Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(339)

Side by Side Diff: xz/src/liblzma/common/index.c

Issue 2869016: Add an unpatched version of xz, XZ Utils, to /trunk/deps/third_party (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/deps/third_party/
Patch Set: Created 10 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « xz/src/liblzma/common/index.h ('k') | xz/src/liblzma/common/index_decoder.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Property Changes:
Added: svn:eol-style
+ LF
OLDNEW
(Empty)
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file index.c
4 /// \brief Handling of .xz Indexes and some other Stream information
5 //
6 // Author: Lasse Collin
7 //
8 // This file has been put into the public domain.
9 // You can do whatever you want with this file.
10 //
11 ///////////////////////////////////////////////////////////////////////////////
12
13 #include "index.h"
14 #include "stream_flags_common.h"
15
16
17 /// \brief How many Records to allocate at once
18 ///
19 /// This should be big enough to avoid making lots of tiny allocations
20 /// but small enough to avoid too much unused memory at once.
21 #define INDEX_GROUP_SIZE 500
22
23
24 /// \brief How many Records can be allocated at once at maximum
25 #define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record))
26
27
28 /// \brief Base structure for index_stream and index_group structures
29 typedef struct index_tree_node_s index_tree_node;
30 struct index_tree_node_s {
31 /// Uncompressed start offset of this Stream (relative to the
32 /// beginning of the file) or Block (relative to the beginning
33 /// of the Stream)
34 lzma_vli uncompressed_base;
35
36 /// Compressed start offset of this Stream or Block
37 lzma_vli compressed_base;
38
39 index_tree_node *parent;
40 index_tree_node *left;
41 index_tree_node *right;
42 };
43
44
45 /// \brief AVL tree to hold index_stream or index_group structures
46 typedef struct {
47 /// Root node
48 index_tree_node *root;
49
50 /// Leftmost node. Since the tree will be filled sequentially,
51 /// this won't change after the first node has been added to
52 /// the tree.
53 index_tree_node *leftmost;
54
55 /// The rightmost node in the tree. Since the tree is filled
56 /// sequentially, this is always the node where to add the new data.
57 index_tree_node *rightmost;
58
59 /// Number of nodes in the tree
60 uint32_t count;
61
62 } index_tree;
63
64
65 typedef struct {
66 lzma_vli uncompressed_sum;
67 lzma_vli unpadded_sum;
68 } index_record;
69
70
71 typedef struct {
72 /// Every Record group is part of index_stream.groups tree.
73 index_tree_node node;
74
75 /// Number of Blocks in this Stream before this group.
76 lzma_vli number_base;
77
78 /// Number of Records that can be put in records[].
79 size_t allocated;
80
81 /// Index of the last Record in use.
82 size_t last;
83
84 /// The sizes in this array are stored as cumulative sums relative
85 /// to the beginning of the Stream. This makes it possible to
86 /// use binary search in lzma_index_locate().
87 ///
88 /// Note that the cumulative summing is done specially for
89 /// unpadded_sum: The previous value is rounded up to the next
90 /// multiple of four before adding the Unpadded Size of the new
91 /// Block. The total encoded size of the Blocks in the Stream
92 /// is records[last].unpadded_sum in the last Record group of
93 /// the Stream.
94 ///
95 /// For example, if the Unpadded Sizes are 39, 57, and 81, the
96 /// stored values are 39, 97 (40 + 57), and 181 (100 + 181).
97 /// The total encoded size of these Blocks is 184.
98 ///
99 /// This is a flexible array, because it makes easy to optimize
100 /// memory usage in case someone concatenates many Streams that
101 /// have only one or few Blocks.
102 index_record records[];
103
104 } index_group;
105
106
107 typedef struct {
108 /// Every index_stream is a node in the tree of Sreams.
109 index_tree_node node;
110
111 /// Number of this Stream (first one is 1)
112 uint32_t number;
113
114 /// Total number of Blocks before this Stream
115 lzma_vli block_number_base;
116
117 /// Record groups of this Stream are stored in a tree.
118 /// It's a T-tree with AVL-tree balancing. There are
119 /// INDEX_GROUP_SIZE Records per node by default.
120 /// This keeps the number of memory allocations reasonable
121 /// and finding a Record is fast.
122 index_tree groups;
123
124 /// Number of Records in this Stream
125 lzma_vli record_count;
126
127 /// Size of the List of Records field in this Stream. This is used
128 /// together with record_count to calculate the size of the Index
129 /// field and thus the total size of the Stream.
130 lzma_vli index_list_size;
131
132 /// Stream Flags of this Stream. This is meaningful only if
133 /// the Stream Flags have been told us with lzma_index_stream_flags().
134 /// Initially stream_flags.version is set to UINT32_MAX to indicate
135 /// that the Stream Flags are unknown.
136 lzma_stream_flags stream_flags;
137
138 /// Amount of Stream Padding after this Stream. This defaults to
139 /// zero and can be set with lzma_index_stream_padding().
140 lzma_vli stream_padding;
141
142 } index_stream;
143
144
145 struct lzma_index_s {
146 /// AVL-tree containing the Stream(s). Often there is just one
147 /// Stream, but using a tree keeps lookups fast even when there
148 /// are many concatenated Streams.
