Index: xz/src/liblzma/lzma/lzma_encoder.c |
=================================================================== |
--- xz/src/liblzma/lzma/lzma_encoder.c (revision 0) |
+++ xz/src/liblzma/lzma/lzma_encoder.c (revision 0) |
@@ -0,0 +1,675 @@ |
+/////////////////////////////////////////////////////////////////////////////// |
+// |
+/// \file lzma_encoder.c |
+/// \brief LZMA encoder |
+/// |
+// Authors: Igor Pavlov |
+// Lasse Collin |
+// |
+// This file has been put into the public domain. |
+// You can do whatever you want with this file. |
+// |
+/////////////////////////////////////////////////////////////////////////////// |
+ |
+#include "lzma2_encoder.h" |
+#include "lzma_encoder_private.h" |
+#include "fastpos.h" |
+ |
+ |
+///////////// |
+// Literal // |
+///////////// |
+ |
+static inline void |
+literal_matched(lzma_range_encoder *rc, probability *subcoder, |
+ uint32_t match_byte, uint32_t symbol) |
+{ |
+ uint32_t offset = 0x100; |
+ symbol += UINT32_C(1) << 8; |
+ |
+ do { |
+ match_byte <<= 1; |
+ const uint32_t match_bit = match_byte & offset; |
+ const uint32_t subcoder_index |
+ = offset + match_bit + (symbol >> 8); |
+ const uint32_t bit = (symbol >> 7) & 1; |
+ rc_bit(rc, &subcoder[subcoder_index], bit); |
+ |
+ symbol <<= 1; |
+ offset &= ~(match_byte ^ symbol); |
+ |
+ } while (symbol < (UINT32_C(1) << 16)); |
+} |
+ |
+ |
+static inline void |
+literal(lzma_coder *coder, lzma_mf *mf, uint32_t position) |
+{ |
+ // Locate the literal byte to be encoded and the subcoder. |
+ const uint8_t cur_byte = mf->buffer[ |
+ mf->read_pos - mf->read_ahead]; |
+ probability *subcoder = literal_subcoder(coder->literal, |
+ coder->literal_context_bits, coder->literal_pos_mask, |
+ position, mf->buffer[mf->read_pos - mf->read_ahead - 1]); |
+ |
+ if (is_literal_state(coder->state)) { |
+ // Previous LZMA-symbol was a literal. Encode a normal |
+ // literal without a match byte. |
+ rc_bittree(&coder->rc, subcoder, 8, cur_byte); |
+ } else { |
+ // Previous LZMA-symbol was a match. Use the last byte of |
+ // the match as a "match byte". That is, compare the bits |
+ // of the current literal and the match byte. |
+ const uint8_t match_byte = mf->buffer[ |
+ mf->read_pos - coder->reps[0] - 1 |
+ - mf->read_ahead]; |
+ literal_matched(&coder->rc, subcoder, match_byte, cur_byte); |
+ } |
+ |
+ update_literal(coder->state); |
+} |
+ |
+ |
+////////////////// |
+// Match length // |
+////////////////// |
+ |
+static void |
+length_update_prices(lzma_length_encoder *lc, const uint32_t pos_state) |
+{ |
+ const uint32_t table_size = lc->table_size; |
+ lc->counters[pos_state] = table_size; |
+ |
+ const uint32_t a0 = rc_bit_0_price(lc->choice); |
+ const uint32_t a1 = rc_bit_1_price(lc->choice); |
+ const uint32_t b0 = a1 + rc_bit_0_price(lc->choice2); |
+ const uint32_t b1 = a1 + rc_bit_1_price(lc->choice2); |
+ uint32_t *const prices = lc->prices[pos_state]; |
+ |
+ uint32_t i; |
