OLD | NEW |
(Empty) | |
| 1 /////////////////////////////////////////////////////////////////////////////// |
| 2 // |
| 3 /// \file lzma_encoder.c |
| 4 /// \brief LZMA encoder |
| 5 /// |
| 6 // Authors: Igor Pavlov |
| 7 // Lasse Collin |
| 8 // |
| 9 // This file has been put into the public domain. |
| 10 // You can do whatever you want with this file. |
| 11 // |
| 12 /////////////////////////////////////////////////////////////////////////////// |
| 13 |
| 14 #include "lzma2_encoder.h" |
| 15 #include "lzma_encoder_private.h" |
| 16 #include "fastpos.h" |
| 17 |
| 18 |
| 19 ///////////// |
| 20 // Literal // |
| 21 ///////////// |
| 22 |
| 23 static inline void |
| 24 literal_matched(lzma_range_encoder *rc, probability *subcoder, |
| 25 uint32_t match_byte, uint32_t symbol) |
| 26 { |
| 27 uint32_t offset = 0x100; |
| 28 symbol += UINT32_C(1) << 8; |
| 29 |
| 30 do { |
| 31 match_byte <<= 1; |
| 32 const uint32_t match_bit = match_byte & offset; |
| 33 const uint32_t subcoder_index |
| 34 = offset + match_bit + (symbol >> 8); |
| 35 const uint32_t bit = (symbol >> 7) & 1; |
| 36 rc_bit(rc, &subcoder[subcoder_index], bit); |
| 37 |
| 38 symbol <<= 1; |
| 39 offset &= ~(match_byte ^ symbol); |
| 40 |
| 41 } while (symbol < (UINT32_C(1) << 16)); |
| 42 } |
| 43 |
| 44 |
| 45 static inline void |
| 46 literal(lzma_coder *coder, lzma_mf *mf, uint32_t position) |
| 47 { |
| 48 // Locate the literal byte to be encoded and the subcoder. |
| 49 const uint8_t cur_byte = mf->buffer[ |
| 50 mf->read_pos - mf->read_ahead]; |
| 51 probability *subcoder = literal_subcoder(coder->literal, |
| 52 coder->literal_context_bits, coder->literal_pos_mask, |
| 53 position, mf->buffer[mf->read_pos - mf->read_ahead - 1])
; |
| 54 |
| 55 if (is_literal_state(coder->state)) { |
| 56 // Previous LZMA-symbol was a literal. Encode a normal |
| 57 // literal without a match byte. |
| 58 rc_bittree(&coder->rc, subcoder, 8, cur_byte); |
| 59 } else { |
| 60 // Previous LZMA-symbol was a match. Use the last byte of |
| 61 // the match as a "match byte". That is, compare the bits |
| 62 // of the current literal and the match byte. |
| 63 const uint8_t match_byte = mf->buffer[ |
| 64 mf->read_pos - coder->reps[0] - 1 |
| 65 - mf->read_ahead]; |
| 66 literal_matched(&coder->rc, subcoder, match_byte, cur_byte); |
| 67 } |
| 68 |
| 69 update_literal(coder->state); |
| 70 } |
| 71 |
| 72 |
| 73 ////////////////// |
| 74 // Match length // |
| 75 ////////////////// |
| 76 |
| 77 static void |
| 78 length_update_prices(lzma_length_encoder *lc, const uint32_t pos_state) |
| 79 { |
| 80 const uint32_t table_size = lc->table_size; |
| 81 lc->counters[pos_state] = table_size; |
| 82 |
| 83 const uint32_t a0 = rc_bit_0_price(lc->choice); |
| 84 const uint32_t a1 = rc_bit_1_price(lc->choice); |
| 85 const uint32_t b0 = a1 + rc_bit_0_price(lc->choice2); |
| 86 const uint32_t b1 = a1 + rc_bit_1_price(lc->choice2); |
| 87 uint32_t *const prices = lc->prices[pos_state]; |
| 88 |
| 89 uint32_t i; |
| 90 for (i = 0; i < table_size && i < LEN_LOW_SYMBOLS; ++i) |
| 91 prices[i] = a0 + rc_bittree_price(lc->low[pos_state], |
| 92 LEN_LOW_BITS, i); |
| 93 |
