OLD | NEW |
(Empty) | |
| 1 /////////////////////////////////////////////////////////////////////////////// |
| 2 // |
| 3 /// \file index.c |
| 4 /// \brief Handling of .xz Indexes and some other Stream information |
| 5 // |
| 6 // Author: Lasse Collin |
| 7 // |
| 8 // This file has been put into the public domain. |
| 9 // You can do whatever you want with this file. |
| 10 // |
| 11 /////////////////////////////////////////////////////////////////////////////// |
| 12 |
| 13 #include "index.h" |
| 14 #include "stream_flags_common.h" |
| 15 |
| 16 |
| 17 /// \brief How many Records to allocate at once |
| 18 /// |
| 19 /// This should be big enough to avoid making lots of tiny allocations |
| 20 /// but small enough to avoid too much unused memory at once. |
| 21 #define INDEX_GROUP_SIZE 500 |
| 22 |
| 23 |
| 24 /// \brief How many Records can be allocated at once at maximum |
| 25 #define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record)) |
| 26 |
| 27 |
| 28 /// \brief Base structure for index_stream and index_group structures |
| 29 typedef struct index_tree_node_s index_tree_node; |
| 30 struct index_tree_node_s { |
| 31 /// Uncompressed start offset of this Stream (relative to the |
| 32 /// beginning of the file) or Block (relative to the beginning |
| 33 /// of the Stream) |
| 34 lzma_vli uncompressed_base; |
| 35 |
| 36 /// Compressed start offset of this Stream or Block |
| 37 lzma_vli compressed_base; |
| 38 |
| 39 index_tree_node *parent; |
| 40 index_tree_node *left; |
| 41 index_tree_node *right; |
| 42 }; |
| 43 |
| 44 |
| 45 /// \brief AVL tree to hold index_stream or index_group structures |
| 46 typedef struct { |
| 47 /// Root node |
| 48 index_tree_node *root; |
| 49 |
| 50 /// Leftmost node. Since the tree will be filled sequentially, |
| 51 /// this won't change after the first node has been added to |
| 52 /// the tree. |
| 53 index_tree_node *leftmost; |
| 54 |
| 55 /// The rightmost node in the tree. Since the tree is filled |
| 56 /// sequentially, this is always the node where to add the new data. |
| 57 index_tree_node *rightmost; |
| 58 |
| 59 /// Number of nodes in the tree |
| 60 uint32_t count; |
| 61 |
| 62 } index_tree; |
| 63 |
| 64 |
| 65 typedef struct { |
| 66 lzma_vli uncompressed_sum; |
| 67 lzma_vli unpadded_sum; |
| 68 } index_record; |
| 69 |
| 70 |
| 71 typedef struct { |
| 72 /// Every Record group is part of index_stream.groups tree. |
| 73 index_tree_node node; |
| 74 |
| 75 /// Number of Blocks in this Stream before this group. |
| 76 lzma_vli number_base; |
| 77 |
| 78 /// Number of Records that can be put in records[]. |
| 79 size_t allocated; |
| 80 |
| 81 /// Index of the last Record in use. |
| 82 size_t last; |
| 83 |
| 84 /// The sizes in this array are stored as cumulative sums relative |
| 85 /// to the beginning of the Stream. This makes it possible to |
| 86 /// use binary search in lzma_index_locate(). |
| 87 /// |
| 88 /// Note that the cumulative summing is done specially for |
| 89 /// unpadded_sum: The previous value is rounded up to the next |
| 90 /// multiple of four before adding the Unpadded Size of the new |
| 91 /// Block. The total encoded size of the Blocks in the Stream |
| 92 /// is records[last].unpadded_sum in the last Record group of |
| 93 /// the Stream. |
| 94 /// |
| 95 /// For example, if the Unpadded Sizes are 39, 57, and 81, the |
| 96 /// stored values are 39, 97 (40 + 57), and 181 (100 + 181). |
| 97 /// The total encoded size of these Blocks is 184. |
| 98 /// |
| 99 /// This is a flexible array, because it makes easy to optimize |
| 100 /// memory usage in case someone concatenates many Streams that |
| 101 /// have only one or few Blocks. |
| 102 index_record records[]; |
| 103 |
| 104 } index_group; |
| 105 |
| 106 |
| 107 typedef struct { |
| 108 /// Every index_stream is a node in the tree of Sreams. |
| 109 index_tree_node node; |
| 110 |
| 111 /// Number of this Stream (first one is 1) |
| 112 uint32_t number; |
| 113 |
| 114 /// Total number of Blocks before this Stream |
| 115 lzma_vli block_number_base; |
| 116 |
| 117 /// Record groups of this Stream are stored in a tree. |
| 118 /// It's a T-tree with AVL-tree balancing. There are |
| 119 /// INDEX_GROUP_SIZE Records per node by default. |
| 120 /// This keeps the number of memory allocations reasonable |
| 121 /// and finding a Record is fast. |
| 122 index_tree groups; |
| 123 |
| 124 /// Number of Records in this Stream |
| 125 lzma_vli record_count; |
| 126 |
| 127 /// Size of the List of Records field in this Stream. This is used |
| 128 /// together with record_count to calculate the size of the Index |
| 129 /// field and thus the total size of the Stream. |
| 130 lzma_vli index_list_size; |
| 131 |
| 132 /// Stream Flags of this Stream. This is meaningful only if |
| 133 /// the Stream Flags have been told us with lzma_index_stream_flags(). |
| 134 /// Initially stream_flags.version is set to UINT32_MAX to indicate |
| 135 /// that the Stream Flags are unknown. |
| 136 lzma_stream_flags stream_flags; |
| 137 |
| 138 /// Amount of Stream Padding after this Stream. This defaults to |
| 139 /// zero and can be set with lzma_index_stream_padding(). |
| 140 lzma_vli stream_padding; |
| 141 |
| 142 } index_stream; |
| 143 |
| 144 |
| 145 struct lzma_index_s { |
| 146 /// AVL-tree containing the Stream(s). Often there is just one |
| 147 /// Stream, but using a tree keeps lookups fast even when there |