149 index_tree streams;
150
151 /// Uncompressed size of all the Blocks in the Stream(s)
152 lzma_vli uncompressed_size;
153
154 /// Total size of all the Blocks in the Stream(s)
155 lzma_vli total_size;
156
157 /// Total number of Records in all Streams in this lzma_index
158 lzma_vli record_count;
159
160 /// Size of the List of Records field if all the Streams in this
161 /// lzma_index were packed into a single Stream (makes it simpler to
162 /// take many .xz files and combine them into a single Stream).
163 ///
164 /// This value together with record_count is needed to calculate
165 /// Backward Size that is stored into Stream Footer.
166 lzma_vli index_list_size;
167
168 /// How many Records to allocate at once in lzma_index_append().
169 /// This defaults to INDEX_GROUP_SIZE but can be overriden with
170 /// lzma_index_prealloc().
171 size_t prealloc;
172
173 /// Bitmask indicating what integrity check types have been used
174 /// as set by lzma_index_stream_flags(). The bit of the last Stream
175 /// is not included here, since it is possible to change it by
176 /// calling lzma_index_stream_flags() again.
177 uint32_t checks;
178 };
179
180
181 static void
182 index_tree_init(index_tree *tree)
183 {
184 tree->root = NULL;
185 tree->leftmost = NULL;
186 tree->rightmost = NULL;
187 tree->count = 0;
188 return;
189 }
190
191
192 /// Helper for index_tree_end()
193 static void
194 index_tree_node_end(index_tree_node *node, lzma_allocator *allocator,
195 void (*free_func)(void *node, lzma_allocator *allocator))
196 {
197 // The tree won't ever be very huge, so recursion should be fine.
198 // 20 levels in the tree is likely quite a lot already in practice.
199 if (node->left != NULL)
200 index_tree_node_end(node->left, allocator, free_func);
201
202 if (node->right != NULL)
203 index_tree_node_end(node->right, allocator, free_func);
204
205 if (free_func != NULL)
206 free_func(node, allocator);
207
208 lzma_free(node, allocator);
209 return;
210 }
211
212
213 /// Free the meory allocated for a tree. If free_func is not NULL,
214 /// it is called on each node before freeing the node. This is used
215 /// to free the Record groups from each index_stream before freeing
216 /// the index_stream itself.
217 static void
218 index_tree_end(index_tree *tree, lzma_allocator *allocator,
219 void (*free_func)(void *node, lzma_allocator *allocator))
220 {
221 if (tree->root != NULL)
222 index_tree_node_end(tree->root, allocator, free_func);
223
224 return;
225 }
226
227
228 /// Add a new node to the tree. node->uncompressed_base and
229 /// node->compressed_base must have been set by the caller already.
230 static void
231 index_tree_append(index_tree *tree, index_tree_node *node)
232 {
233 node->parent = tree->rightmost;
234 node->left = NULL;
235 node->right = NULL;
236
237 ++tree->count;
238
239 // Handle the special case of adding the first node.
240 if (tree->root == NULL) {
241 tree->root = node;
242 tree->leftmost = node;
243 tree->rightmost = node;
244 return;
245 }
246
247 // The tree is always filled sequentially.
248 assert(tree->rightmost->uncompressed_base <= node->uncompressed_base);
249 assert(tree->rightmost->compressed_base < node->compressed_base);
250
251 // Add the new node after the rightmost node. It's the correct
252 // place due to the reason above.
253 tree->rightmost->right = node;
254 tree->rightmost = node;
255
256 // Balance the AVL-tree if needed. We don't need to keep the balance
257 // factors in nodes, because we always fill the tree sequentially,
258 // and thus know the state of the tree just by looking at the node
259 // count. From the node count we can calculate how many steps to go
260 // up in the tree to find the rotation root.
261 uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count));
262 if (up != 0) {
263 // Locate the root node for the rotation.
264 up = ctz32(tree->count) + 2;
265 do {
266 node = node->parent;
267 } while (--up > 0);
268
269 // Rotate left using node as the rotation root.
270 index_tree_node *pivot = node->right;
271
272 if (node->parent == NULL) {
273 tree->root = pivot;
274 } else {
275 assert(node->parent->right == node);
276 node->parent->right = pivot;
277 }
278
279 pivot->parent = node->parent;
280
281 node->right = pivot->left;
282 if (node->right != NULL)
283 node->right->parent = node;
284
285 pivot->left = node;
286 node->parent = pivot;
287 }
288
289 return;
290 }
291
292
293 /// Get the next node in the tree. Return NULL if there are no more nodes.
294 static void *
295 index_tree_next(const index_tree_node *node)
296 {
297 if (node->right != NULL) {
298 node = node->right;
299 while (node->left != NULL)
300 node = node->left;
301
302 return (void *)(node);
303 }
304
305 while (node->parent != NULL && node->parent->right == node)
306 node = node->parent;
307
308 return (void *)(node->parent);
309 }
310
311
312 /// Locate a node that contains the given uncompressed offset. It is
313 /// caller's job to check that target is not bigger than the uncompressed
314 /// size of the tree (the last node would be returned in that case still).