+ for (i = 0; i < table_size && i < LEN_LOW_SYMBOLS; ++i) |
+ prices[i] = a0 + rc_bittree_price(lc->low[pos_state], |
+ LEN_LOW_BITS, i); |
+ |
+ for (; i < table_size && i < LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS; ++i) |
+ prices[i] = b0 + rc_bittree_price(lc->mid[pos_state], |
+ LEN_MID_BITS, i - LEN_LOW_SYMBOLS); |
+ |
+ for (; i < table_size; ++i) |
+ prices[i] = b1 + rc_bittree_price(lc->high, LEN_HIGH_BITS, |
+ i - LEN_LOW_SYMBOLS - LEN_MID_SYMBOLS); |
+ |
+ return; |
+} |
+ |
+ |
+static inline void |
+length(lzma_range_encoder *rc, lzma_length_encoder *lc, |
+ const uint32_t pos_state, uint32_t len, const bool fast_mode) |
+{ |
+ assert(len <= MATCH_LEN_MAX); |
+ len -= MATCH_LEN_MIN; |
+ |
+ if (len < LEN_LOW_SYMBOLS) { |
+ rc_bit(rc, &lc->choice, 0); |
+ rc_bittree(rc, lc->low[pos_state], LEN_LOW_BITS, len); |
+ } else { |
+ rc_bit(rc, &lc->choice, 1); |
+ len -= LEN_LOW_SYMBOLS; |
+ |
+ if (len < LEN_MID_SYMBOLS) { |
+ rc_bit(rc, &lc->choice2, 0); |
+ rc_bittree(rc, lc->mid[pos_state], LEN_MID_BITS, len); |
+ } else { |
+ rc_bit(rc, &lc->choice2, 1); |
+ len -= LEN_MID_SYMBOLS; |
+ rc_bittree(rc, lc->high, LEN_HIGH_BITS, len); |
+ } |
+ } |
+ |
+ // Only getoptimum uses the prices so don't update the table when |
+ // in fast mode. |
+ if (!fast_mode) |
+ if (--lc->counters[pos_state] == 0) |
+ length_update_prices(lc, pos_state); |
+} |
+ |
+ |
+/////////// |
+// Match // |
+/////////// |
+ |
+static inline void |
+match(lzma_coder *coder, const uint32_t pos_state, |
+ const uint32_t distance, const uint32_t len) |
+{ |
+ update_match(coder->state); |
+ |
+ length(&coder->rc, &coder->match_len_encoder, pos_state, len, |
+ coder->fast_mode); |
+ |
+ const uint32_t pos_slot = get_pos_slot(distance); |
+ const uint32_t len_to_pos_state = get_len_to_pos_state(len); |
+ rc_bittree(&coder->rc, coder->pos_slot[len_to_pos_state], |
+ POS_SLOT_BITS, pos_slot); |
+ |
+ if (pos_slot >= START_POS_MODEL_INDEX) { |
+ const uint32_t footer_bits = (pos_slot >> 1) - 1; |
+ const uint32_t base = (2 | (pos_slot & 1)) << footer_bits; |
+ const uint32_t pos_reduced = distance - base; |
+ |
+ if (pos_slot < END_POS_MODEL_INDEX) { |
+ // Careful here: base - pos_slot - 1 can be -1, but |
+ // rc_bittree_reverse starts at probs[1], not probs[0]. |
+ rc_bittree_reverse(&coder->rc, |
+ coder->pos_special + base - pos_slot - 1, |
+ footer_bits, pos_reduced); |
+ } else { |
+ rc_direct(&coder->rc, pos_reduced >> ALIGN_BITS, |
+ footer_bits - ALIGN_BITS); |
+ rc_bittree_reverse( |
+ &coder->rc, coder->pos_align, |
+ ALIGN_BITS, pos_reduced & ALIGN_MASK); |
+ ++coder->align_price_count; |
+ } |
+ } |
+ |
+ coder->reps[3] = coder->reps[2]; |
+ coder->reps[2] = coder->reps[1]; |
+ coder->reps[1] = coder->reps[0]; |
+ coder->reps[0] = distance; |
+ ++coder->match_price_count; |
+} |
+ |
+ |
+//////////////////// |
+// Repeated match // |
+//////////////////// |
+ |