| 148 /// are many concatenated Streams. |
| 149 index_tree streams; |
| 150 |
| 151 /// Uncompressed size of all the Blocks in the Stream(s) |
| 152 lzma_vli uncompressed_size; |
| 153 |
| 154 /// Total size of all the Blocks in the Stream(s) |
| 155 lzma_vli total_size; |
| 156 |
| 157 /// Total number of Records in all Streams in this lzma_index |
| 158 lzma_vli record_count; |
| 159 |
| 160 /// Size of the List of Records field if all the Streams in this |
| 161 /// lzma_index were packed into a single Stream (makes it simpler to |
| 162 /// take many .xz files and combine them into a single Stream). |
| 163 /// |
| 164 /// This value together with record_count is needed to calculate |
| 165 /// Backward Size that is stored into Stream Footer. |
| 166 lzma_vli index_list_size; |
| 167 |
| 168 /// How many Records to allocate at once in lzma_index_append(). |
| 169 /// This defaults to INDEX_GROUP_SIZE but can be overriden with |
| 170 /// lzma_index_prealloc(). |
| 171 size_t prealloc; |
| 172 |
| 173 /// Bitmask indicating what integrity check types have been used |
| 174 /// as set by lzma_index_stream_flags(). The bit of the last Stream |
| 175 /// is not included here, since it is possible to change it by |
| 176 /// calling lzma_index_stream_flags() again. |
| 177 uint32_t checks; |
| 178 }; |
| 179 |
| 180 |
| 181 static void |
| 182 index_tree_init(index_tree *tree) |
| 183 { |
| 184 tree->root = NULL; |
| 185 tree->leftmost = NULL; |
| 186 tree->rightmost = NULL; |
| 187 tree->count = 0; |
| 188 return; |
| 189 } |
| 190 |
| 191 |
| 192 /// Helper for index_tree_end() |
| 193 static void |
| 194 index_tree_node_end(index_tree_node *node, lzma_allocator *allocator, |
| 195 void (*free_func)(void *node, lzma_allocator *allocator)) |
| 196 { |
| 197 // The tree won't ever be very huge, so recursion should be fine. |
| 198 // 20 levels in the tree is likely quite a lot already in practice. |
| 199 if (node->left != NULL) |
| 200 index_tree_node_end(node->left, allocator, free_func); |
| 201 |
| 202 if (node->right != NULL) |
| 203 index_tree_node_end(node->right, allocator, free_func); |
| 204 |
| 205 if (free_func != NULL) |
| 206 free_func(node, allocator); |
| 207 |
| 208 lzma_free(node, allocator); |
| 209 return; |
| 210 } |
| 211 |
| 212 |
| 213 /// Free the meory allocated for a tree. If free_func is not NULL, |
| 214 /// it is called on each node before freeing the node. This is used |
| 215 /// to free the Record groups from each index_stream before freeing |
| 216 /// the index_stream itself. |
| 217 static void |
| 218 index_tree_end(index_tree *tree, lzma_allocator *allocator, |
| 219 void (*free_func)(void *node, lzma_allocator *allocator)) |
| 220 { |
| 221 if (tree->root != NULL) |
| 222 index_tree_node_end(tree->root, allocator, free_func); |
| 223 |
| 224 return; |
| 225 } |
| 226 |
| 227 |
| 228 /// Add a new node to the tree. node->uncompressed_base and |
| 229 /// node->compressed_base must have been set by the caller already. |
| 230 static void |
| 231 index_tree_append(index_tree *tree, index_tree_node *node) |
| 232 { |
| 233 node->parent = tree->rightmost; |
| 234 node->left = NULL; |
| 235 node->right = NULL; |
| 236 |
| 237 ++tree->count; |
| 238 |
| 239 // Handle the special case of adding the first node. |
| 240 if (tree->root == NULL) { |
| 241 tree->root = node; |
| 242 tree->leftmost = node; |
| 243 tree->rightmost = node; |
| 244 return; |
| 245 } |
| 246 |
| 247 // The tree is always filled sequentially. |
| 248 assert(tree->rightmost->uncompressed_base <= node->uncompressed_base); |
| 249 assert(tree->rightmost->compressed_base < node->compressed_base); |
| 250 |
| 251 // Add the new node after the rightmost node. It's the correct |
| 252 // place due to the reason above. |
| 253 tree->rightmost->right = node; |
| 254 tree->rightmost = node; |
| 255 |
| 256 // Balance the AVL-tree if needed. We don't need to keep the balance |
| 257 // factors in nodes, because we always fill the tree sequentially, |
| 258 // and thus know the state of the tree just by looking at the node |
| 259 // count. From the node count we can calculate how many steps to go |
| 260 // up in the tree to find the rotation root. |
| 261 uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count)); |
| 262 if (up != 0) { |
| 263 // Locate the root node for the rotation. |
| 264 up = ctz32(tree->count) + 2; |
| 265 do { |
| 266 node = node->parent; |
| 267 } while (--up > 0); |
| 268 |
| 269 // Rotate left using node as the rotation root. |
| 270 index_tree_node *pivot = node->right; |
| 271 |
| 272 if (node->parent == NULL) { |
| 273 tree->root = pivot; |
| 274 } else { |
| 275 assert(node->parent->right == node); |
| 276 node->parent->right = pivot; |
| 277 } |
| 278 |
| 279 pivot->parent = node->parent; |
| 280 |
| 281 node->right = pivot->left; |
| 282 if (node->right != NULL) |
| 283 node->right->parent = node; |
| 284 |
| 285 pivot->left = node; |
| 286 node->parent = pivot; |
| 287 } |
| 288 |
| 289 return; |
| 290 } |
| 291 |
| 292 |
| 293 /// Get the next node in the tree. Return NULL if there are no more nodes. |
| 294 static void * |
| 295 index_tree_next(const index_tree_node *node) |
| 296 { |
| 297 if (node->right != NULL) { |
| 298 node = node->right; |
| 299 while (node->left != NULL) |
| 300 node = node->left; |
| 301 |
| 302 return (void *)(node); |
| 303 } |
| 304 |
| 305 while (node->parent != NULL && node->parent->right == node) |
