uncompressed_base;
|
| +
|
| + /// Compressed start offset of this Stream or Block
|
| + lzma_vli compressed_base;
|
| +
|
| + index_tree_node *parent;
|
| + index_tree_node *left;
|
| + index_tree_node *right;
|
| +};
|
| +
|
| +
|
| +/// \brief AVL tree to hold index_stream or index_group structures
|
| +typedef struct {
|
| + /// Root node
|
| + index_tree_node *root;
|
| +
|
| + /// Leftmost node. Since the tree will be filled sequentially,
|
| + /// this won't change after the first node has been added to
|
| + /// the tree.
|
| + index_tree_node *leftmost;
|
| +
|
| + /// The rightmost node in the tree. Since the tree is filled
|
| + /// sequentially, this is always the node where to add the new data.
|
| + index_tree_node *rightmost;
|
| +
|
| + /// Number of nodes in the tree
|
| + uint32_t count;
|
| +
|
| +} index_tree;
|
| +
|
| +
|
| +typedef struct {
|
| + lzma_vli uncompressed_sum;
|
| + lzma_vli unpadded_sum;
|
| +} index_record;
|
| +
|
| +
|
| +typedef struct {
|
| + /// Every Record group is part of index_stream.groups tree.
|
| + index_tree_node node;
|
| +
|
| + /// Number of Blocks in this Stream before this group.
|
| + lzma_vli number_base;
|
| +
|
| + /// Number of Records that can be put in records[].
|
| + size_t allocated;
|
| +
|
| + /// Index of the last Record in use.
|
| + size_t last;
|
| +
|
| + /// The sizes in this array are stored as cumulative sums relative
|
| + /// to the beginning of the Stream. This makes it possible to
|
| + /// use binary search in lzma_index_locate().
|
| + ///
|
| + /// Note that the cumulative summing is done specially for
|
| + /// unpadded_sum: The previous value is rounded up to the next
|
| + /// multiple of four before adding the Unpadded Size of the new
|
| + /// Block. The total encoded size of the Blocks in the Stream
|
| + /// is records[last].unpadded_sum in the last Record group of
|
| + /// the Stream.
|
| + ///
|
| + /// For example, if the Unpadded Sizes are 39, 57, and 81, the
|
| + /// stored values are 39, 97 (40 + 57), and 181 (100 + 181).
|
| + /// The total encoded size of these Blocks is 184.
|
| + ///
|
| + /// This is a flexible array, because it makes easy to optimize
|
| + /// memory usage in case someone concatenates many Streams that
|
| + /// have only one or few Blocks.
|
| + index_record records[];
|
| +
|
| +} index_group;
|
| +
|
| +
|
| +typedef struct {
|
| + /// Every index_stream is a node in the tree of Sreams.
|
| + index_tree_node node;
|
| +
|
| + /// Number of this Stream (first one is 1)
|
| + uint32_t number;
|
| +
|
| + /// Total number of Blocks before this Stream
|
| + lzma_vli block_number_base;
|
| +
|
| + /// Record groups of this Stream are stored in a tree.
|
| + /// It's a T-tree with AVL-tree balancing. There are
|
| + /// INDEX_GROUP_SIZE Records per node by default.
|
| + /// This keeps the number of memory allocations reasonable
|
| + /// and finding a Record is fast.
|
| + index_tree groups;
|
| +
|
| + /// Number of Records in this Stream
|
| + lzma_vli record_count;
|
| +
|
| + /// Size of the List of Records field in this Stream. This is used
|
| + /// together with record_count to calculate the size of the Index
|
| + /// field and thus the total size of the Stream.
|
| + lzma_vli index_list_size;
|
| +
|
| + /// Stream Flags of this Stream. This is meaningful only if
|
| + /// the Stream Flags have been told us with lzma_index_stream_flags().
|
| + /// Initially stream_flags.version is set to UINT32_MAX to indicate
|
| + /// that the Stream Flags are unknown.
|
| + lzma_stream_flags stream_flags;
|
| +
|
| + /// Amount of Stream Padding after this Stream. This defaults to
|
| + /// zero and can be set with lzma_index_stream_padding().
|
| + lzma_vli stream_padding;
|
| +
|
| +} index_stream;
|
| +
|
| +
|
| +struct lzma_index_s {
|
| + /// AVL-tree containing the Stream(s). Often there is just one
|
| + /// Stream, but using a tree keeps lookups fast even when there
|
| + /// are many concatenated Streams.
|
| + index_tree streams;
|
| +
|
| + /// Uncompressed size of all the Blocks in the Stream(s)
|
| + lzma_vli uncompressed_size;
|
| +
|
| + /// Total size of all the Blocks in the Stream(s)
|
| + lzma_vli total_size;
|
| +
|
| + /// Total number of Records in all Streams in this lzma_index
|
| + lzma_vli record_count;
|
| +
|
| + /// Size of the List of Records field if all the Streams in this
|
| + /// lzma_index were packed into a single Stream (makes it simpler to
|
| + /// take many .xz files and combine them into a single Stream).
|
| + ///
|
| + /// This value together with record_count is needed to calculate
|
| + /// Backward Size that is stored into Stream Footer.
|
| + lzma_vli index_list_size;
|
| +
|
| + /// How many Records to allocate at once in lzma_index_append().
|
| + /// This defaults to INDEX_GROUP_SIZE but can be overriden with
|
| + /// lzma_index_prealloc().
|
| + size_t prealloc;
|
| +
|
| + /// Bitmask indicating what integrity check types have been used
|
| + /// as set by lzma_index_stream_flags(). The bit of the last Stream
|
| + /// is not included here, since it is possible to change it by
|
| + /// calling lzma_index_stream_flags() again.