+static inline void |
+rep_match(lzma_coder *coder, const uint32_t pos_state, |
+ const uint32_t rep, const uint32_t len) |
+{ |
+ if (rep == 0) { |
+ rc_bit(&coder->rc, &coder->is_rep0[coder->state], 0); |
+ rc_bit(&coder->rc, |
+ &coder->is_rep0_long[coder->state][pos_state], |
+ len != 1); |
+ } else { |
+ const uint32_t distance = coder->reps[rep]; |
+ rc_bit(&coder->rc, &coder->is_rep0[coder->state], 1); |
+ |
+ if (rep == 1) { |
+ rc_bit(&coder->rc, &coder->is_rep1[coder->state], 0); |
+ } else { |
+ rc_bit(&coder->rc, &coder->is_rep1[coder->state], 1); |
+ rc_bit(&coder->rc, &coder->is_rep2[coder->state], |
+ rep - 2); |
+ |
+ if (rep == 3) |
+ coder->reps[3] = coder->reps[2]; |
+ |
+ coder->reps[2] = coder->reps[1]; |
+ } |
+ |
+ coder->reps[1] = coder->reps[0]; |
+ coder->reps[0] = distance; |
+ } |
+ |
+ if (len == 1) { |
+ update_short_rep(coder->state); |
+ } else { |
+ length(&coder->rc, &coder->rep_len_encoder, pos_state, len, |
+ coder->fast_mode); |
+ update_long_rep(coder->state); |
+ } |
+} |
+ |
+ |
+////////// |
+// Main // |
+////////// |
+ |
+static void |
+encode_symbol(lzma_coder *coder, lzma_mf *mf, |
+ uint32_t back, uint32_t len, uint32_t position) |
+{ |
+ const uint32_t pos_state = position & coder->pos_mask; |
+ |
+ if (back == UINT32_MAX) { |
+ // Literal i.e. eight-bit byte |
+ assert(len == 1); |
+ rc_bit(&coder->rc, |
+ &coder->is_match[coder->state][pos_state], 0); |
+ literal(coder, mf, position); |
+ } else { |
+ // Some type of match |
+ rc_bit(&coder->rc, |
+ &coder->is_match[coder->state][pos_state], 1); |
+ |
+ if (back < REP_DISTANCES) { |
+ // It's a repeated match i.e. the same distance |
+ // has been used earlier. |
+ rc_bit(&coder->rc, &coder->is_rep[coder->state], 1); |
+ rep_match(coder, pos_state, back, len); |
+ } else { |
+ // Normal match |
+ rc_bit(&coder->rc, &coder->is_rep[coder->state], 0); |
+ match(coder, pos_state, back - REP_DISTANCES, len); |
+ } |
+ } |
+ |
+ assert(mf->read_ahead >= len); |
+ mf->read_ahead -= len; |
+} |
+ |
+ |
+static bool |
+encode_init(lzma_coder *coder, lzma_mf *mf) |
+{ |
+ assert(mf_position(mf) == 0); |
+ |
+ if (mf->read_pos == mf->read_limit) { |
+ if (mf->action == LZMA_RUN) |
+ return false; // We cannot do anything. |
+ |
+ // We are finishing (we cannot get here when flushing). |
+ assert(mf->write_pos == mf->read_pos); |
+ assert(mf->action == LZMA_FINISH); |
+ } else { |
+ // Do the actual initialization. The first LZMA symbol must |
+ // always be a literal. |
+ mf_skip(mf, 1); |
+ mf->read_ahead = 0; |
+ rc_bit(&coder->rc, &coder->is_match[0][0], 0); |
+ rc_bittree(&coder->rc, coder->literal[0], 8, mf->buffer[0]); |
+ } |
+ |
+ // Initialization is done (except if empty file). |
+ coder->is_initialized = true; |
+ |
+ return true; |
+} |
+ |
+ |
+static void |
+encode_eopm(lzma_coder *coder, uint32_t position) |
+{ |
+ const uint32_t pos_state = position & coder->pos_mask; |