| 306 node = node->parent; |
| 307 |
| 308 return (void *)(node->parent); |
| 309 } |
| 310 |
| 311 |
| 312 /// Locate a node that contains the given uncompressed offset. It is |
| 313 /// caller's job to check that target is not bigger than the uncompressed |
| 314 /// size of the tree (the last node would be returned in that case still). |
| 315 static void * |
| 316 index_tree_locate(const index_tree *tree, lzma_vli target) |
| 317 { |
| 318 const index_tree_node *result = NULL; |
| 319 const index_tree_node *node = tree->root; |
| 320 |
| 321 assert(tree->leftmost == NULL |
| 322 || tree->leftmost->uncompressed_base == 0); |
| 323 |
| 324 // Consecutive nodes may have the same uncompressed_base. |
| 325 // We must pick the rightmost one. |
| 326 while (node != NULL) { |
| 327 if (node->uncompressed_base > target) { |
| 328 node = node->left; |
| 329 } else { |
| 330 result = node; |
| 331 node = node->right; |
| 332 } |
| 333 } |
| 334 |
| 335 return (void *)(result); |
| 336 } |
| 337 |
| 338 |
| 339 /// Allocate and initialize a new Stream using the given base offsets. |
| 340 static index_stream * |
| 341 index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base, |
| 342 lzma_vli stream_number, lzma_vli block_number_base, |
| 343 lzma_allocator *allocator) |
| 344 { |
| 345 index_stream *s = lzma_alloc(sizeof(index_stream), allocator); |
| 346 if (s == NULL) |
| 347 return NULL; |
| 348 |
| 349 s->node.uncompressed_base = uncompressed_base; |
| 350 s->node.compressed_base = compressed_base; |
| 351 s->node.parent = NULL; |
| 352 s->node.left = NULL; |
| 353 s->node.right = NULL; |
| 354 |
| 355 s->number = stream_number; |
| 356 s->block_number_base = block_number_base; |
| 357 |
| 358 index_tree_init(&s->groups); |
| 359 |
| 360 s->record_count = 0; |
| 361 s->index_list_size = 0; |
| 362 s->stream_flags.version = UINT32_MAX; |
| 363 s->stream_padding = 0; |
| 364 |
| 365 return s; |
| 366 } |
| 367 |
| 368 |
| 369 /// Free the memory allocated for a Stream and its Record groups. |
| 370 static void |
| 371 index_stream_end(void *node, lzma_allocator *allocator) |
| 372 { |
| 373 index_stream *s = node; |
| 374 index_tree_end(&s->groups, allocator, NULL); |
| 375 return; |
| 376 } |
| 377 |
| 378 |
| 379 static lzma_index * |
| 380 index_init_plain(lzma_allocator *allocator) |
| 381 { |
| 382 lzma_index *i = lzma_alloc(sizeof(lzma_index), allocator); |
| 383 if (i != NULL) { |
| 384 index_tree_init(&i->streams); |
| 385 i->uncompressed_size = 0; |
| 386 i->total_size = 0; |
| 387 i->record_count = 0; |
| 388 i->index_list_size = 0; |
| 389 i->prealloc = INDEX_GROUP_SIZE; |
| 390 i->checks = 0; |
| 391 } |
| 392 |
| 393 return i; |
| 394 } |
| 395 |
| 396 |
| 397 extern LZMA_API(lzma_index *) |
| 398 lzma_index_init(lzma_allocator *allocator) |
| 399 { |
| 400 lzma_index *i = index_init_plain(allocator); |
| 401 index_stream *s = index_stream_init(0, 0, 1, 0, allocator); |
| 402 if (i == NULL || s == NULL) { |
| 403 index_stream_end(s, allocator); |
| 404 lzma_free(i, allocator); |
| 405 } |
| 406 |
| 407 index_tree_append(&i->streams, &s->node); |
| 408 |
| 409 return i; |
| 410 } |
| 411 |
| 412 |
| 413 extern LZMA_API(void) |
| 414 lzma_index_end(lzma_index *i, lzma_allocator *allocator) |
| 415 { |
| 416 // NOTE: If you modify this function, check also the bottom |
| 417 // of lzma_index_cat(). |
| 418 if (i != NULL) { |
| 419 index_tree_end(&i->streams, allocator, &index_stream_end); |
| 420 lzma_free(i, allocator); |
| 421 } |
| 422 |
| 423 return; |
| 424 } |
| 425 |
| 426 |
| 427 extern void |
| 428 lzma_index_prealloc(lzma_index *i, lzma_vli records) |
| 429 { |
| 430 if (records > PREALLOC_MAX) |
| 431 records = PREALLOC_MAX; |
| 432 |
| 433 i->prealloc = (size_t)(records); |
| 434 return; |
| 435 } |
| 436 |
| 437 |
| 438 extern LZMA_API(uint64_t) |
| 439 lzma_index_memusage(lzma_vli streams, lzma_vli blocks) |
| 440 { |
| 441 // This calculates an upper bound that is only a little bit |
| 442 // bigger than the exact maximum memory usage with the given |
| 443 // parameters. |
| 444 |
| 445 // Typical malloc() overhead is 2 * sizeof(void *) but we take |
| 446 // a little bit extra just in case. Using LZMA_MEMUSAGE_BASE |
| 447 // instead would give too inaccurate estimate. |
| 448 const size_t alloc_overhead = 4 * sizeof(void *); |
| 449 |
| 450 // Amount of memory needed for each Stream base structures. |
| 451 // We assume that every Stream has at least one Block and |
| 452 // thus at least one group. |
| 453 const size_t stream_base = sizeof(index_stream) |
| 454 + sizeof(index_group) + 2 * alloc_overhead; |
| 455 |
| 456 // Amount of memory needed per group. |
| 457 const size_t group_base = sizeof(index_group) |
| 458 + INDEX_GROUP_SIZE * sizeof(index_record) |
| 459 + alloc_overhead; |
| 460 |
| 461 // Number of groups. There may actually be more, but that overhead |
| 462 // has been taken into account in stream_base already. |
| 463 const lzma_vli groups |
| 464 = (blocks + INDEX_GROUP_SIZE - 1) / INDEX_GROUP_SIZE; |
| 465 |
| 466 // Memory used by index_stream and index_group structures. |
| 467 const uint64_t streams_mem = streams * stream_base; |
| 468 const uint64_t groups_mem = groups * group_base; |
| 469 |
| 470 // Memory used by the base structure. |
| 471 const uint64_t index_base = sizeof(lzma_index) + alloc_overhead; |
| 472 |
| 473 // Validate the arguments and catch integer overflows. |