|
| + uint32_t checks;
|
| +};
|
| +
|
| +
|
| +static void
|
| +index_tree_init(index_tree *tree)
|
| +{
|
| + tree->root = NULL;
|
| + tree->leftmost = NULL;
|
| + tree->rightmost = NULL;
|
| + tree->count = 0;
|
| + return;
|
| +}
|
| +
|
| +
|
| +/// Helper for index_tree_end()
|
| +static void
|
| +index_tree_node_end(index_tree_node *node, lzma_allocator *allocator,
|
| + void (*free_func)(void *node, lzma_allocator *allocator))
|
| +{
|
| + // The tree won't ever be very huge, so recursion should be fine.
|
| + // 20 levels in the tree is likely quite a lot already in practice.
|
| + if (node->left != NULL)
|
| + index_tree_node_end(node->left, allocator, free_func);
|
| +
|
| + if (node->right != NULL)
|
| + index_tree_node_end(node->right, allocator, free_func);
|
| +
|
| + if (free_func != NULL)
|
| + free_func(node, allocator);
|
| +
|
| + lzma_free(node, allocator);
|
| + return;
|
| +}
|
| +
|
| +
|
| +/// Free the meory allocated for a tree. If free_func is not NULL,
|
| +/// it is called on each node before freeing the node. This is used
|
| +/// to free the Record groups from each index_stream before freeing
|
| +/// the index_stream itself.
|
| +static void
|
| +index_tree_end(index_tree *tree, lzma_allocator *allocator,
|
| + void (*free_func)(void *node, lzma_allocator *allocator))
|
| +{
|
| + if (tree->root != NULL)
|
| + index_tree_node_end(tree->root, allocator, free_func);
|
| +
|
| + return;
|
| +}
|
| +
|
| +
|
| +/// Add a new node to the tree. node->uncompressed_base and
|
| +/// node->compressed_base must have been set by the caller already.
|
| +static void
|
| +index_tree_append(index_tree *tree, index_tree_node *node)
|
| +{
|
| + node->parent = tree->rightmost;
|
| + node->left = NULL;
|
| + node->right = NULL;
|
| +
|
| + ++tree->count;
|
| +
|
| + // Handle the special case of adding the first node.
|
| + if (tree->root == NULL) {
|
| + tree->root = node;
|
| + tree->leftmost = node;
|
| + tree->rightmost = node;
|
| + return;
|
| + }
|
| +
|
| + // The tree is always filled sequentially.
|
| + assert(tree->rightmost->uncompressed_base <= node->uncompressed_base);
|
| + assert(tree->rightmost->compressed_base < node->compressed_base);
|
| +
|
| + // Add the new node after the rightmost node. It's the correct
|
| + // place due to the reason above.
|
| + tree->rightmost->right = node;
|
| + tree->rightmost = node;
|
| +
|
| + // Balance the AVL-tree if needed. We don't need to keep the balance
|
| + // factors in nodes, because we always fill the tree sequentially,
|
| + // and thus know the state of the tree just by looking at the node
|
| + // count. From the node count we can calculate how many steps to go
|
| + // up in the tree to find the rotation root.
|
| + uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count));
|
| + if (up != 0) {
|
| + // Locate the root node for the rotation.
|
| + up = ctz32(tree->count) + 2;
|
| + do {
|
| + node = node->parent;
|
| + } while (--up > 0);
|
| +
|
| + // Rotate left using node as the rotation root.
|
| + index_tree_node *pivot = node->right;
|
| +
|
| + if (node->parent == NULL) {
|
| + tree->root = pivot;
|
| + } else {
|
| + assert(node->parent->right == node);
|
| + node->parent->right = pivot;
|
| + }
|
| +
|
| + pivot->parent = node->parent;
|
| +
|
| + node->right = pivot->left;
|
| + if (node->right != NULL)
|
| + node->right->parent = node;
|
| +
|
| + pivot->left = node;
|
| + node->parent = pivot;
|
| + }
|
| +
|
| + return;
|
| +}
|
| +
|
| +
|
| +/// Get the next node in the tree. Return NULL if there are no more nodes.
|
| +static void *
|
| +index_tree_next(const index_tree_node *node)
|
| +{
|
| + if (node->right != NULL) {
|
| + node = node->right;
|
| + while (node->left != NULL)
|
| + node = node->left;
|
| +
|
| + return (void *)(node);
|
| + }
|
| +
|
| + while (node->parent != NULL && node->parent->right == node)
|
| + node = node->parent;
|
| +
|
| + return (void *)(node->parent);
|
| +}
|
| +
|
| +
|
| +/// Locate a node that contains the given uncompressed offset. It is
|
| +/// caller's job to check that target is not bigger than the uncompressed
|
| +/// size of the tree (the last node would be returned in that case still).
|
| +static void *
|
| +index_tree_locate(const index_tree *tree, lzma_vli target)
|
| +{
|
| + const index_tree_node *result = NULL;
|
| + const index_tree_node *node = tree->root;
|
| +
|
| + assert(tree->leftmost == NULL
|
| + || tree->leftmost->uncompressed_base == 0);
|
| +
|
| + // Consecutive nodes may have the same uncompressed_base.
|
| + // We must pick the rightmost one.
|
| + while (node != NULL) {
|
| + if (node->uncompressed_base > target) {
|
| + node = node->left;
|
| + } else {
|
| + result = node;
|
| + node = node->right;
|
| + }
|
| + }
|
| +
|
| + return (void *)(result);
|
| +}
|
| +
|
| +
|
| +/// Allocate and initialize a new Stream using the given base offsets.