+ rc_bit(&coder->rc, &coder->is_match[coder->state][pos_state], 1); |
+ rc_bit(&coder->rc, &coder->is_rep[coder->state], 0); |
+ match(coder, pos_state, UINT32_MAX, MATCH_LEN_MIN); |
+} |
+ |
+ |
+/// Number of bytes that a single encoding loop in lzma_lzma_encode() can |
+/// consume from the dictionary. This limit comes from lzma_lzma_optimum() |
+/// and may need to be updated if that function is significantly modified. |
+#define LOOP_INPUT_MAX (OPTS + 1) |
+ |
+ |
+extern lzma_ret |
+lzma_lzma_encode(lzma_coder *restrict coder, lzma_mf *restrict mf, |
+ uint8_t *restrict out, size_t *restrict out_pos, |
+ size_t out_size, uint32_t limit) |
+{ |
+ // Initialize the stream if no data has been encoded yet. |
+ if (!coder->is_initialized && !encode_init(coder, mf)) |
+ return LZMA_OK; |
+ |
+ // Get the lowest bits of the uncompressed offset from the LZ layer. |
+ uint32_t position = mf_position(mf); |
+ |
+ while (true) { |
+ // Encode pending bits, if any. Calling this before encoding |
+ // the next symbol is needed only with plain LZMA, since |
+ // LZMA2 always provides big enough buffer to flush |
+ // everything out from the range encoder. For the same reason, |
+ // rc_encode() never returns true when this function is used |
+ // as part of LZMA2 encoder. |
+ if (rc_encode(&coder->rc, out, out_pos, out_size)) { |
+ assert(limit == UINT32_MAX); |
+ return LZMA_OK; |
+ } |
+ |
+ // With LZMA2 we need to take care that compressed size of |
+ // a chunk doesn't get too big. |
+ // TODO |
+ if (limit != UINT32_MAX |
+ && (mf->read_pos - mf->read_ahead >= limit |
+ || *out_pos + rc_pending(&coder->rc) |
+ >= LZMA2_CHUNK_MAX |
+ - LOOP_INPUT_MAX)) |
+ break; |
+ |
+ // Check that there is some input to process. |
+ if (mf->read_pos >= mf->read_limit) { |
+ if (mf->action == LZMA_RUN) |
+ return LZMA_OK; |
+ |
+ if (mf->read_ahead == 0) |
+ break; |
+ } |
+ |
+ // Get optimal match (repeat position and length). |
+ // Value ranges for pos: |
+ // - [0, REP_DISTANCES): repeated match |
+ // - [REP_DISTANCES, UINT32_MAX): |
+ // match at (pos - REP_DISTANCES) |
+ // - UINT32_MAX: not a match but a literal |
+ // Value ranges for len: |
+ // - [MATCH_LEN_MIN, MATCH_LEN_MAX] |
+ uint32_t len; |
+ uint32_t back; |
+ |
+ if (coder->fast_mode) |
+ lzma_lzma_optimum_fast(coder, mf, &back, &len); |
+ else |
+ lzma_lzma_optimum_normal( |
+ coder, mf, &back, &len, position); |
+ |
+ encode_symbol(coder, mf, back, len, position); |
+ |
+ position += len; |
+ } |
+ |
+ if (!coder->is_flushed) { |
+ coder->is_flushed = true; |
+ |
+ // We don't support encoding plain LZMA streams without EOPM, |
+ // and LZMA2 doesn't use EOPM at LZMA level. |
+ if (limit == UINT32_MAX) |
+ encode_eopm(coder, position); |
+ |
+ // Flush the remaining bytes from the range encoder. |
+ rc_flush(&coder->rc); |
+ |
+ // Copy the remaining bytes to the output buffer. If there |
+ // isn't enough output space, we will copy out the remaining |