| 474 // Maximum number of Streams is "only" UINT32_MAX, because |
| 475 // that limit is used by the tree containing the Streams. |
| 476 const uint64_t limit = UINT64_MAX - index_base; |
| 477 if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX |
| 478 || streams > limit / stream_base |
| 479 || groups > limit / group_base |
| 480 || limit - streams_mem < groups_mem) |
| 481 return UINT64_MAX; |
| 482 |
| 483 return index_base + streams_mem + groups_mem; |
| 484 } |
| 485 |
| 486 |
| 487 extern LZMA_API(uint64_t) |
| 488 lzma_index_memused(const lzma_index *i) |
| 489 { |
| 490 return lzma_index_memusage(i->streams.count, i->record_count); |
| 491 } |
| 492 |
| 493 |
| 494 extern LZMA_API(lzma_vli) |
| 495 lzma_index_block_count(const lzma_index *i) |
| 496 { |
| 497 return i->record_count; |
| 498 } |
| 499 |
| 500 |
| 501 extern LZMA_API(lzma_vli) |
| 502 lzma_index_stream_count(const lzma_index *i) |
| 503 { |
| 504 return i->streams.count; |
| 505 } |
| 506 |
| 507 |
| 508 extern LZMA_API(lzma_vli) |
| 509 lzma_index_size(const lzma_index *i) |
| 510 { |
| 511 return index_size(i->record_count, i->index_list_size); |
| 512 } |
| 513 |
| 514 |
| 515 extern LZMA_API(lzma_vli) |
| 516 lzma_index_total_size(const lzma_index *i) |
| 517 { |
| 518 return i->total_size; |
| 519 } |
| 520 |
| 521 |
| 522 extern LZMA_API(lzma_vli) |
| 523 lzma_index_stream_size(const lzma_index *i) |
| 524 { |
| 525 // Stream Header + Blocks + Index + Stream Footer |
| 526 return LZMA_STREAM_HEADER_SIZE + i->total_size |
| 527 + index_size(i->record_count, i->index_list_size) |
| 528 + LZMA_STREAM_HEADER_SIZE; |
| 529 } |
| 530 |
| 531 |
| 532 static lzma_vli |
| 533 index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum, |
| 534 lzma_vli record_count, lzma_vli index_list_size, |
| 535 lzma_vli stream_padding) |
| 536 { |
| 537 // Earlier Streams and Stream Paddings + Stream Header |
| 538 // + Blocks + Index + Stream Footer + Stream Padding |
| 539 // |
| 540 // This might go over LZMA_VLI_MAX due to too big unpadded_sum |
| 541 // when this function is used in lzma_index_append(). |
| 542 lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE |
| 543 + stream_padding + vli_ceil4(unpadded_sum); |
| 544 if (file_size > LZMA_VLI_MAX) |
| 545 return LZMA_VLI_UNKNOWN; |
| 546 |
| 547 // The same applies here. |
| 548 file_size += index_size(record_count, index_list_size); |
| 549 if (file_size > LZMA_VLI_MAX) |
| 550 return LZMA_VLI_UNKNOWN; |
| 551 |
| 552 return file_size; |
| 553 } |
| 554 |
| 555 |
| 556 extern LZMA_API(lzma_vli) |
| 557 lzma_index_file_size(const lzma_index *i) |
| 558 { |
| 559 const index_stream *s = (const index_stream *)(i->streams.rightmost); |
| 560 const index_group *g = (const index_group *)(s->groups.rightmost); |
| 561 return index_file_size(s->node.compressed_base, |
| 562 g == NULL ? 0 : g->records[g->last].unpadded_sum, |
| 563 s->record_count, s->index_list_size, |
| 564 s->stream_padding); |
| 565 } |
| 566 |
| 567 |
| 568 extern LZMA_API(lzma_vli) |
| 569 lzma_index_uncompressed_size(const lzma_index *i) |
| 570 { |
| 571 return i->uncompressed_size; |
| 572 } |
| 573 |
| 574 |
| 575 extern LZMA_API(uint32_t) |
| 576 lzma_index_checks(const lzma_index *i) |
| 577 { |
| 578 uint32_t checks = i->checks; |
| 579 |
| 580 // Get the type of the Check of the last Stream too. |
| 581 const index_stream *s = (const index_stream *)(i->streams.rightmost); |
| 582 if (s->stream_flags.version != UINT32_MAX) |
| 583 checks |= UINT32_C(1) << s->stream_flags.check; |
| 584 |
| 585 return checks; |
| 586 } |
| 587 |
| 588 |
| 589 extern uint32_t |
| 590 lzma_index_padding_size(const lzma_index *i) |
| 591 { |
| 592 return (LZMA_VLI_C(4) - index_size_unpadded( |
| 593 i->record_count, i->index_list_size)) & 3; |
| 594 } |
| 595 |
| 596 |
| 597 extern LZMA_API(lzma_ret) |
| 598 lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags) |
| 599 { |
| 600 if (i == NULL || stream_flags == NULL) |
| 601 return LZMA_PROG_ERROR; |
| 602 |
| 603 // Validate the Stream Flags. |
| 604 return_if_error(lzma_stream_flags_compare( |
| 605 stream_flags, stream_flags)); |
| 606 |
| 607 index_stream *s = (index_stream *)(i->streams.rightmost); |
| 608 s->stream_flags = *stream_flags; |
| 609 |
| 610 return LZMA_OK; |
| 611 } |
| 612 |
| 613 |
| 614 extern LZMA_API(lzma_ret) |
| 615 lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding) |
| 616 { |
| 617 if (i == NULL || stream_padding > LZMA_VLI_MAX |
| 618 || (stream_padding & 3) != 0) |
| 619 return LZMA_PROG_ERROR; |
| 620 |
| 621 index_stream *s = (index_stream *)(i->streams.rightmost); |
| 622 |
| 623 // Check that the new value won't make the file grow too big. |
| 624 const lzma_vli old_stream_padding = s->stream_padding; |
| 625 s->stream_padding = 0; |
| 626 if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) { |
| 627 s->stream_padding = old_stream_padding; |
| 628 return LZMA_DATA_ERROR; |
| 629 } |
| 630 |
| 631 s->stream_padding = stream_padding; |
| 632 return LZMA_OK; |
| 633 } |
| 634 |
| 635 |
| 636 extern LZMA_API(lzma_ret) |
| 637 lzma_index_append(lzma_index *i, lzma_allocator *allocator, |
| 638 lzma_vli unpadded_size, lzma_vli uncompressed_size) |
| 639 { |
| 640 // Validate. |
| 641 if (i == NULL || unpadded_size < UNPADDED_SIZE_MIN |
| 642 || unpadded_size > UNPADDED_SIZE_MAX |
| 643 || uncompressed_size > LZMA_VLI_MAX) |
| 644 return LZMA_PROG_ERROR; |