|
| +static index_stream *
|
| +index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base,
|
| + lzma_vli stream_number, lzma_vli block_number_base,
|
| + lzma_allocator *allocator)
|
| +{
|
| + index_stream *s = lzma_alloc(sizeof(index_stream), allocator);
|
| + if (s == NULL)
|
| + return NULL;
|
| +
|
| + s->node.uncompressed_base = uncompressed_base;
|
| + s->node.compressed_base = compressed_base;
|
| + s->node.parent = NULL;
|
| + s->node.left = NULL;
|
| + s->node.right = NULL;
|
| +
|
| + s->number = stream_number;
|
| + s->block_number_base = block_number_base;
|
| +
|
| + index_tree_init(&s->groups);
|
| +
|
| + s->record_count = 0;
|
| + s->index_list_size = 0;
|
| + s->stream_flags.version = UINT32_MAX;
|
| + s->stream_padding = 0;
|
| +
|
| + return s;
|
| +}
|
| +
|
| +
|
| +/// Free the memory allocated for a Stream and its Record groups.
|
| +static void
|
| +index_stream_end(void *node, lzma_allocator *allocator)
|
| +{
|
| + index_stream *s = node;
|
| + index_tree_end(&s->groups, allocator, NULL);
|
| + return;
|
| +}
|
| +
|
| +
|
| +static lzma_index *
|
| +index_init_plain(lzma_allocator *allocator)
|
| +{
|
| + lzma_index *i = lzma_alloc(sizeof(lzma_index), allocator);
|
| + if (i != NULL) {
|
| + index_tree_init(&i->streams);
|
| + i->uncompressed_size = 0;
|
| + i->total_size = 0;
|
| + i->record_count = 0;
|
| + i->index_list_size = 0;
|
| + i->prealloc = INDEX_GROUP_SIZE;
|
| + i->checks = 0;
|
| + }
|
| +
|
| + return i;
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(lzma_index *)
|
| +lzma_index_init(lzma_allocator *allocator)
|
| +{
|
| + lzma_index *i = index_init_plain(allocator);
|
| + index_stream *s = index_stream_init(0, 0, 1, 0, allocator);
|
| + if (i == NULL || s == NULL) {
|
| + index_stream_end(s, allocator);
|
| + lzma_free(i, allocator);
|
| + }
|
| +
|
| + index_tree_append(&i->streams, &s->node);
|
| +
|
| + return i;
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(void)
|
| +lzma_index_end(lzma_index *i, lzma_allocator *allocator)
|
| +{
|
| + // NOTE: If you modify this function, check also the bottom
|
| + // of lzma_index_cat().
|
| + if (i != NULL) {
|
| + index_tree_end(&i->streams, allocator, &index_stream_end);
|
| + lzma_free(i, allocator);
|
| + }
|
| +
|
| + return;
|
| +}
|
| +
|
| +
|
| +extern void
|
| +lzma_index_prealloc(lzma_index *i, lzma_vli records)
|
| +{
|
| + if (records > PREALLOC_MAX)
|
| + records = PREALLOC_MAX;
|
| +
|
| + i->prealloc = (size_t)(records);
|
| + return;
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(uint64_t)
|
| +lzma_index_memusage(lzma_vli streams, lzma_vli blocks)
|
| +{
|
| + // This calculates an upper bound that is only a little bit
|
| + // bigger than the exact maximum memory usage with the given
|
| + // parameters.
|
| +
|
| + // Typical malloc() overhead is 2 * sizeof(void *) but we take
|
| + // a little bit extra just in case. Using LZMA_MEMUSAGE_BASE
|
| + // instead would give too inaccurate estimate.
|
| + const size_t alloc_overhead = 4 * sizeof(void *);
|
| +
|
| + // Amount of memory needed for each Stream base structures.
|
| + // We assume that every Stream has at least one Block and
|
| + // thus at least one group.
|
| + const size_t stream_base = sizeof(index_stream)
|
| + + sizeof(index_group) + 2 * alloc_overhead;
|
| +
|
| + // Amount of memory needed per group.
|
| + const size_t group_base = sizeof(index_group)
|
| + + INDEX_GROUP_SIZE * sizeof(index_record)
|
| + + alloc_overhead;
|
| +
|
| + // Number of groups. There may actually be more, but that overhead
|
| + // has been taken into account in stream_base already.
|
| + const lzma_vli groups
|
| + = (blocks + INDEX_GROUP_SIZE - 1) / INDEX_GROUP_SIZE;
|
| +
|
| + // Memory used by index_stream and index_group structures.
|
| + const uint64_t streams_mem = streams * stream_base;
|
| + const uint64_t groups_mem = groups * group_base;
|
| +
|
| + // Memory used by the base structure.
|
| + const uint64_t index_base = sizeof(lzma_index) + alloc_overhead;
|
| +
|
| + // Validate the arguments and catch integer overflows.
|
| + // Maximum number of Streams is "only" UINT32_MAX, because
|
| + // that limit is used by the tree containing the Streams.