315 static void *
316 index_tree_locate(const index_tree *tree, lzma_vli target)
317 {
318 const index_tree_node *result = NULL;
319 const index_tree_node *node = tree->root;
320
321 assert(tree->leftmost == NULL
322 || tree->leftmost->uncompressed_base == 0);
323
324 // Consecutive nodes may have the same uncompressed_base.
325 // We must pick the rightmost one.
326 while (node != NULL) {
327 if (node->uncompressed_base > target) {
328 node = node->left;
329 } else {
330 result = node;
331 node = node->right;
332 }
333 }
334
335 return (void *)(result);
336 }
337
338
339 /// Allocate and initialize a new Stream using the given base offsets.
340 static index_stream *
341 index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base,
342 lzma_vli stream_number, lzma_vli block_number_base,
343 lzma_allocator *allocator)
344 {
345 index_stream *s = lzma_alloc(sizeof(index_stream), allocator);
346 if (s == NULL)
347 return NULL;
348
349 s->node.uncompressed_base = uncompressed_base;
350 s->node.compressed_base = compressed_base;
351 s->node.parent = NULL;
352 s->node.left = NULL;
353 s->node.right = NULL;
354
355 s->number = stream_number;
356 s->block_number_base = block_number_base;
357
358 index_tree_init(&s->groups);
359
360 s->record_count = 0;
361 s->index_list_size = 0;
362 s->stream_flags.version = UINT32_MAX;
363 s->stream_padding = 0;
364
365 return s;
366 }
367
368
369 /// Free the memory allocated for a Stream and its Record groups.
370 static void
371 index_stream_end(void *node, lzma_allocator *allocator)
372 {
373 index_stream *s = node;
374 index_tree_end(&s->groups, allocator, NULL);
375 return;
376 }
377
378
379 static lzma_index *
380 index_init_plain(lzma_allocator *allocator)
381 {
382 lzma_index *i = lzma_alloc(sizeof(lzma_index), allocator);
383 if (i != NULL) {
384 index_tree_init(&i->streams);
385 i->uncompressed_size = 0;
386 i->total_size = 0;
387 i->record_count = 0;
388 i->index_list_size = 0;
389 i->prealloc = INDEX_GROUP_SIZE;
390 i->checks = 0;
391 }
392
393 return i;
394 }
395
396
397 extern LZMA_API(lzma_index *)
398 lzma_index_init(lzma_allocator *allocator)
399 {
400 lzma_index *i = index_init_plain(allocator);
401 index_stream *s = index_stream_init(0, 0, 1, 0, allocator);
402 if (i == NULL || s == NULL) {
403 index_stream_end(s, allocator);
404 lzma_free(i, allocator);
405 }
406
407 index_tree_append(&i->streams, &s->node);
408
409 return i;
410 }
411
412
413 extern LZMA_API(void)
414 lzma_index_end(lzma_index *i, lzma_allocator *allocator)
415 {
416 // NOTE: If you modify this function, check also the bottom
417 // of lzma_index_cat().
418 if (i != NULL) {
419 index_tree_end(&i->streams, allocator, &index_stream_end);
420 lzma_free(i, allocator);
421 }
422
423 return;
424 }
425
426
427 extern void
428 lzma_index_prealloc(lzma_index *i, lzma_vli records)
429 {
430 if (records > PREALLOC_MAX)
431 records = PREALLOC_MAX;
432
433 i->prealloc = (size_t)(records);
434 return;
435 }
436
437
438 extern LZMA_API(uint64_t)
439 lzma_index_memusage(lzma_vli streams, lzma_vli blocks)
440 {
441 // This calculates an upper bound that is only a little bit
442 // bigger than the exact maximum memory usage with the given
443 // parameters.
444
445 // Typical malloc() overhead is 2 * sizeof(void *) but we take
446 // a little bit extra just in case. Using LZMA_MEMUSAGE_BASE
447 // instead would give too inaccurate estimate.
448 const size_t alloc_overhead = 4 * sizeof(void *);
449
450 // Amount of memory needed for each Stream base structures.
451 // We assume that every Stream has at least one Block and
452 // thus at least one group.
453 const size_t stream_base = sizeof(index_stream)
454 + sizeof(index_group) + 2 * alloc_overhead;
455
456 // Amount of memory needed per group.
457 const size_t group_base = sizeof(index_group)
458 + INDEX_GROUP_SIZE * sizeof(index_record)
459 + alloc_overhead;
460
461 // Number of groups. There may actually be more, but that overhead
462 // has been taken into account in stream_base already.
463 const lzma_vli groups
464 = (blocks + INDEX_GROUP_SIZE - 1) / INDEX_GROUP_SIZE;
465
466 // Memory used by index_stream and index_group structures.
467 const uint64_t streams_mem = streams * stream_base;
468 const uint64_t groups_mem = groups * group_base;
469
470 // Memory used by the base structure.
471 const uint64_t index_base = sizeof(lzma_index) + alloc_overhead;
472
473 // Validate the arguments and catch integer overflows.
474 // Maximum number of Streams is "only" UINT32_MAX, because
475 // that limit is used by the tree containing the Streams.