| 645 |
| 646 index_stream *s = (index_stream *)(i->streams.rightmost); |
| 647 index_group *g = (index_group *)(s->groups.rightmost); |
| 648 |
| 649 const lzma_vli compressed_base = g == NULL ? 0 |
| 650 : vli_ceil4(g->records[g->last].unpadded_sum); |
| 651 const lzma_vli uncompressed_base = g == NULL ? 0 |
| 652 : g->records[g->last].uncompressed_sum; |
| 653 const uint32_t index_list_size_add = lzma_vli_size(unpadded_size) |
| 654 + lzma_vli_size(uncompressed_size); |
| 655 |
| 656 // Check that the file size will stay within limits. |
| 657 if (index_file_size(s->node.compressed_base, |
| 658 compressed_base + unpadded_size, s->record_count + 1, |
| 659 s->index_list_size + index_list_size_add, |
| 660 s->stream_padding) == LZMA_VLI_UNKNOWN) |
| 661 return LZMA_DATA_ERROR; |
| 662 |
| 663 // The size of the Index field must not exceed the maximum value |
| 664 // that can be stored in the Backward Size field. |
| 665 if (index_size(i->record_count + 1, |
| 666 i->index_list_size + index_list_size_add) |
| 667 > LZMA_BACKWARD_SIZE_MAX) |
| 668 return LZMA_DATA_ERROR; |
| 669 |
| 670 if (g != NULL && g->last + 1 < g->allocated) { |
| 671 // There is space in the last group at least for one Record. |
| 672 ++g->last; |
| 673 } else { |
| 674 // We need to allocate a new group. |
| 675 g = lzma_alloc(sizeof(index_group) |
| 676 + i->prealloc * sizeof(index_record), |
| 677 allocator); |
| 678 if (g == NULL) |
| 679 return LZMA_MEM_ERROR; |
| 680 |
| 681 g->last = 0; |
| 682 g->allocated = i->prealloc; |
| 683 |
| 684 // Reset prealloc so that if the application happens to |
| 685 // add new Records, the allocation size will be sane. |
| 686 i->prealloc = INDEX_GROUP_SIZE; |
| 687 |
| 688 // Set the start offsets of this group. |
| 689 g->node.uncompressed_base = uncompressed_base; |
| 690 g->node.compressed_base = compressed_base; |
| 691 g->number_base = s->record_count + 1; |
| 692 |
| 693 // Add the new group to the Stream. |
| 694 index_tree_append(&s->groups, &g->node); |
| 695 } |
| 696 |
| 697 // Add the new Record to the group. |
| 698 g->records[g->last].uncompressed_sum |
| 699 = uncompressed_base + uncompressed_size; |
| 700 g->records[g->last].unpadded_sum |
| 701 = compressed_base + unpadded_size; |
| 702 |
| 703 // Update the totals. |
| 704 ++s->record_count; |
| 705 s->index_list_size += index_list_size_add; |
| 706 |
| 707 i->total_size += vli_ceil4(unpadded_size); |
| 708 i->uncompressed_size += uncompressed_size; |
| 709 ++i->record_count; |
| 710 i->index_list_size += index_list_size_add; |
| 711 |
| 712 return LZMA_OK; |
| 713 } |
| 714 |
| 715 |
| 716 /// Structure to pass info to index_cat_helper() |
| 717 typedef struct { |
| 718 /// Uncompressed size of the destination |
| 719 lzma_vli uncompressed_size; |
| 720 |
| 721 /// Compressed file size of the destination |
| 722 lzma_vli file_size; |
| 723 |
| 724 /// Same as above but for Block numbers |
| 725 lzma_vli block_number_add; |
| 726 |
| 727 /// Number of Streams that were in the destination index before we |
| 728 /// started appending new Streams from the source index. This is |
| 729 /// used to fix the Stream numbering. |
| 730 uint32_t stream_number_add; |
| 731 |
| 732 /// Destination index' Stream tree |
| 733 index_tree *streams; |
| 734 |
| 735 } index_cat_info; |
| 736 |
| 737 |
| 738 /// Add the Stream nodes from the source index to dest using recursion. |
| 739 /// Simplest iterative traversal of the source tree wouldn't work, because |
| 740 /// we update the pointers in nodes when moving them to the destination tree. |
| 741 static void |
| 742 index_cat_helper(const index_cat_info *info, index_stream *this) |
| 743 { |
| 744 index_stream *left = (index_stream *)(this->node.left); |
| 745 index_stream *right = (index_stream *)(this->node.right); |
| 746 |
| 747 if (left != NULL) |
| 748 index_cat_helper(info, left); |
| 749 |
| 750 this->node.uncompressed_base += info->uncompressed_size; |
| 751 this->node.compressed_base += info->file_size; |
| 752 this->number += info->stream_number_add; |
| 753 this->block_number_base += info->block_number_add; |
| 754 index_tree_append(info->streams, &this->node); |
| 755 |
| 756 if (right != NULL) |
| 757 index_cat_helper(info, right); |
| 758 |
| 759 return; |
| 760 } |
| 761 |
| 762 |
| 763 extern LZMA_API(lzma_ret) |
| 764 lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src, |
| 765 lzma_allocator *allocator) |
| 766 { |
| 767 const lzma_vli dest_file_size = lzma_index_file_size(dest); |
| 768 |
| 769 // Check that we don't exceed the file size limits. |
| 770 if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX |
| 771 || dest->uncompressed_size + src->uncompressed_size |
| 772 > LZMA_VLI_MAX) |
| 773 return LZMA_DATA_ERROR; |
| 774 |
| 775 // Check that the encoded size of the combined lzma_indexes stays |
| 776 // within limits. In theory, this should be done only if we know |
| 777 // that the user plans to actually combine the Streams and thus |
| 778 // construct a single Index (probably rare). However, exceeding |
| 779 // this limit is quite theoretical, so we do this check always |
| 780 // to simplify things elsewhere. |
| 781 { |
| 782 const lzma_vli dest_size = index_size_unpadded( |
| 783 dest->record_count, dest->index_list_size); |
| 784 const lzma_vli src_size = index_size_unpadded( |
| 785 src->record_count, src->index_list_size); |
| 786 if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX) |