|
| + const uint64_t limit = UINT64_MAX - index_base;
|
| + if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX
|
| + || streams > limit / stream_base
|
| + || groups > limit / group_base
|
| + || limit - streams_mem < groups_mem)
|
| + return UINT64_MAX;
|
| +
|
| + return index_base + streams_mem + groups_mem;
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(uint64_t)
|
| +lzma_index_memused(const lzma_index *i)
|
| +{
|
| + return lzma_index_memusage(i->streams.count, i->record_count);
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(lzma_vli)
|
| +lzma_index_block_count(const lzma_index *i)
|
| +{
|
| + return i->record_count;
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(lzma_vli)
|
| +lzma_index_stream_count(const lzma_index *i)
|
| +{
|
| + return i->streams.count;
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(lzma_vli)
|
| +lzma_index_size(const lzma_index *i)
|
| +{
|
| + return index_size(i->record_count, i->index_list_size);
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(lzma_vli)
|
| +lzma_index_total_size(const lzma_index *i)
|
| +{
|
| + return i->total_size;
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(lzma_vli)
|
| +lzma_index_stream_size(const lzma_index *i)
|
| +{
|
| + // Stream Header + Blocks + Index + Stream Footer
|
| + return LZMA_STREAM_HEADER_SIZE + i->total_size
|
| + + index_size(i->record_count, i->index_list_size)
|
| + + LZMA_STREAM_HEADER_SIZE;
|
| +}
|
| +
|
| +
|
| +static lzma_vli
|
| +index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum,
|
| + lzma_vli record_count, lzma_vli index_list_size,
|
| + lzma_vli stream_padding)
|
| +{
|
| + // Earlier Streams and Stream Paddings + Stream Header
|
| + // + Blocks + Index + Stream Footer + Stream Padding
|
| + //
|
| + // This might go over LZMA_VLI_MAX due to too big unpadded_sum
|
| + // when this function is used in lzma_index_append().
|
| + lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE
|
| + + stream_padding + vli_ceil4(unpadded_sum);
|
| + if (file_size > LZMA_VLI_MAX)
|
| + return LZMA_VLI_UNKNOWN;
|
| +
|
| + // The same applies here.
|
| + file_size += index_size(record_count, index_list_size);
|
| + if (file_size > LZMA_VLI_MAX)
|
| + return LZMA_VLI_UNKNOWN;
|
| +
|
| + return file_size;
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(lzma_vli)
|
| +lzma_index_file_size(const lzma_index *i)
|
| +{
|
| + const index_stream *s = (const index_stream *)(i->streams.rightmost);
|
| + const index_group *g = (const index_group *)(s->groups.rightmost);
|
| + return index_file_size(s->node.compressed_base,
|
| + g == NULL ? 0 : g->records[g->last].unpadded_sum,
|
| + s->record_count, s->index_list_size,
|
| + s->stream_padding);
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(lzma_vli)
|
| +lzma_index_uncompressed_size(const lzma_index *i)
|
| +{
|
| + return i->uncompressed_size;
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(uint32_t)
|
| +lzma_index_checks(const lzma_index *i)
|
| +{
|
| + uint32_t checks = i->checks;
|
| +
|
| + // Get the type of the Check of the last Stream too.
|
| + const index_stream *s = (const index_stream *)(i->streams.rightmost);
|
| + if (s->stream_flags.version != UINT32_MAX)
|
| + checks |= UINT32_C(1) << s->stream_flags.check;
|
| +
|
| + return checks;
|
| +}
|
| +
|
| +
|
| +extern uint32_t
|
| +lzma_index_padding_size(const lzma_index *i)
|
| +{
|
| + return (LZMA_VLI_C(4) - index_size_unpadded(
|
| + i->record_count, i->index_list_size)) & 3;
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(lzma_ret)
|
| +lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags)
|
| +{
|
| + if (i == NULL || stream_flags == NULL)
|
| + return LZMA_PROG_ERROR;
|
| +
|
| + // Validate the Stream Flags.
|
| + return_if_error(lzma_stream_flags_compare(
|
| + stream_flags, stream_flags));
|
| +
|
| + index_stream *s = (index_stream *)(i->streams.rightmost);
|
| + s->stream_flags = *stream_flags;
|
| +
|
| + return LZMA_OK;
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(lzma_ret)
|
| +lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding)
|
| +{
|
| + if (i == NULL || stream_padding > LZMA_VLI_MAX
|
| + || (stream_padding & 3) != 0)
|
| + return LZMA_PROG_ERROR;
|
| +
|
| + index_stream *s = (index_stream *)(i->streams.rightmost);
|
| +
|
| + // Check that the new value won't make the file grow too big.
|
| + const lzma_vli old_stream_padding = s->stream_padding;
|
| + s->stream_padding = 0;
|
| + if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) {
|
| + s->stream_padding = old_stream_padding;
|
| + return LZMA_DATA_ERROR;
|
| + }
|
| +
|
| + s->stream_padding = stream_padding;
|
| + return LZMA_OK;
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(lzma_ret)
|
| +lzma_index_append(lzma_index *i, lzma_allocator *allocator,
|
| + lzma_vli unpadded_size, lzma_vli uncompressed_size)
|
| +{
|
| + // Validate.
|
| + if (i == NULL || unpadded_size < UNPADDED_SIZE_MIN
|
| + || unpadded_size > UNPADDED_SIZE_MAX
|
| + || uncompressed_size > LZMA_VLI_MAX)
|
| + return LZMA_PROG_ERROR;
|
| +
|
| + index_stream *s = (index_stream *)(i->streams.rightmost);
|
| + index_group *g = (index_group *)(s->groups.rightmost);
|
| +
|
| + const lzma_vli compressed_base = g == NULL ? 0
|
| + : vli_ceil4(g->records[g->last].unpadded_sum);
|
| + const lzma_vli uncompressed_base = g == NULL ? 0
|
| + : g->records[g->last].uncompressed_sum;
|
| + const uint32_t index_list_size_add = lzma_vli_size(unpadded_size)
|
| + + lzma_vli_size(uncompressed_size);
|
| +
|
| + // Check that the file size will stay within limits.