476 const uint64_t limit = UINT64_MAX - index_base;
477 if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX
478 || streams > limit / stream_base
479 || groups > limit / group_base
480 || limit - streams_mem < groups_mem)
481 return UINT64_MAX;
482
483 return index_base + streams_mem + groups_mem;
484 }
485
486
487 extern LZMA_API(uint64_t)
488 lzma_index_memused(const lzma_index *i)
489 {
490 return lzma_index_memusage(i->streams.count, i->record_count);
491 }
492
493
494 extern LZMA_API(lzma_vli)
495 lzma_index_block_count(const lzma_index *i)
496 {
497 return i->record_count;
498 }
499
500
501 extern LZMA_API(lzma_vli)
502 lzma_index_stream_count(const lzma_index *i)
503 {
504 return i->streams.count;
505 }
506
507
508 extern LZMA_API(lzma_vli)
509 lzma_index_size(const lzma_index *i)
510 {
511 return index_size(i->record_count, i->index_list_size);
512 }
513
514
515 extern LZMA_API(lzma_vli)
516 lzma_index_total_size(const lzma_index *i)
517 {
518 return i->total_size;
519 }
520
521
522 extern LZMA_API(lzma_vli)
523 lzma_index_stream_size(const lzma_index *i)
524 {
525 // Stream Header + Blocks + Index + Stream Footer
526 return LZMA_STREAM_HEADER_SIZE + i->total_size
527 + index_size(i->record_count, i->index_list_size)
528 + LZMA_STREAM_HEADER_SIZE;
529 }
530
531
532 static lzma_vli
533 index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum,
534 lzma_vli record_count, lzma_vli index_list_size,
535 lzma_vli stream_padding)
536 {
537 // Earlier Streams and Stream Paddings + Stream Header
538 // + Blocks + Index + Stream Footer + Stream Padding
539 //
540 // This might go over LZMA_VLI_MAX due to too big unpadded_sum
541 // when this function is used in lzma_index_append().
542 lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE
543 + stream_padding + vli_ceil4(unpadded_sum);
544 if (file_size > LZMA_VLI_MAX)
545 return LZMA_VLI_UNKNOWN;
546
547 // The same applies here.
548 file_size += index_size(record_count, index_list_size);
549 if (file_size > LZMA_VLI_MAX)
550 return LZMA_VLI_UNKNOWN;
551
552 return file_size;
553 }
554
555
556 extern LZMA_API(lzma_vli)
557 lzma_index_file_size(const lzma_index *i)
558 {
559 const index_stream *s = (const index_stream *)(i->streams.rightmost);
560 const index_group *g = (const index_group *)(s->groups.rightmost);
561 return index_file_size(s->node.compressed_base,
562 g == NULL ? 0 : g->records[g->last].unpadded_sum,
563 s->record_count, s->index_list_size,
564 s->stream_padding);
565 }
566
567
568 extern LZMA_API(lzma_vli)
569 lzma_index_uncompressed_size(const lzma_index *i)
570 {
571 return i->uncompressed_size;
572 }
573
574
575 extern LZMA_API(uint32_t)
576 lzma_index_checks(const lzma_index *i)
577 {
578 uint32_t checks = i->checks;
579
580 // Get the type of the Check of the last Stream too.
581 const index_stream *s = (const index_stream *)(i->streams.rightmost);
582 if (s->stream_flags.version != UINT32_MAX)
583 checks |= UINT32_C(1) << s->stream_flags.check;
584
585 return checks;
586 }
587
588
589 extern uint32_t
590 lzma_index_padding_size(const lzma_index *i)
591 {
592 return (LZMA_VLI_C(4) - index_size_unpadded(
593 i->record_count, i->index_list_size)) & 3;
594 }
595
596
597 extern LZMA_API(lzma_ret)
598 lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags)
599 {
600 if (i == NULL || stream_flags == NULL)
601 return LZMA_PROG_ERROR;
602
603 // Validate the Stream Flags.
604 return_if_error(lzma_stream_flags_compare(
605 stream_flags, stream_flags));
606
607 index_stream *s = (index_stream *)(i->streams.rightmost);
608 s->stream_flags = *stream_flags;
609
610 return LZMA_OK;
611 }
612
613
614 extern LZMA_API(lzma_ret)
615 lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding)
616 {
617 if (i == NULL || stream_padding > LZMA_VLI_MAX
618 || (stream_padding & 3) != 0)
619 return LZMA_PROG_ERROR;
620
621 index_stream *s = (index_stream *)(i->streams.rightmost);
622
623 // Check that the new value won't make the file grow too big.
624 const lzma_vli old_stream_padding = s->stream_padding;
625 s->stream_padding = 0;
626 if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) {
627 s->stream_padding = old_stream_padding;
628 return LZMA_DATA_ERROR;
629 }
630
631 s->stream_padding = stream_padding;
632 return LZMA_OK;
633 }
634
635
636 extern LZMA_API(lzma_ret)
637 lzma_index_append(lzma_index *i, lzma_allocator *allocator,
638 lzma_vli unpadded_size, lzma_vli uncompressed_size)
639 {
640 // Validate.