| 787 return LZMA_DATA_ERROR; |
| 788 } |
| 789 |
| 790 // Optimize the last group to minimize memory usage. Allocation has |
| 791 // to be done before modifying dest or src. |
| 792 { |
| 793 index_stream *s = (index_stream *)(dest->streams.rightmost); |
| 794 index_group *g = (index_group *)(s->groups.rightmost); |
| 795 if (g != NULL && g->last + 1 < g->allocated) { |
| 796 assert(g->node.left == NULL); |
| 797 assert(g->node.right == NULL); |
| 798 |
| 799 index_group *newg = lzma_alloc(sizeof(index_group) |
| 800 + (g->last + 1) |
| 801 * sizeof(index_record), |
| 802 allocator); |
| 803 if (newg == NULL) |
| 804 return LZMA_MEM_ERROR; |
| 805 |
| 806 newg->node = g->node; |
| 807 newg->allocated = g->last + 1; |
| 808 newg->last = g->last; |
| 809 newg->number_base = g->number_base; |
| 810 |
| 811 memcpy(newg->records, g->records, newg->allocated |
| 812 * sizeof(index_record)); |
| 813 |
| 814 if (g->node.parent != NULL) { |
| 815 assert(g->node.parent->right == &g->node); |
| 816 g->node.parent->right = &newg->node; |
| 817 } |
| 818 |
| 819 if (s->groups.leftmost == &g->node) { |
| 820 assert(s->groups.root == &g->node); |
| 821 s->groups.leftmost = &newg->node; |
| 822 s->groups.root = &newg->node; |
| 823 } |
| 824 |
| 825 if (s->groups.rightmost == &g->node) |
| 826 s->groups.rightmost = &newg->node; |
| 827 |
| 828 lzma_free(g, allocator); |
| 829 } |
| 830 } |
| 831 |
| 832 // Add all the Streams from src to dest. Update the base offsets |
| 833 // of each Stream from src. |
| 834 const index_cat_info info = { |
| 835 .uncompressed_size = dest->uncompressed_size, |
| 836 .file_size = dest_file_size, |
| 837 .stream_number_add = dest->streams.count, |
| 838 .block_number_add = dest->record_count, |
| 839 .streams = &dest->streams, |
| 840 }; |
| 841 index_cat_helper(&info, (index_stream *)(src->streams.root)); |
| 842 |
| 843 // Update info about all the combined Streams. |
| 844 dest->uncompressed_size += src->uncompressed_size; |
| 845 dest->total_size += src->total_size; |
| 846 dest->record_count += src->record_count; |
| 847 dest->index_list_size += src->index_list_size; |
| 848 dest->checks = lzma_index_checks(dest) | src->checks; |
| 849 |
| 850 // There's nothing else left in src than the base structure. |
| 851 lzma_free(src, allocator); |
| 852 |
| 853 return LZMA_OK; |
| 854 } |
| 855 |
| 856 |
| 857 /// Duplicate an index_stream. |
| 858 static index_stream * |
| 859 index_dup_stream(const index_stream *src, lzma_allocator *allocator) |
| 860 { |
| 861 // Catch a somewhat theoretical integer overflow. |
| 862 if (src->record_count > PREALLOC_MAX) |
| 863 return NULL; |
| 864 |
| 865 // Allocate and initialize a new Stream. |
| 866 index_stream *dest = index_stream_init(src->node.compressed_base, |
| 867 src->node.uncompressed_base, src->number, |
| 868 src->block_number_base, allocator); |
| 869 |
| 870 // Return immediately if allocation failed or if there are |
| 871 // no groups to duplicate. |
| 872 if (dest == NULL || src->groups.leftmost == NULL) |
| 873 return dest; |
| 874 |
| 875 // Copy the overall information. |
| 876 dest->record_count = src->record_count; |
| 877 dest->index_list_size = src->index_list_size; |
| 878 dest->stream_flags = src->stream_flags; |
| 879 dest->stream_padding = src->stream_padding; |
| 880 |
| 881 // Allocate memory for the Records. We put all the Records into |
| 882 // a single group. It's simplest and also tends to make |
| 883 // lzma_index_locate() a little bit faster with very big Indexes. |
| 884 index_group *destg = lzma_alloc(sizeof(index_group) |
| 885 + src->record_count * sizeof(index_record), |
| 886 allocator); |
| 887 if (destg == NULL) { |
| 888 index_stream_end(dest, allocator); |
| 889 return NULL; |
| 890 } |
| 891 |
| 892 // Initialize destg. |
| 893 destg->node.uncompressed_base = 0; |
| 894 destg->node.compressed_base = 0; |
| 895 destg->number_base = 1; |
| 896 destg->allocated = src->record_count; |
| 897 destg->last = src->record_count - 1; |
| 898 |
| 899 // Go through all the groups in src and copy the Records into destg. |
| 900 const index_group *srcg = (const index_group *)(src->groups.leftmost); |
| 901 size_t i = 0; |
| 902 do { |
| 903 memcpy(destg->records + i, srcg->records, |
| 904 (srcg->last + 1) * sizeof(index_record)); |
| 905 i += srcg->last + 1; |
| 906 srcg = index_tree_next(&srcg->node); |
| 907 } while (srcg != NULL); |
| 908 |
| 909 assert(i == destg->allocated); |
| 910 |
| 911 // Add the group to the new Stream. |
| 912 index_tree_append(&dest->groups, &destg->node); |
| 913 |
| 914 return dest; |
| 915 } |
| 916 |
| 917 |
| 918 extern LZMA_API(lzma_index *) |
| 919 lzma_index_dup(const lzma_index *src, lzma_allocator *allocator) |
| 920 { |
| 921 // Allocate the base structure (no initial Stream). |
| 922 lzma_index *dest = index_init_plain(allocator); |
| 923 if (dest == NULL) |
| 924 return NULL; |
| 925 |
| 926 // Copy the totals. |
| 927 dest->uncompressed_size = src->uncompressed_size; |
| 928 dest->total_size = src->total_size; |
| 929 dest->record_count = src->record_count; |
| 930 dest->index_list_size = src->index_list_size; |
| 931 |
| 932 // Copy the Streams and the groups in them. |
| 933 const index_stream *srcstream |
| 934 = (const index_stream *)(src->streams.leftmost); |
| 935 do { |
| 936 index_stream *deststream = index_dup_stream( |
| 937 srcstream, allocator); |
| 938 if (deststream == NULL) { |