|
| + if (index_file_size(s->node.compressed_base,
|
| + compressed_base + unpadded_size, s->record_count + 1,
|
| + s->index_list_size + index_list_size_add,
|
| + s->stream_padding) == LZMA_VLI_UNKNOWN)
|
| + return LZMA_DATA_ERROR;
|
| +
|
| + // The size of the Index field must not exceed the maximum value
|
| + // that can be stored in the Backward Size field.
|
| + if (index_size(i->record_count + 1,
|
| + i->index_list_size + index_list_size_add)
|
| + > LZMA_BACKWARD_SIZE_MAX)
|
| + return LZMA_DATA_ERROR;
|
| +
|
| + if (g != NULL && g->last + 1 < g->allocated) {
|
| + // There is space in the last group at least for one Record.
|
| + ++g->last;
|
| + } else {
|
| + // We need to allocate a new group.
|
| + g = lzma_alloc(sizeof(index_group)
|
| + + i->prealloc * sizeof(index_record),
|
| + allocator);
|
| + if (g == NULL)
|
| + return LZMA_MEM_ERROR;
|
| +
|
| + g->last = 0;
|
| + g->allocated = i->prealloc;
|
| +
|
| + // Reset prealloc so that if the application happens to
|
| + // add new Records, the allocation size will be sane.
|
| + i->prealloc = INDEX_GROUP_SIZE;
|
| +
|
| + // Set the start offsets of this group.
|
| + g->node.uncompressed_base = uncompressed_base;
|
| + g->node.compressed_base = compressed_base;
|
| + g->number_base = s->record_count + 1;
|
| +
|
| + // Add the new group to the Stream.
|
| + index_tree_append(&s->groups, &g->node);
|
| + }
|
| +
|
| + // Add the new Record to the group.
|
| + g->records[g->last].uncompressed_sum
|
| + = uncompressed_base + uncompressed_size;
|
| + g->records[g->last].unpadded_sum
|
| + = compressed_base + unpadded_size;
|
| +
|
| + // Update the totals.
|
| + ++s->record_count;
|
| + s->index_list_size += index_list_size_add;
|
| +
|
| + i->total_size += vli_ceil4(unpadded_size);
|
| + i->uncompressed_size += uncompressed_size;
|
| + ++i->record_count;
|
| + i->index_list_size += index_list_size_add;
|
| +
|
| + return LZMA_OK;
|
| +}
|
| +
|
| +
|
| +/// Structure to pass info to index_cat_helper()
|
| +typedef struct {
|
| + /// Uncompressed size of the destination
|
| + lzma_vli uncompressed_size;
|
| +
|
| + /// Compressed file size of the destination
|
| + lzma_vli file_size;
|
| +
|
| + /// Same as above but for Block numbers
|
| + lzma_vli block_number_add;
|
| +
|
| + /// Number of Streams that were in the destination index before we
|
| + /// started appending new Streams from the source index. This is
|
| + /// used to fix the Stream numbering.
|
| + uint32_t stream_number_add;
|
| +
|
| + /// Destination index' Stream tree
|
| + index_tree *streams;
|
| +
|
| +} index_cat_info;
|
| +
|
| +
|
| +/// Add the Stream nodes from the source index to dest using recursion.
|
| +/// Simplest iterative traversal of the source tree wouldn't work, because
|
| +/// we update the pointers in nodes when moving them to the destination tree.
|
| +static void
|
| +index_cat_helper(const index_cat_info *info, index_stream *this)
|
| +{
|
| + index_stream *left = (index_stream *)(this->node.left);
|
| + index_stream *right = (index_stream *)(this->node.right);
|
| +
|
| + if (left != NULL)
|
| + index_cat_helper(info, left);
|
| +
|
| + this->node.uncompressed_base += info->uncompressed_size;
|
| + this->node.compressed_base += info->file_size;
|
| + this->number += info->stream_number_add;
|
| + this->block_number_base += info->block_number_add;
|
| + index_tree_append(info->streams, &this->node);
|
| +
|
| + if (right != NULL)
|
| + index_cat_helper(info, right);
|
| +
|
| + return;
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(lzma_ret)
|
| +lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src,
|
| + lzma_allocator *allocator)
|
| +{
|
| + const lzma_vli dest_file_size = lzma_index_file_size(dest);
|
| +
|
| + // Check that we don't exceed the file size limits.
|
| + if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX
|
| + || dest->uncompressed_size + src->uncompressed_size
|
| + > LZMA_VLI_MAX)
|
| + return LZMA_DATA_ERROR;
|
| +
|
| + // Check that the encoded size of the combined lzma_indexes stays
|
| + // within limits. In theory, this should be done only if we know
|
| + // that the user plans to actually combine the Streams and thus
|
| + // construct a single Index (probably rare). However, exceeding
|
| + // this limit is quite theoretical, so we do this check always
|
| + // to simplify things elsewhere.
|
| + {
|
| + const lzma_vli dest_size = index_size_unpadded(
|
| + dest->record_count, dest->index_list_size);
|
| + const lzma_vli src_size = index_size_unpadded(
|
| + src->record_count, src->index_list_size);
|
| + if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX)
|
| + return LZMA_DATA_ERROR;
|
| + }
|
| +
|
| + // Optimize the last group to minimize memory usage. Allocation has
|
| + // to be done before modifying dest or src.