| 94 for (; i < table_size && i < LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS; ++i) |
| 95 prices[i] = b0 + rc_bittree_price(lc->mid[pos_state], |
| 96 LEN_MID_BITS, i - LEN_LOW_SYMBOLS); |
| 97 |
| 98 for (; i < table_size; ++i) |
| 99 prices[i] = b1 + rc_bittree_price(lc->high, LEN_HIGH_BITS, |
| 100 i - LEN_LOW_SYMBOLS - LEN_MID_SYMBOLS); |
| 101 |
| 102 return; |
| 103 } |
| 104 |
| 105 |
| 106 static inline void |
| 107 length(lzma_range_encoder *rc, lzma_length_encoder *lc, |
| 108 const uint32_t pos_state, uint32_t len, const bool fast_mode) |
| 109 { |
| 110 assert(len <= MATCH_LEN_MAX); |
| 111 len -= MATCH_LEN_MIN; |
| 112 |
| 113 if (len < LEN_LOW_SYMBOLS) { |
| 114 rc_bit(rc, &lc->choice, 0); |
| 115 rc_bittree(rc, lc->low[pos_state], LEN_LOW_BITS, len); |
| 116 } else { |
| 117 rc_bit(rc, &lc->choice, 1); |
| 118 len -= LEN_LOW_SYMBOLS; |
| 119 |
| 120 if (len < LEN_MID_SYMBOLS) { |
| 121 rc_bit(rc, &lc->choice2, 0); |
| 122 rc_bittree(rc, lc->mid[pos_state], LEN_MID_BITS, len); |
| 123 } else { |
| 124 rc_bit(rc, &lc->choice2, 1); |
| 125 len -= LEN_MID_SYMBOLS; |
| 126 rc_bittree(rc, lc->high, LEN_HIGH_BITS, len); |
| 127 } |
| 128 } |
| 129 |
| 130 // Only getoptimum uses the prices so don't update the table when |
| 131 // in fast mode. |
| 132 if (!fast_mode) |
| 133 if (--lc->counters[pos_state] == 0) |
| 134 length_update_prices(lc, pos_state); |
| 135 } |
| 136 |
| 137 |
| 138 /////////// |
| 139 // Match // |
| 140 /////////// |
| 141 |
| 142 static inline void |
| 143 match(lzma_coder *coder, const uint32_t pos_state, |
| 144 const uint32_t distance, const uint32_t len) |
| 145 { |
| 146 update_match(coder->state); |
| 147 |
| 148 length(&coder->rc, &coder->match_len_encoder, pos_state, len, |
| 149 coder->fast_mode); |
| 150 |
| 151 const uint32_t pos_slot = get_pos_slot(distance); |
| 152 const uint32_t len_to_pos_state = get_len_to_pos_state(len); |
| 153 rc_bittree(&coder->rc, coder->pos_slot[len_to_pos_state], |
| 154 POS_SLOT_BITS, pos_slot); |
| 155 |
| 156 if (pos_slot >= START_POS_MODEL_INDEX) { |
| 157 const uint32_t footer_bits = (pos_slot >> 1) - 1; |
| 158 const uint32_t base = (2 | (pos_slot & 1)) << footer_bits; |
| 159 const uint32_t pos_reduced = distance - base; |
| 160 |
| 161 if (pos_slot < END_POS_MODEL_INDEX) { |
| 162 // Careful here: base - pos_slot - 1 can be -1, but |
| 163 // rc_bittree_reverse starts at probs[1], not probs[0]. |
| 164 rc_bittree_reverse(&coder->rc, |
| 165 coder->pos_special + base - pos_slot - 1, |
| 166 footer_bits, pos_reduced); |
| 167 } else { |
| 168 rc_direct(&coder->rc, pos_reduced >> ALIGN_BITS, |
| 169 footer_bits - ALIGN_BITS); |
| 170 rc_bittree_reverse( |
| 171 &coder->rc, coder->pos_align, |
| 172 ALIGN_BITS, pos_reduced & ALIGN_MASK); |
| 173 ++coder->align_price_count; |
| 174 } |
| 175 } |
| 176 |
| 177 coder->reps[3] = coder->reps[2]; |
| 178 coder->reps[2] = coder->reps[1]; |
| 179 coder->reps[1] = coder->reps[0]; |
| 180 coder->reps[0] = distance; |
| 181 ++coder->match_price_count; |
| 182 } |
| 183 |
| 184 |
| 185 //////////////////// |
| 186 // Repeated match // |
| 187 //////////////////// |
| 188 |
| 189 static inline void |
| 190 rep_match(lzma_coder *coder, const uint32_t pos_state, |