| 939 lzma_index_end(dest, allocator); |
| 940 return NULL; |
| 941 } |
| 942 |
| 943 index_tree_append(&dest->streams, &deststream->node); |
| 944 |
| 945 srcstream = index_tree_next(&srcstream->node); |
| 946 } while (srcstream != NULL); |
| 947 |
| 948 return dest; |
| 949 } |
| 950 |
| 951 |
| 952 /// Indexing for lzma_index_iter.internal[] |
| 953 enum { |
| 954 ITER_INDEX, |
| 955 ITER_STREAM, |
| 956 ITER_GROUP, |
| 957 ITER_RECORD, |
| 958 ITER_METHOD, |
| 959 }; |
| 960 |
| 961 |
| 962 /// Values for lzma_index_iter.internal[ITER_METHOD].s |
| 963 enum { |
| 964 ITER_METHOD_NORMAL, |
| 965 ITER_METHOD_NEXT, |
| 966 ITER_METHOD_LEFTMOST, |
| 967 }; |
| 968 |
| 969 |
| 970 static void |
| 971 iter_set_info(lzma_index_iter *iter) |
| 972 { |
| 973 const lzma_index *i = iter->internal[ITER_INDEX].p; |
| 974 const index_stream *stream = iter->internal[ITER_STREAM].p; |
| 975 const index_group *group = iter->internal[ITER_GROUP].p; |
| 976 const size_t record = iter->internal[ITER_RECORD].s; |
| 977 |
| 978 // lzma_index_iter.internal must not contain a pointer to the last |
| 979 // group in the index, because that may be reallocated by |
| 980 // lzma_index_cat(). |
| 981 if (group == NULL) { |
| 982 // There are no groups. |
| 983 assert(stream->groups.root == NULL); |
| 984 iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST; |
| 985 |
| 986 } else if (i->streams.rightmost != &stream->node |
| 987 || stream->groups.rightmost != &group->node) { |
| 988 // The group is not not the last group in the index. |
| 989 iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL; |
| 990 |
| 991 } else if (stream->groups.leftmost != &group->node) { |
| 992 // The group isn't the only group in the Stream, thus we |
| 993 // know that it must have a parent group i.e. it's not |
| 994 // the root node. |
| 995 assert(stream->groups.root != &group->node); |
| 996 assert(group->node.parent->right == &group->node); |
| 997 iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT; |
| 998 iter->internal[ITER_GROUP].p = group->node.parent; |
| 999 |
| 1000 } else { |
| 1001 // The Stream has only one group. |
| 1002 assert(stream->groups.root == &group->node); |
| 1003 assert(group->node.parent == NULL); |
| 1004 iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST; |
| 1005 iter->internal[ITER_GROUP].p = NULL; |
| 1006 } |
| 1007 |
| 1008 iter->stream.number = stream->number; |
| 1009 iter->stream.block_count = stream->record_count; |
| 1010 iter->stream.compressed_offset = stream->node.compressed_base; |
| 1011 iter->stream.uncompressed_offset = stream->node.uncompressed_base; |
| 1012 |
| 1013 // iter->stream.flags will be NULL if the Stream Flags haven't been |
| 1014 // set with lzma_index_stream_flags(). |
| 1015 iter->stream.flags = stream->stream_flags.version == UINT32_MAX |
| 1016 ? NULL : &stream->stream_flags; |
| 1017 iter->stream.padding = stream->stream_padding; |
| 1018 |
| 1019 if (stream->groups.rightmost == NULL) { |
| 1020 // Stream has no Blocks. |
| 1021 iter->stream.compressed_size = index_size(0, 0) |
| 1022 + 2 * LZMA_STREAM_HEADER_SIZE; |
| 1023 iter->stream.uncompressed_size = 0; |
| 1024 } else { |
| 1025 const index_group *g = (const index_group *)( |
| 1026 stream->groups.rightmost); |
| 1027 |
| 1028 // Stream Header + Stream Footer + Index + Blocks |
| 1029 iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE |
| 1030 + index_size(stream->record_count, |
| 1031 stream->index_list_size) |
| 1032 + vli_ceil4(g->records[g->last].unpadded_sum); |
| 1033 iter->stream.uncompressed_size |
| 1034 = g->records[g->last].uncompressed_sum; |
| 1035 } |
| 1036 |
| 1037 if (group != NULL) { |
| 1038 iter->block.number_in_stream = group->number_base + record; |
| 1039 iter->block.number_in_file = iter->block.number_in_stream |
| 1040 + stream->block_number_base; |
| 1041 |
| 1042 iter->block.compressed_stream_offset |
| 1043 = record == 0 ? group->node.compressed_base |
| 1044 : vli_ceil4(group->records[ |
| 1045 record - 1].unpadded_sum); |
| 1046 iter->block.uncompressed_stream_offset |
| 1047 = record == 0 ? group->node.uncompressed_base |
| 1048 : group->records[record - 1].uncompressed_sum; |
| 1049 |
| 1050 iter->block.uncompressed_size |
| 1051 = group->records[record].uncompressed_sum |
| 1052 - iter->block.uncompressed_stream_offset; |
| 1053 iter->block.unpadded_size |
| 1054 = group->records[record].unpadded_sum |
| 1055 - iter->block.compressed_stream_offset; |
| 1056 iter->block.total_size = vli_ceil4(iter->block.unpadded_size); |
| 1057 |
| 1058 iter->block.compressed_stream_offset |
| 1059 += LZMA_STREAM_HEADER_SIZE; |
| 1060 |
| 1061 iter->block.compressed_file_offset |
| 1062 = iter->block.compressed_stream_offset |
| 1063 + iter->stream.compressed_offset; |
| 1064 iter->block.uncompressed_file_offset |
| 1065 = iter->block.uncompressed_stream_offset |
| 1066 + iter->stream.uncompressed_offset; |
| 1067 } |
| 1068 |
| 1069 return; |
| 1070 } |
| 1071 |
| 1072 |
| 1073 extern LZMA_API(void) |
| 1074 lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i) |
| 1075 { |
| 1076 iter->internal[ITER_INDEX].p = i; |
| 1077 lzma_index_iter_rewind(iter); |
| 1078 return; |
| 1079 } |
| 1080 |
| 1081 |
| 1082 extern LZMA_API(void) |
| 1083 lzma_index_iter_rewind(lzma_index_iter *iter) |
| 1084 { |
| 1085 iter->internal[ITER_STREAM].p = NULL; |
| 1086 iter->internal[ITER_GROUP].p = NULL; |
| 1087 iter->internal[ITER_RECORD].s = 0; |