641 if (i == NULL || unpadded_size < UNPADDED_SIZE_MIN
642 || unpadded_size > UNPADDED_SIZE_MAX
643 || uncompressed_size > LZMA_VLI_MAX)
644 return LZMA_PROG_ERROR;
645
646 index_stream *s = (index_stream *)(i->streams.rightmost);
647 index_group *g = (index_group *)(s->groups.rightmost);
648
649 const lzma_vli compressed_base = g == NULL ? 0
650 : vli_ceil4(g->records[g->last].unpadded_sum);
651 const lzma_vli uncompressed_base = g == NULL ? 0
652 : g->records[g->last].uncompressed_sum;
653 const uint32_t index_list_size_add = lzma_vli_size(unpadded_size)
654 + lzma_vli_size(uncompressed_size);
655
656 // Check that the file size will stay within limits.
657 if (index_file_size(s->node.compressed_base,
658 compressed_base + unpadded_size, s->record_count + 1,
659 s->index_list_size + index_list_size_add,
660 s->stream_padding) == LZMA_VLI_UNKNOWN)
661 return LZMA_DATA_ERROR;
662
663 // The size of the Index field must not exceed the maximum value
664 // that can be stored in the Backward Size field.
665 if (index_size(i->record_count + 1,
666 i->index_list_size + index_list_size_add)
667 > LZMA_BACKWARD_SIZE_MAX)
668 return LZMA_DATA_ERROR;
669
670 if (g != NULL && g->last + 1 < g->allocated) {
671 // There is space in the last group at least for one Record.
672 ++g->last;
673 } else {
674 // We need to allocate a new group.
675 g = lzma_alloc(sizeof(index_group)
676 + i->prealloc * sizeof(index_record),
677 allocator);
678 if (g == NULL)
679 return LZMA_MEM_ERROR;
680
681 g->last = 0;
682 g->allocated = i->prealloc;
683
684 // Reset prealloc so that if the application happens to
685 // add new Records, the allocation size will be sane.
686 i->prealloc = INDEX_GROUP_SIZE;
687
688 // Set the start offsets of this group.
689 g->node.uncompressed_base = uncompressed_base;
690 g->node.compressed_base = compressed_base;
691 g->number_base = s->record_count + 1;
692
693 // Add the new group to the Stream.
694 index_tree_append(&s->groups, &g->node);
695 }
696
697 // Add the new Record to the group.
698 g->records[g->last].uncompressed_sum
699 = uncompressed_base + uncompressed_size;
700 g->records[g->last].unpadded_sum
701 = compressed_base + unpadded_size;
702
703 // Update the totals.
704 ++s->record_count;
705 s->index_list_size += index_list_size_add;
706
707 i->total_size += vli_ceil4(unpadded_size);
708 i->uncompressed_size += uncompressed_size;
709 ++i->record_count;
710 i->index_list_size += index_list_size_add;
711
712 return LZMA_OK;
713 }
714
715
716 /// Structure to pass info to index_cat_helper()
717 typedef struct {
718 /// Uncompressed size of the destination
719 lzma_vli uncompressed_size;
720
721 /// Compressed file size of the destination
722 lzma_vli file_size;
723
724 /// Same as above but for Block numbers
725 lzma_vli block_number_add;
726
727 /// Number of Streams that were in the destination index before we
728 /// started appending new Streams from the source index. This is
729 /// used to fix the Stream numbering.
730 uint32_t stream_number_add;
731
732 /// Destination index' Stream tree
733 index_tree *streams;
734
735 } index_cat_info;
736
737
738 /// Add the Stream nodes from the source index to dest using recursion.
739 /// Simplest iterative traversal of the source tree wouldn't work, because
740 /// we update the pointers in nodes when moving them to the destination tree.
741 static void
742 index_cat_helper(const index_cat_info *info, index_stream *this)
743 {
744 index_stream *left = (index_stream *)(this->node.left);
745 index_stream *right = (index_stream *)(this->node.right);
746
747 if (left != NULL)
748 index_cat_helper(info, left);
749
750 this->node.uncompressed_base += info->uncompressed_size;
751 this->node.compressed_base += info->file_size;
752 this->number += info->stream_number_add;
753 this->block_number_base += info->block_number_add;
754 index_tree_append(info->streams, &this->node);
755
756 if (right != NULL)
757 index_cat_helper(info, right);
758
759 return;
760 }
761
762
763 extern LZMA_API(lzma_ret)
764 lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src,
765 lzma_allocator *allocator)
766 {
767 const lzma_vli dest_file_size = lzma_index_file_size(dest);
768
769 // Check that we don't exceed the file size limits.
770 if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX
771 || dest->uncompressed_size + src->uncompressed_size
772 > LZMA_VLI_MAX)
773 return LZMA_DATA_ERROR;
774
775 // Check that the encoded size of the combined lzma_indexes stays
776 // within limits. In theory, this should be done only if we know
777 // that the user plans to actually combine the Streams and thus
778 // construct a single Index (probably rare). However, exceeding
779 // this limit is quite theoretical, so we do this check always
780 // to simplify things elsewhere.
781 {
782 const lzma_vli dest_size = index_size_unpadded(
783 dest->record_count, dest->index_list_size);
784 const lzma_vli src_size = index_size_unpadded(
785 src->record_count, src->index_list_size);
786 if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX)
787 return LZMA_DATA_ERROR;
788 }
789
790 // Optimize the last group to minimize memory usage. Allocation has
791 // to be done before modifying dest or src.