|
| + {
|
| + index_stream *s = (index_stream *)(dest->streams.rightmost);
|
| + index_group *g = (index_group *)(s->groups.rightmost);
|
| + if (g != NULL && g->last + 1 < g->allocated) {
|
| + assert(g->node.left == NULL);
|
| + assert(g->node.right == NULL);
|
| +
|
| + index_group *newg = lzma_alloc(sizeof(index_group)
|
| + + (g->last + 1)
|
| + * sizeof(index_record),
|
| + allocator);
|
| + if (newg == NULL)
|
| + return LZMA_MEM_ERROR;
|
| +
|
| + newg->node = g->node;
|
| + newg->allocated = g->last + 1;
|
| + newg->last = g->last;
|
| + newg->number_base = g->number_base;
|
| +
|
| + memcpy(newg->records, g->records, newg->allocated
|
| + * sizeof(index_record));
|
| +
|
| + if (g->node.parent != NULL) {
|
| + assert(g->node.parent->right == &g->node);
|
| + g->node.parent->right = &newg->node;
|
| + }
|
| +
|
| + if (s->groups.leftmost == &g->node) {
|
| + assert(s->groups.root == &g->node);
|
| + s->groups.leftmost = &newg->node;
|
| + s->groups.root = &newg->node;
|
| + }
|
| +
|
| + if (s->groups.rightmost == &g->node)
|
| + s->groups.rightmost = &newg->node;
|
| +
|
| + lzma_free(g, allocator);
|
| + }
|
| + }
|
| +
|
| + // Add all the Streams from src to dest. Update the base offsets
|
| + // of each Stream from src.
|
| + const index_cat_info info = {
|
| + .uncompressed_size = dest->uncompressed_size,
|
| + .file_size = dest_file_size,
|
| + .stream_number_add = dest->streams.count,
|
| + .block_number_add = dest->record_count,
|
| + .streams = &dest->streams,
|
| + };
|
| + index_cat_helper(&info, (index_stream *)(src->streams.root));
|
| +
|
| + // Update info about all the combined Streams.
|
| + dest->uncompressed_size += src->uncompressed_size;
|
| + dest->total_size += src->total_size;
|
| + dest->record_count += src->record_count;
|
| + dest->index_list_size += src->index_list_size;
|
| + dest->checks = lzma_index_checks(dest) | src->checks;
|
| +
|
| + // There's nothing else left in src than the base structure.
|
| + lzma_free(src, allocator);
|
| +
|
| + return LZMA_OK;
|
| +}
|
| +
|
| +
|
| +/// Duplicate an index_stream.
|
| +static index_stream *
|
| +index_dup_stream(const index_stream *src, lzma_allocator *allocator)
|
| +{
|
| + // Catch a somewhat theoretical integer overflow.
|
| + if (src->record_count > PREALLOC_MAX)
|
| + return NULL;
|
| +
|
| + // Allocate and initialize a new Stream.
|
| + index_stream *dest = index_stream_init(src->node.compressed_base,
|
| + src->node.uncompressed_base, src->number,
|
| + src->block_number_base, allocator);
|
| +
|
| + // Return immediately if allocation failed or if there are
|
| + // no groups to duplicate.
|
| + if (dest == NULL || src->groups.leftmost == NULL)
|
| + return dest;
|
| +
|
| + // Copy the overall information.
|
| + dest->record_count = src->record_count;
|
| + dest->index_list_size = src->index_list_size;
|
| + dest->stream_flags = src->stream_flags;
|
| + dest->stream_padding = src->stream_padding;
|
| +
|
| + // Allocate memory for the Records. We put all the Records into
|
| + // a single group. It's simplest and also tends to make
|
| + // lzma_index_locate() a little bit faster with very big Indexes.
|
| + index_group *destg = lzma_alloc(sizeof(index_group)
|
| + + src->record_count * sizeof(index_record),
|
| + allocator);
|
| + if (destg == NULL) {
|
| + index_stream_end(dest, allocator);
|
| + return NULL;
|
| + }
|
| +
|
| + // Initialize destg.
|
| + destg->node.uncompressed_base = 0;
|
| + destg->node.compressed_base = 0;
|
| + destg->number_base = 1;
|
| + destg->allocated = src->record_count;
|
| + destg->last = src->record_count - 1;
|
| +
|
| + // Go through all the groups in src and copy the Records into destg.
|
| + const index_group *srcg = (const index_group *)(src->groups.leftmost);
|
| + size_t i = 0;
|
| + do {
|
| + memcpy(destg->records + i, srcg->records,
|
| + (srcg->last + 1) * sizeof(index_record));
|
| + i += srcg->last + 1;
|
| + srcg = index_tree_next(&srcg->node);
|
| + } while (srcg != NULL);
|
| +
|
| + assert(i == destg->allocated);
|
| +
|
| + // Add the group to the new Stream.
|
| + index_tree_append(&dest->groups, &destg->node);
|
| +
|
| + return dest;
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(lzma_index *)
|
| +lzma_index_dup(const lzma_index *src, lzma_allocator *allocator)
|
| +{
|
| + // Allocate the base structure (no initial Stream).
|
| + lzma_index *dest = index_init_plain(allocator);
|
| + if (dest == NULL)
|
| + return NULL;
|
| +
|
| + // Copy the totals.
|
| + dest->uncompressed_size = src->uncompressed_size;
|
| + dest->total_size = src->total_size;
|
| + dest->record_count = src->record_count;
|
| + dest->index_list_size = src->index_list_size;
|
| +
|
| + // Copy the Streams and the groups in them.