+ // bytes on the next call to this function by using |
+ // the rc_encode() call in the encoding loop above. |
+ if (rc_encode(&coder->rc, out, out_pos, out_size)) { |
+ assert(limit == UINT32_MAX); |
+ return LZMA_OK; |
+ } |
+ } |
+ |
+ // Make it ready for the next LZMA2 chunk. |
+ coder->is_flushed = false; |
+ |
+ return LZMA_STREAM_END; |
+} |
+ |
+ |
+static lzma_ret |
+lzma_encode(lzma_coder *restrict coder, lzma_mf *restrict mf, |
+ uint8_t *restrict out, size_t *restrict out_pos, |
+ size_t out_size) |
+{ |
+ // Plain LZMA has no support for sync-flushing. |
+ if (unlikely(mf->action == LZMA_SYNC_FLUSH)) |
+ return LZMA_OPTIONS_ERROR; |
+ |
+ return lzma_lzma_encode(coder, mf, out, out_pos, out_size, UINT32_MAX); |
+} |
+ |
+ |
+//////////////////// |
+// Initialization // |
+//////////////////// |
+ |
+static bool |
+is_options_valid(const lzma_options_lzma *options) |
+{ |
+ // Validate some of the options. LZ encoder validates nice_len too |
+ // but we need a valid value here earlier. |
+ return is_lclppb_valid(options) |
+ && options->nice_len >= MATCH_LEN_MIN |
+ && options->nice_len <= MATCH_LEN_MAX |
+ && (options->mode == LZMA_MODE_FAST |
+ || options->mode == LZMA_MODE_NORMAL); |
+} |
+ |
+ |
+static void |
+set_lz_options(lzma_lz_options *lz_options, const lzma_options_lzma *options) |
+{ |
+ // LZ encoder initialization does the validation for these so we |
+ // don't need to validate here. |
+ lz_options->before_size = OPTS; |
+ lz_options->dict_size = options->dict_size; |
+ lz_options->after_size = LOOP_INPUT_MAX; |
+ lz_options->match_len_max = MATCH_LEN_MAX; |
+ lz_options->nice_len = options->nice_len; |
+ lz_options->match_finder = options->mf; |
+ lz_options->depth = options->depth; |
+ lz_options->preset_dict = options->preset_dict; |
+ lz_options->preset_dict_size = options->preset_dict_size; |
+ return; |
+} |
+ |
+ |
+static void |
+length_encoder_reset(lzma_length_encoder *lencoder, |
+ const uint32_t num_pos_states, const bool fast_mode) |
+{ |
+ bit_reset(lencoder->choice); |
+ bit_reset(lencoder->choice2); |
+ |
+ for (size_t pos_state = 0; pos_state < num_pos_states; ++pos_state) { |
+ bittree_reset(lencoder->low[pos_state], LEN_LOW_BITS); |
+ bittree_reset(lencoder->mid[pos_state], LEN_MID_BITS); |
+ } |
+ |
+ bittree_reset(lencoder->high, LEN_HIGH_BITS); |
+ |
+ if (!fast_mode) |
+ for (size_t pos_state = 0; pos_state < num_pos_states; |
+ ++pos_state) |
+ length_update_prices(lencoder, pos_state); |
+ |
+ return; |
+} |
+ |
+ |
+extern lzma_ret |
+lzma_lzma_encoder_reset(lzma_coder *coder, const lzma_options_lzma *options) |
+{ |
+ if (!is_options_valid(options)) |
+ return LZMA_OPTIONS_ERROR; |
+ |
+ coder->pos_mask = (1U << options->pb) - 1; |
+ coder->literal_context_bits = options->lc; |
+ coder->literal_pos_mask = (1U << options->lp) - 1; |
+ |
+ // Range coder |
+ rc_reset(&coder->rc); |
+ |
+ // State |