792 {
793 index_stream *s = (index_stream *)(dest->streams.rightmost);
794 index_group *g = (index_group *)(s->groups.rightmost);
795 if (g != NULL && g->last + 1 < g->allocated) {
796 assert(g->node.left == NULL);
797 assert(g->node.right == NULL);
798
799 index_group *newg = lzma_alloc(sizeof(index_group)
800 + (g->last + 1)
801 * sizeof(index_record),
802 allocator);
803 if (newg == NULL)
804 return LZMA_MEM_ERROR;
805
806 newg->node = g->node;
807 newg->allocated = g->last + 1;
808 newg->last = g->last;
809 newg->number_base = g->number_base;
810
811 memcpy(newg->records, g->records, newg->allocated
812 * sizeof(index_record));
813
814 if (g->node.parent != NULL) {
815 assert(g->node.parent->right == &g->node);
816 g->node.parent->right = &newg->node;
817 }
818
819 if (s->groups.leftmost == &g->node) {
820 assert(s->groups.root == &g->node);
821 s->groups.leftmost = &newg->node;
822 s->groups.root = &newg->node;
823 }
824
825 if (s->groups.rightmost == &g->node)
826 s->groups.rightmost = &newg->node;
827
828 lzma_free(g, allocator);
829 }
830 }
831
832 // Add all the Streams from src to dest. Update the base offsets
833 // of each Stream from src.
834 const index_cat_info info = {
835 .uncompressed_size = dest->uncompressed_size,
836 .file_size = dest_file_size,
837 .stream_number_add = dest->streams.count,
838 .block_number_add = dest->record_count,
839 .streams = &dest->streams,
840 };
841 index_cat_helper(&info, (index_stream *)(src->streams.root));
842
843 // Update info about all the combined Streams.
844 dest->uncompressed_size += src->uncompressed_size;
845 dest->total_size += src->total_size;
846 dest->record_count += src->record_count;
847 dest->index_list_size += src->index_list_size;
848 dest->checks = lzma_index_checks(dest) | src->checks;
849
850 // There's nothing else left in src than the base structure.
851 lzma_free(src, allocator);
852
853 return LZMA_OK;
854 }
855
856
857 /// Duplicate an index_stream.
858 static index_stream *
859 index_dup_stream(const index_stream *src, lzma_allocator *allocator)
860 {
861 // Catch a somewhat theoretical integer overflow.
862 if (src->record_count > PREALLOC_MAX)
863 return NULL;
864
865 // Allocate and initialize a new Stream.
866 index_stream *dest = index_stream_init(src->node.compressed_base,
867 src->node.uncompressed_base, src->number,
868 src->block_number_base, allocator);
869
870 // Return immediately if allocation failed or if there are
871 // no groups to duplicate.
872 if (dest == NULL || src->groups.leftmost == NULL)
873 return dest;
874
875 // Copy the overall information.
876 dest->record_count = src->record_count;
877 dest->index_list_size = src->index_list_size;
878 dest->stream_flags = src->stream_flags;
879 dest->stream_padding = src->stream_padding;
880
881 // Allocate memory for the Records. We put all the Records into
882 // a single group. It's simplest and also tends to make
883 // lzma_index_locate() a little bit faster with very big Indexes.
884 index_group *destg = lzma_alloc(sizeof(index_group)
885 + src->record_count * sizeof(index_record),
886 allocator);
887 if (destg == NULL) {
888 index_stream_end(dest, allocator);
889 return NULL;
890 }
891
892 // Initialize destg.
893 destg->node.uncompressed_base = 0;
894 destg->node.compressed_base = 0;
895 destg->number_base = 1;
896 destg->allocated = src->record_count;
897 destg->last = src->record_count - 1;
898
899 // Go through all the groups in src and copy the Records into destg.
900 const index_group *srcg = (const index_group *)(src->groups.leftmost);
901 size_t i = 0;
902 do {
903 memcpy(destg->records + i, srcg->records,
904 (srcg->last + 1) * sizeof(index_record));
905 i += srcg->last + 1;
906 srcg = index_tree_next(&srcg->node);
907 } while (srcg != NULL);
908
909 assert(i == destg->allocated);
910
911 // Add the group to the new Stream.
912 index_tree_append(&dest->groups, &destg->node);
913
914 return dest;
915 }
916
917
918 extern LZMA_API(lzma_index *)
919 lzma_index_dup(const lzma_index *src, lzma_allocator *allocator)
920 {
921 // Allocate the base structure (no initial Stream).
922 lzma_index *dest = index_init_plain(allocator);
923 if (dest == NULL)
924 return NULL;
925
926 // Copy the totals.
927 dest->uncompressed_size = src->uncompressed_size;
928 dest->total_size = src->total_size;
929 dest->record_count = src->record_count;
930 dest->index_list_size = src->index_list_size;
931
932 // Copy the Streams and the groups in them.