|
| + const index_stream *srcstream
|
| + = (const index_stream *)(src->streams.leftmost);
|
| + do {
|
| + index_stream *deststream = index_dup_stream(
|
| + srcstream, allocator);
|
| + if (deststream == NULL) {
|
| + lzma_index_end(dest, allocator);
|
| + return NULL;
|
| + }
|
| +
|
| + index_tree_append(&dest->streams, &deststream->node);
|
| +
|
| + srcstream = index_tree_next(&srcstream->node);
|
| + } while (srcstream != NULL);
|
| +
|
| + return dest;
|
| +}
|
| +
|
| +
|
| +/// Indexing for lzma_index_iter.internal[]
|
| +enum {
|
| + ITER_INDEX,
|
| + ITER_STREAM,
|
| + ITER_GROUP,
|
| + ITER_RECORD,
|
| + ITER_METHOD,
|
| +};
|
| +
|
| +
|
| +/// Values for lzma_index_iter.internal[ITER_METHOD].s
|
| +enum {
|
| + ITER_METHOD_NORMAL,
|
| + ITER_METHOD_NEXT,
|
| + ITER_METHOD_LEFTMOST,
|
| +};
|
| +
|
| +
|
| +static void
|
| +iter_set_info(lzma_index_iter *iter)
|
| +{
|
| + const lzma_index *i = iter->internal[ITER_INDEX].p;
|
| + const index_stream *stream = iter->internal[ITER_STREAM].p;
|
| + const index_group *group = iter->internal[ITER_GROUP].p;
|
| + const size_t record = iter->internal[ITER_RECORD].s;
|
| +
|
| + // lzma_index_iter.internal must not contain a pointer to the last
|
| + // group in the index, because that may be reallocated by
|
| + // lzma_index_cat().
|
| + if (group == NULL) {
|
| + // There are no groups.
|
| + assert(stream->groups.root == NULL);
|
| + iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
|
| +
|
| + } else if (i->streams.rightmost != &stream->node
|
| + || stream->groups.rightmost != &group->node) {
|
| + // The group is not not the last group in the index.
|
| + iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
|
| +
|
| + } else if (stream->groups.leftmost != &group->node) {
|
| + // The group isn't the only group in the Stream, thus we
|
| + // know that it must have a parent group i.e. it's not
|
| + // the root node.
|
| + assert(stream->groups.root != &group->node);
|
| + assert(group->node.parent->right == &group->node);
|
| + iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT;
|
| + iter->internal[ITER_GROUP].p = group->node.parent;
|
| +
|
| + } else {
|
| + // The Stream has only one group.
|
| + assert(stream->groups.root == &group->node);
|
| + assert(group->node.parent == NULL);
|
| + iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
|
| + iter->internal[ITER_GROUP].p = NULL;
|
| + }
|
| +
|
| + iter->stream.number = stream->number;
|
| + iter->stream.block_count = stream->record_count;
|
| + iter->stream.compressed_offset = stream->node.compressed_base;
|
| + iter->stream.uncompressed_offset = stream->node.uncompressed_base;
|
| +
|
| + // iter->stream.flags will be NULL if the Stream Flags haven't been
|
| + // set with lzma_index_stream_flags().
|
| + iter->stream.flags = stream->stream_flags.version == UINT32_MAX
|
| + ? NULL : &stream->stream_flags;
|
| + iter->stream.padding = stream->stream_padding;
|
| +
|
| + if (stream->groups.rightmost == NULL) {
|
| + // Stream has no Blocks.
|
| + iter->stream.compressed_size = index_size(0, 0)
|
| + + 2 * LZMA_STREAM_HEADER_SIZE;
|
| + iter->stream.uncompressed_size = 0;
|
| + } else {
|
| + const index_group *g = (const index_group *)(
|
| + stream->groups.rightmost);
|
| +
|
| + // Stream Header + Stream Footer + Index + Blocks
|
| + iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE
|
| + + index_size(stream->record_count,
|
| + stream->index_list_size)
|
| + + vli_ceil4(g->records[g->last].unpadded_sum);
|
| + iter->stream.uncompressed_size
|
| + = g->records[g->last].uncompressed_sum;
|
| + }
|
| +
|
| + if (group != NULL) {
|
| + iter->block.number_in_stream = group->number_base + record;
|
| + iter->block.number_in_file = iter->block.number_in_stream
|
| + + stream->block_number_base;
|
| +
|
| + iter->block.compressed_stream_offset
|
| + = record == 0 ? group->node.compressed_base
|
| + : vli_ceil4(group->records[
|
| + record - 1].unpadded_sum);
|
| + iter->block.uncompressed_stream_offset
|
| + = record == 0 ? group->node.uncompressed_base
|
| + : group->records[record - 1].uncompressed_sum;
|
| +
|
| + iter->block.uncompressed_size
|
| + = group->records[record].uncompressed_sum
|
| + - iter->block.uncompressed_stream_offset;
|
| + iter->block.unpadded_size
|
| + = group->records[record].unpadded_sum
|
| + - iter->block.compressed_stream_offset;
|
| + iter->block.total_size = vli_ceil4(iter->block.unpadded_size);
|
| +
|
| + iter->block.compressed_stream_offset
|
| + += LZMA_STREAM_HEADER_SIZE;
|
| +
|
| + iter->block.compressed_file_offset
|
| + = iter->block.compressed_stream_offset
|
| + + iter->stream.compressed_offset;
|
| + iter->block.uncompressed_file_offset
|
| + = iter->block.uncompressed_stream_offset
|
| + + iter->stream.uncompressed_offset;
|
| + }
|
| +
|
| + return;
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(void)
|
| +lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i)
|
| +{
|
| + iter->internal[ITER_INDEX].p = i;
|
| + lzma_index_iter_rewind(iter);
|
| + return;
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(void)
|
| +lzma_index_iter_rewind(lzma_index_iter *iter)
|
| +{
|
| + iter->internal[ITER_STREAM].p = NULL;
|
| + iter->internal[ITER_GROUP].p = NULL;
|
| + iter->internal[ITER_RECORD].s = 0;
|
| + iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
|
| + return;
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(lzma_bool)
|
| +lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode)
|
| +{
|
| + // Catch unsupported mode values.