+ coder->state = STATE_LIT_LIT; |
+ for (size_t i = 0; i < REP_DISTANCES; ++i) |
+ coder->reps[i] = 0; |
+ |
+ literal_init(coder->literal, options->lc, options->lp); |
+ |
+ // Bit encoders |
+ for (size_t i = 0; i < STATES; ++i) { |
+ for (size_t j = 0; j <= coder->pos_mask; ++j) { |
+ bit_reset(coder->is_match[i][j]); |
+ bit_reset(coder->is_rep0_long[i][j]); |
+ } |
+ |
+ bit_reset(coder->is_rep[i]); |
+ bit_reset(coder->is_rep0[i]); |
+ bit_reset(coder->is_rep1[i]); |
+ bit_reset(coder->is_rep2[i]); |
+ } |
+ |
+ for (size_t i = 0; i < FULL_DISTANCES - END_POS_MODEL_INDEX; ++i) |
+ bit_reset(coder->pos_special[i]); |
+ |
+ // Bit tree encoders |
+ for (size_t i = 0; i < LEN_TO_POS_STATES; ++i) |
+ bittree_reset(coder->pos_slot[i], POS_SLOT_BITS); |
+ |
+ bittree_reset(coder->pos_align, ALIGN_BITS); |
+ |
+ // Length encoders |
+ length_encoder_reset(&coder->match_len_encoder, |
+ 1U << options->pb, coder->fast_mode); |
+ |
+ length_encoder_reset(&coder->rep_len_encoder, |
+ 1U << options->pb, coder->fast_mode); |
+ |
+ // Price counts are incremented every time appropriate probabilities |
+ // are changed. price counts are set to zero when the price tables |
+ // are updated, which is done when the appropriate price counts have |
+ // big enough value, and lzma_mf.read_ahead == 0 which happens at |
+ // least every OPTS (a few thousand) possible price count increments. |
+ // |
+ // By resetting price counts to UINT32_MAX / 2, we make sure that the |
+ // price tables will be initialized before they will be used (since |
+ // the value is definitely big enough), and that it is OK to increment |
+ // price counts without risk of integer overflow (since UINT32_MAX / 2 |
+ // is small enough). The current code doesn't increment price counts |
+ // before initializing price tables, but it maybe done in future if |
+ // we add support for saving the state between LZMA2 chunks. |
+ coder->match_price_count = UINT32_MAX / 2; |
+ coder->align_price_count = UINT32_MAX / 2; |
+ |
+ coder->opts_end_index = 0; |
+ coder->opts_current_index = 0; |
+ |
+ return LZMA_OK; |
+} |
+ |
+ |
+extern lzma_ret |
+lzma_lzma_encoder_create(lzma_coder **coder_ptr, lzma_allocator *allocator, |
+ const lzma_options_lzma *options, lzma_lz_options *lz_options) |
+{ |
+ // Allocate lzma_coder if it wasn't already allocated. |
+ if (*coder_ptr == NULL) { |
+ *coder_ptr = lzma_alloc(sizeof(lzma_coder), allocator); |
+ if (*coder_ptr == NULL) |
+ return LZMA_MEM_ERROR; |
+ } |
+ |
+ lzma_coder *coder = *coder_ptr; |
+ |
+ // Set compression mode. We haven't validates the options yet, |
+ // but it's OK here, since nothing bad happens with invalid |
+ // options in the code below, and they will get rejected by |
+ // lzma_lzma_encoder_reset() call at the end of this function. |
+ switch (options->mode) { |
+ case LZMA_MODE_FAST: |
+ coder->fast_mode = true; |
+ break; |
+ |
+ case LZMA_MODE_NORMAL: { |