933 const index_stream *srcstream
934 = (const index_stream *)(src->streams.leftmost);
935 do {
936 index_stream *deststream = index_dup_stream(
937 srcstream, allocator);
938 if (deststream == NULL) {
939 lzma_index_end(dest, allocator);
940 return NULL;
941 }
942
943 index_tree_append(&dest->streams, &deststream->node);
944
945 srcstream = index_tree_next(&srcstream->node);
946 } while (srcstream != NULL);
947
948 return dest;
949 }
950
951
952 /// Indexing for lzma_index_iter.internal[]
953 enum {
954 ITER_INDEX,
955 ITER_STREAM,
956 ITER_GROUP,
957 ITER_RECORD,
958 ITER_METHOD,
959 };
960
961
962 /// Values for lzma_index_iter.internal[ITER_METHOD].s
963 enum {
964 ITER_METHOD_NORMAL,
965 ITER_METHOD_NEXT,
966 ITER_METHOD_LEFTMOST,
967 };
968
969
970 static void
971 iter_set_info(lzma_index_iter *iter)
972 {
973 const lzma_index *i = iter->internal[ITER_INDEX].p;
974 const index_stream *stream = iter->internal[ITER_STREAM].p;
975 const index_group *group = iter->internal[ITER_GROUP].p;
976 const size_t record = iter->internal[ITER_RECORD].s;
977
978 // lzma_index_iter.internal must not contain a pointer to the last
979 // group in the index, because that may be reallocated by
980 // lzma_index_cat().
981 if (group == NULL) {
982 // There are no groups.
983 assert(stream->groups.root == NULL);
984 iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
985
986 } else if (i->streams.rightmost != &stream->node
987 || stream->groups.rightmost != &group->node) {
988 // The group is not not the last group in the index.
989 iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
990
991 } else if (stream->groups.leftmost != &group->node) {
992 // The group isn't the only group in the Stream, thus we
993 // know that it must have a parent group i.e. it's not
994 // the root node.
995 assert(stream->groups.root != &group->node);
996 assert(group->node.parent->right == &group->node);
997 iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT;
998 iter->internal[ITER_GROUP].p = group->node.parent;
999
1000 } else {
1001 // The Stream has only one group.
1002 assert(stream->groups.root == &group->node);
1003 assert(group->node.parent == NULL);
1004 iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
1005 iter->internal[ITER_GROUP].p = NULL;
1006 }
1007
1008 iter->stream.number = stream->number;
1009 iter->stream.block_count = stream->record_count;
1010 iter->stream.compressed_offset = stream->node.compressed_base;
1011 iter->stream.uncompressed_offset = stream->node.uncompressed_base;
1012
1013 // iter->stream.flags will be NULL if the Stream Flags haven't been
1014 // set with lzma_index_stream_flags().
1015 iter->stream.flags = stream->stream_flags.version == UINT32_MAX
1016 ? NULL : &stream->stream_flags;
1017 iter->stream.padding = stream->stream_padding;
1018
1019 if (stream->groups.rightmost == NULL) {
1020 // Stream has no Blocks.
1021 iter->stream.compressed_size = index_size(0, 0)
1022 + 2 * LZMA_STREAM_HEADER_SIZE;
1023 iter->stream.uncompressed_size = 0;
1024 } else {
1025 const index_group *g = (const index_group *)(
1026 stream->groups.rightmost);
1027
1028 // Stream Header + Stream Footer + Index + Blocks
1029 iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE
1030 + index_size(stream->record_count,
1031 stream->index_list_size)
1032 + vli_ceil4(g->records[g->last].unpadded_sum);
1033 iter->stream.uncompressed_size
1034 = g->records[g->last].uncompressed_sum;
1035 }
1036
1037 if (group != NULL) {
1038 iter->block.number_in_stream = group->number_base + record;
1039 iter->block.number_in_file = iter->block.number_in_stream
1040 + stream->block_number_base;
1041
1042 iter->block.compressed_stream_offset
1043 = record == 0 ? group->node.compressed_base
1044 : vli_ceil4(group->records[
1045 record - 1].unpadded_sum);
1046 iter->block.uncompressed_stream_offset
1047 = record == 0 ? group->node.uncompressed_base
1048 : group->records[record - 1].uncompressed_sum;
1049
1050 iter->block.uncompressed_size
1051 = group->records[record].uncompressed_sum
1052 - iter->block.uncompressed_stream_offset;
1053 iter->block.unpadded_size
1054 = group->records[record].unpadded_sum
1055 - iter->block.compressed_stream_offset;
1056 iter->block.total_size = vli_ceil4(iter->block.unpadded_size);
1057
1058 iter->block.compressed_stream_offset
1059 += LZMA_STREAM_HEADER_SIZE;
1060
1061 iter->block.compressed_file_offset
1062 = iter->block.compressed_stream_offset
1063 + iter->stream.compressed_offset;
1064 iter->block.uncompressed_file_offset
1065 = iter->block.uncompressed_stream_offset
1066 + iter->stream.uncompressed_offset;
1067 }
1068
1069 return;
1070 }
1071
1072
1073 extern LZMA_API(void)
1074 lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i)
1075 {
1076 iter->internal[ITER_INDEX].p = i;
1077 lzma_index_iter_rewind(iter);
1078 return;
1079 }
1080
1081
1082 extern LZMA_API(void)
1083 lzma_index_iter_rewind(lzma_index_iter *iter)
1084 {
1085 iter->internal[ITER_STREAM].p = NULL;
1086 iter->internal[ITER_GROUP].p = NULL;
1087 iter->internal[ITER_RECORD].s = 0;
1088 iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
1089 return;
1090 }
1091
1092
1093 extern LZMA_API(lzma_bool)
1094 lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode)
1095 {
1096 // Catch unsupported mode values.