| 1088 iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL; |
| 1089 return; |
| 1090 } |
| 1091 |
| 1092 |
| 1093 extern LZMA_API(lzma_bool) |
| 1094 lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode) |
| 1095 { |
| 1096 // Catch unsupported mode values. |
| 1097 if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK) |
| 1098 return true; |
| 1099 |
| 1100 const lzma_index *i = iter->internal[ITER_INDEX].p; |
| 1101 const index_stream *stream = iter->internal[ITER_STREAM].p; |
| 1102 const index_group *group = NULL; |
| 1103 size_t record = iter->internal[ITER_RECORD].s; |
| 1104 |
| 1105 // If we are being asked for the next Stream, leave group to NULL |
| 1106 // so that the rest of the this function thinks that this Stream |
| 1107 // has no groups and will thus go to the next Stream. |
| 1108 if (mode != LZMA_INDEX_ITER_STREAM) { |
| 1109 // Get the pointer to the current group. See iter_set_inf() |
| 1110 // for explanation. |
| 1111 switch (iter->internal[ITER_METHOD].s) { |
| 1112 case ITER_METHOD_NORMAL: |
| 1113 group = iter->internal[ITER_GROUP].p; |
| 1114 break; |
| 1115 |
| 1116 case ITER_METHOD_NEXT: |
| 1117 group = index_tree_next(iter->internal[ITER_GROUP].p); |
| 1118 break; |
| 1119 |
| 1120 case ITER_METHOD_LEFTMOST: |
| 1121 group = (const index_group *)( |
| 1122 stream->groups.leftmost); |
| 1123 break; |
| 1124 } |
| 1125 } |
| 1126 |
| 1127 again: |
| 1128 if (stream == NULL) { |
| 1129 // We at the beginning of the lzma_index. |
| 1130 // Locate the first Stream. |
| 1131 stream = (const index_stream *)(i->streams.leftmost); |
| 1132 if (mode >= LZMA_INDEX_ITER_BLOCK) { |
| 1133 // Since we are being asked to return information |
| 1134 // about the first a Block, skip Streams that have |
| 1135 // no Blocks. |
| 1136 while (stream->groups.leftmost == NULL) { |
| 1137 stream = index_tree_next(&stream->node); |
| 1138 if (stream == NULL) |
| 1139 return true; |
| 1140 } |
| 1141 } |
| 1142 |
| 1143 // Start from the first Record in the Stream. |
| 1144 group = (const index_group *)(stream->groups.leftmost); |
| 1145 record = 0; |
| 1146 |
| 1147 } else if (group != NULL && record < group->last) { |
| 1148 // The next Record is in the same group. |
| 1149 ++record; |
| 1150 |
| 1151 } else { |
| 1152 // This group has no more Records or this Stream has |
| 1153 // no Blocks at all. |
| 1154 record = 0; |
| 1155 |
| 1156 // If group is not NULL, this Stream has at least one Block |
| 1157 // and thus at least one group. Find the next group. |
| 1158 if (group != NULL) |
| 1159 group = index_tree_next(&group->node); |
| 1160 |
| 1161 if (group == NULL) { |
| 1162 // This Stream has no more Records. Find the next |
| 1163 // Stream. If we are being asked to return information |
| 1164 // about a Block, we skip empty Streams. |
| 1165 do { |
| 1166 stream = index_tree_next(&stream->node); |
| 1167 if (stream == NULL) |
| 1168 return true; |
| 1169 } while (mode >= LZMA_INDEX_ITER_BLOCK |
| 1170 && stream->groups.leftmost == NULL); |
| 1171 |
| 1172 group = (const index_group *)( |
| 1173 stream->groups.leftmost); |
| 1174 } |
| 1175 } |
| 1176 |
| 1177 if (mode == LZMA_INDEX_ITER_NONEMPTY_BLOCK) { |
| 1178 // We need to look for the next Block again if this Block |
| 1179 // is empty. |
| 1180 if (record == 0) { |
| 1181 if (group->node.uncompressed_base |
| 1182 == group->records[0].uncompressed_sum) |
| 1183 goto again; |
| 1184 } else if (group->records[record - 1].uncompressed_sum |
| 1185 == group->records[record].uncompressed_sum) { |
| 1186 goto again; |
| 1187 } |
| 1188 } |
| 1189 |
| 1190 iter->internal[ITER_STREAM].p = stream; |
| 1191 iter->internal[ITER_GROUP].p = group; |
| 1192 iter->internal[ITER_RECORD].s = record; |
| 1193 |
| 1194 iter_set_info(iter); |
| 1195 |
| 1196 return false; |
| 1197 } |
| 1198 |
| 1199 |
| 1200 extern LZMA_API(lzma_bool) |
| 1201 lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target) |
| 1202 { |
| 1203 const lzma_index *i = iter->internal[ITER_INDEX].p; |
| 1204 |
| 1205 // If the target is past the end of the file, return immediately. |
| 1206 if (i->uncompressed_size <= target) |
| 1207 return true; |
| 1208 |
| 1209 // Locate the Stream containing the target offset. |
| 1210 const index_stream *stream = index_tree_locate(&i->streams, target); |
| 1211 assert(stream != NULL); |
| 1212 target -= stream->node.uncompressed_base; |
| 1213 |
| 1214 // Locate the group containing the target offset. |
| 1215 const index_group *group = index_tree_locate(&stream->groups, target); |
| 1216 assert(group != NULL); |
| 1217 |
| 1218 // Use binary search to locate the exact Record. It is the first |
| 1219 // Record whose uncompressed_sum is greater than target. |
| 1220 // This is because we want the rightmost Record that fullfills the |
| 1221 // search criterion. It is possible that there are empty Blocks; |
| 1222 // we don't want to return them. |
| 1223 size_t left = 0; |
| 1224 size_t right = group->last; |
| 1225 |
| 1226 while (left < right) { |
| 1227 const size_t pos = left + (right - left) / 2; |
| 1228 if (group->records[pos].uncompressed_sum <= target) |
| 1229 left = pos + 1; |
| 1230 else |
| 1231 right = pos; |
| 1232 } |
| 1233 |
| 1234 iter->internal[ITER_STREAM].p = stream; |
| 1235 iter->internal[ITER_GROUP].p = group; |
| 1236 iter->internal[ITER_RECORD].s = left; |
| 1237 |
| 1238 iter_set_info(iter); |
| 1239 |
| 1240 return false; |
| 1241 } |
OLD | NEW |