|
| + if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK)
|
| + return true;
|
| +
|
| + const lzma_index *i = iter->internal[ITER_INDEX].p;
|
| + const index_stream *stream = iter->internal[ITER_STREAM].p;
|
| + const index_group *group = NULL;
|
| + size_t record = iter->internal[ITER_RECORD].s;
|
| +
|
| + // If we are being asked for the next Stream, leave group to NULL
|
| + // so that the rest of the this function thinks that this Stream
|
| + // has no groups and will thus go to the next Stream.
|
| + if (mode != LZMA_INDEX_ITER_STREAM) {
|
| + // Get the pointer to the current group. See iter_set_inf()
|
| + // for explanation.
|
| + switch (iter->internal[ITER_METHOD].s) {
|
| + case ITER_METHOD_NORMAL:
|
| + group = iter->internal[ITER_GROUP].p;
|
| + break;
|
| +
|
| + case ITER_METHOD_NEXT:
|
| + group = index_tree_next(iter->internal[ITER_GROUP].p);
|
| + break;
|
| +
|
| + case ITER_METHOD_LEFTMOST:
|
| + group = (const index_group *)(
|
| + stream->groups.leftmost);
|
| + break;
|
| + }
|
| + }
|
| +
|
| +again:
|
| + if (stream == NULL) {
|
| + // We at the beginning of the lzma_index.
|
| + // Locate the first Stream.
|
| + stream = (const index_stream *)(i->streams.leftmost);
|
| + if (mode >= LZMA_INDEX_ITER_BLOCK) {
|
| + // Since we are being asked to return information
|
| + // about the first a Block, skip Streams that have
|
| + // no Blocks.
|
| + while (stream->groups.leftmost == NULL) {
|
| + stream = index_tree_next(&stream->node);
|
| + if (stream == NULL)
|
| + return true;
|
| + }
|
| + }
|
| +
|
| + // Start from the first Record in the Stream.
|
| + group = (const index_group *)(stream->groups.leftmost);
|
| + record = 0;
|
| +
|
| + } else if (group != NULL && record < group->last) {
|
| + // The next Record is in the same group.
|
| + ++record;
|
| +
|
| + } else {
|
| + // This group has no more Records or this Stream has
|
| + // no Blocks at all.
|
| + record = 0;
|
| +
|
| + // If group is not NULL, this Stream has at least one Block
|
| + // and thus at least one group. Find the next group.
|
| + if (group != NULL)
|
| + group = index_tree_next(&group->node);
|
| +
|
| + if (group == NULL) {
|
| + // This Stream has no more Records. Find the next
|
| + // Stream. If we are being asked to return information
|
| + // about a Block, we skip empty Streams.
|
| + do {
|
| + stream = index_tree_next(&stream->node);
|
| + if (stream == NULL)
|
| + return true;
|
| + } while (mode >= LZMA_INDEX_ITER_BLOCK
|
| + && stream->groups.leftmost == NULL);
|
| +
|
| + group = (const index_group *)(
|
| + stream->groups.leftmost);
|
| + }
|
| + }
|
| +
|
| + if (mode == LZMA_INDEX_ITER_NONEMPTY_BLOCK) {
|
| + // We need to look for the next Block again if this Block
|
| + // is empty.
|
| + if (record == 0) {
|
| + if (group->node.uncompressed_base
|
| + == group->records[0].uncompressed_sum)
|
| + goto again;
|
| + } else if (group->records[record - 1].uncompressed_sum
|
| + == group->records[record].uncompressed_sum) {
|
| + goto again;
|
| + }
|
| + }
|
| +
|
| + iter->internal[ITER_STREAM].p = stream;
|
| + iter->internal[ITER_GROUP].p = group;
|
| + iter->internal[ITER_RECORD].s = record;
|
| +
|
| + iter_set_info(iter);
|
| +
|
| + return false;
|
| +}
|
| +
|
| +
|
| +extern LZMA_API(lzma_bool)
|
| +lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target)
|
| +{
|
| + const lzma_index *i = iter->internal[ITER_INDEX].p;
|
| +
|
| + // If the target is past the end of the file, return immediately.
|
| + if (i->uncompressed_size <= target)
|
| + return true;
|
| +
|
| + // Locate the Stream containing the target offset.
|
| + const index_stream *stream = index_tree_locate(&i->streams, target);
|
| + assert(stream != NULL);
|
| + target -= stream->node.uncompressed_base;
|
| +
|
| + // Locate the group containing the target offset.
|
| + const index_group *group = index_tree_locate(&stream->groups, target);
|
| + assert(group != NULL);
|
| +
|
| + // Use binary search to locate the exact Record. It is the first
|
| + // Record whose uncompressed_sum is greater than target.
|
| + // This is because we want the rightmost Record that fullfills the
|
| + // search criterion. It is possible that there are empty Blocks;
|
| + // we don't want to return them.
|
| + size_t left = 0;
|
| + size_t right = group->last;
|
| +
|
| + while (left < right) {
|
| + const size_t pos = left + (right - left) / 2;
|
| + if (group->records[pos].uncompressed_sum <= target)
|
| + left = pos + 1;
|
| + else
|
| + right = pos;
|
| + }
|
| +
|
| + iter->internal[ITER_STREAM].p = stream;
|
| + iter->internal[ITER_GROUP].p = group;
|
| + iter->internal[ITER_RECORD].s = left;
|
| +
|
| + iter_set_info(iter);
|
| +
|
| + return false;
|
| +}
|
|
|
| Property changes on: xz/src/liblzma/common/index.c
|
| ___________________________________________________________________
|
| Added: svn:eol-style
|
| + LF
|
|
|
|
|