1097 if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK)
1098 return true;
1099
1100 const lzma_index *i = iter->internal[ITER_INDEX].p;
1101 const index_stream *stream = iter->internal[ITER_STREAM].p;
1102 const index_group *group = NULL;
1103 size_t record = iter->internal[ITER_RECORD].s;
1104
1105 // If we are being asked for the next Stream, leave group to NULL
1106 // so that the rest of the this function thinks that this Stream
1107 // has no groups and will thus go to the next Stream.
1108 if (mode != LZMA_INDEX_ITER_STREAM) {
1109 // Get the pointer to the current group. See iter_set_inf()
1110 // for explanation.
1111 switch (iter->internal[ITER_METHOD].s) {
1112 case ITER_METHOD_NORMAL:
1113 group = iter->internal[ITER_GROUP].p;
1114 break;
1115
1116 case ITER_METHOD_NEXT:
1117 group = index_tree_next(iter->internal[ITER_GROUP].p);
1118 break;
1119
1120 case ITER_METHOD_LEFTMOST:
1121 group = (const index_group *)(
1122 stream->groups.leftmost);
1123 break;
1124 }
1125 }
1126
1127 again:
1128 if (stream == NULL) {
1129 // We at the beginning of the lzma_index.
1130 // Locate the first Stream.
1131 stream = (const index_stream *)(i->streams.leftmost);
1132 if (mode >= LZMA_INDEX_ITER_BLOCK) {
1133 // Since we are being asked to return information
1134 // about the first a Block, skip Streams that have
1135 // no Blocks.
1136 while (stream->groups.leftmost == NULL) {
1137 stream = index_tree_next(&stream->node);
1138 if (stream == NULL)
1139 return true;
1140 }
1141 }
1142
1143 // Start from the first Record in the Stream.
1144 group = (const index_group *)(stream->groups.leftmost);
1145 record = 0;
1146
1147 } else if (group != NULL && record < group->last) {
1148 // The next Record is in the same group.
1149 ++record;
1150
1151 } else {
1152 // This group has no more Records or this Stream has
1153 // no Blocks at all.
1154 record = 0;
1155
1156 // If group is not NULL, this Stream has at least one Block
1157 // and thus at least one group. Find the next group.
1158 if (group != NULL)
1159 group = index_tree_next(&group->node);
1160
1161 if (group == NULL) {
1162 // This Stream has no more Records. Find the next
1163 // Stream. If we are being asked to return information
1164 // about a Block, we skip empty Streams.
1165 do {
1166 stream = index_tree_next(&stream->node);
1167 if (stream == NULL)
1168 return true;
1169 } while (mode >= LZMA_INDEX_ITER_BLOCK
1170 && stream->groups.leftmost == NULL);
1171
1172 group = (const index_group *)(
1173 stream->groups.leftmost);
1174 }
1175 }
1176
1177 if (mode == LZMA_INDEX_ITER_NONEMPTY_BLOCK) {
1178 // We need to look for the next Block again if this Block
1179 // is empty.
1180 if (record == 0) {
1181 if (group->node.uncompressed_base
1182 == group->records[0].uncompressed_sum)
1183 goto again;
1184 } else if (group->records[record - 1].uncompressed_sum
1185 == group->records[record].uncompressed_sum) {
1186 goto again;
1187 }
1188 }
1189
1190 iter->internal[ITER_STREAM].p = stream;
1191 iter->internal[ITER_GROUP].p = group;
1192 iter->internal[ITER_RECORD].s = record;
1193
1194 iter_set_info(iter);
1195
1196 return false;
1197 }
1198
1199
1200 extern LZMA_API(lzma_bool)
1201 lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target)
1202 {
1203 const lzma_index *i = iter->internal[ITER_INDEX].p;
1204
1205 // If the target is past the end of the file, return immediately.
1206 if (i->uncompressed_size <= target)
1207 return true;
1208
1209 // Locate the Stream containing the target offset.
1210 const index_stream *stream = index_tree_locate(&i->streams, target);
1211 assert(stream != NULL);
1212 target -= stream->node.uncompressed_base;
1213
1214 // Locate the group containing the target offset.
1215 const index_group *group = index_tree_locate(&stream->groups, target);
1216 assert(group != NULL);
1217
1218 // Use binary search to locate the exact Record. It is the first
1219 // Record whose uncompressed_sum is greater than target.
1220 // This is because we want the rightmost Record that fullfills the
1221 // search criterion. It is possible that there are empty Blocks;
1222 // we don't want to return them.
1223 size_t left = 0;
1224 size_t right = group->last;
1225
1226 while (left < right) {
1227 const size_t pos = left + (right - left) / 2;
1228 if (group->records[pos].uncompressed_sum <= target)
1229 left = pos + 1;
1230 else
1231 right = pos;
1232 }
1233
1234 iter->internal[ITER_STREAM].p = stream;
1235 iter->internal[ITER_GROUP].p = group;
1236 iter->internal[ITER_RECORD].s = left;
1237
1238 iter_set_info(iter);
1239
1240 return false;
1241 }
OLDNEW
« no previous file with comments | « xz/src/liblzma/common/index.h ('k') | xz/src/liblzma/common/index_decoder.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698