+ coder->fast_mode = false; |
+ |
+ // Set dist_table_size. |
+ // Round the dictionary size up to next 2^n. |
+ uint32_t log_size = 0; |
+ while ((UINT32_C(1) << log_size) < options->dict_size) |
+ ++log_size; |
+ |
+ coder->dist_table_size = log_size * 2; |
+ |
+ // Length encoders' price table size |
+ coder->match_len_encoder.table_size |
+ = options->nice_len + 1 - MATCH_LEN_MIN; |
+ coder->rep_len_encoder.table_size |
+ = options->nice_len + 1 - MATCH_LEN_MIN; |
+ break; |
+ } |
+ |
+ default: |
+ return LZMA_OPTIONS_ERROR; |
+ } |
+ |
+ // We don't need to write the first byte as literal if there is |
+ // a non-empty preset dictionary. encode_init() wouldn't even work |
+ // if there is a non-empty preset dictionary, because encode_init() |
+ // assumes that position is zero and previous byte is also zero. |
+ coder->is_initialized = options->preset_dict != NULL |
+ && options->preset_dict_size > 0; |
+ coder->is_flushed = false; |
+ |
+ set_lz_options(lz_options, options); |
+ |
+ return lzma_lzma_encoder_reset(coder, options); |
+} |
+ |
+ |
+static lzma_ret |
+lzma_encoder_init(lzma_lz_encoder *lz, lzma_allocator *allocator, |
+ const void *options, lzma_lz_options *lz_options) |
+{ |
+ lz->code = &lzma_encode; |
+ return lzma_lzma_encoder_create( |
+ &lz->coder, allocator, options, lz_options); |
+} |
+ |
+ |
+extern lzma_ret |
+lzma_lzma_encoder_init(lzma_next_coder *next, lzma_allocator *allocator, |
+ const lzma_filter_info *filters) |
+{ |
+ return lzma_lz_encoder_init( |
+ next, allocator, filters, &lzma_encoder_init); |
+} |
+ |
+ |
+extern uint64_t |
+lzma_lzma_encoder_memusage(const void *options) |
+{ |
+ if (!is_options_valid(options)) |
+ return UINT64_MAX; |
+ |
+ lzma_lz_options lz_options; |
+ set_lz_options(&lz_options, options); |
+ |
+ const uint64_t lz_memusage = lzma_lz_encoder_memusage(&lz_options); |
+ if (lz_memusage == UINT64_MAX) |
+ return UINT64_MAX; |
+ |
+ return (uint64_t)(sizeof(lzma_coder)) + lz_memusage; |
+} |
+ |
+ |
+extern bool |
+lzma_lzma_lclppb_encode(const lzma_options_lzma *options, uint8_t *byte) |
+{ |
+ if (!is_lclppb_valid(options)) |
+ return true; |
+ |
+ *byte = (options->pb * 5 + options->lp) * 9 + options->lc; |
+ assert(*byte <= (4 * 5 + 4) * 9 + 8); |
+ |
+ return false; |
+} |
+ |
+ |
+#ifdef HAVE_ENCODER_LZMA1 |
+extern lzma_ret |
+lzma_lzma_props_encode(const void *options, uint8_t *out) |
+{ |
+ const lzma_options_lzma *const opt = options; |
+ |
+ if (lzma_lzma_lclppb_encode(opt, out)) |
+ return LZMA_PROG_ERROR; |
+ |
+ unaligned_write32le(out + 1, opt->dict_size); |
+ |
+ return LZMA_OK; |
+} |
+#endif |
+ |
+ |
+extern LZMA_API(lzma_bool) |
+lzma_mode_is_supported(lzma_mode mode) |
+{ |
+ return mode == LZMA_MODE_FAST || mode == LZMA_MODE_NORMAL; |
+} |
Property changes on: xz/src/liblzma/lzma/lzma_encoder.c |
___________________________________________________________________ |
Added: svn:eol-style |
+ LF |