| 191 const uint32_t rep, const uint32_t len) |
| 192 { |
| 193 if (rep == 0) { |
| 194 rc_bit(&coder->rc, &coder->is_rep0[coder->state], 0); |
| 195 rc_bit(&coder->rc, |
| 196 &coder->is_rep0_long[coder->state][pos_state], |
| 197 len != 1); |
| 198 } else { |
| 199 const uint32_t distance = coder->reps[rep]; |
| 200 rc_bit(&coder->rc, &coder->is_rep0[coder->state], 1); |
| 201 |
| 202 if (rep == 1) { |
| 203 rc_bit(&coder->rc, &coder->is_rep1[coder->state], 0); |
| 204 } else { |
| 205 rc_bit(&coder->rc, &coder->is_rep1[coder->state], 1); |
| 206 rc_bit(&coder->rc, &coder->is_rep2[coder->state], |
| 207 rep - 2); |
| 208 |
| 209 if (rep == 3) |
| 210 coder->reps[3] = coder->reps[2]; |
| 211 |
| 212 coder->reps[2] = coder->reps[1]; |
| 213 } |
| 214 |
| 215 coder->reps[1] = coder->reps[0]; |
| 216 coder->reps[0] = distance; |
| 217 } |
| 218 |
| 219 if (len == 1) { |
| 220 update_short_rep(coder->state); |
| 221 } else { |
| 222 length(&coder->rc, &coder->rep_len_encoder, pos_state, len, |
| 223 coder->fast_mode); |
| 224 update_long_rep(coder->state); |
| 225 } |
| 226 } |
| 227 |
| 228 |
| 229 ////////// |
| 230 // Main // |
| 231 ////////// |
| 232 |
| 233 static void |
| 234 encode_symbol(lzma_coder *coder, lzma_mf *mf, |
| 235 uint32_t back, uint32_t len, uint32_t position) |
| 236 { |
| 237 const uint32_t pos_state = position & coder->pos_mask; |
| 238 |
| 239 if (back == UINT32_MAX) { |
| 240 // Literal i.e. eight-bit byte |
| 241 assert(len == 1); |
| 242 rc_bit(&coder->rc, |
| 243 &coder->is_match[coder->state][pos_state], 0); |
| 244 literal(coder, mf, position); |
| 245 } else { |
| 246 // Some type of match |
| 247 rc_bit(&coder->rc, |
| 248 &coder->is_match[coder->state][pos_state], 1); |
| 249 |
| 250 if (back < REP_DISTANCES) { |
| 251 // It's a repeated match i.e. the same distance |
| 252 // has been used earlier. |
| 253 rc_bit(&coder->rc, &coder->is_rep[coder->state], 1); |
| 254 rep_match(coder, pos_state, back, len); |
| 255 } else { |
| 256 // Normal match |
| 257 rc_bit(&coder->rc, &coder->is_rep[coder->state], 0); |
| 258 match(coder, pos_state, back - REP_DISTANCES, len); |
| 259 } |
| 260 } |
| 261 |
| 262 assert(mf->read_ahead >= len); |
| 263 mf->read_ahead -= len; |
| 264 } |
| 265 |
| 266 |
| 267 static bool |
| 268 encode_init(lzma_coder *coder, lzma_mf *mf) |
| 269 { |
| 270 assert(mf_position(mf) == 0); |
| 271 |
| 272 if (mf->read_pos == mf->read_limit) { |
| 273 if (mf->action == LZMA_RUN) |
| 274 return false; // We cannot do anything. |
| 275 |
| 276 // We are finishing (we cannot get here when flushing). |
| 277 assert(mf->write_pos == mf->read_pos); |
| 278 assert(mf->action == LZMA_FINISH); |
| 279 } else { |
| 280 // Do the actual initialization. The first LZMA symbol must |
| 281 // always be a literal. |
| 282 mf_skip(mf, 1); |
| 283 mf->read_ahead = 0; |
| 284 rc_bit(&coder->rc, &coder->is_match[0][0], 0); |
| 285 rc_bittree(&coder->rc, coder->literal[0], 8, mf->buffer[0]); |
| 286 } |
| 287 |
| 288 // Initialization is done (except if empty file). |
| 289 coder->is_initialized = true; |
| 290 |
| 291 return true; |
| 292 } |
| 293 |
| 294 |
| 295 static void |
| 296 encode_eopm(lzma_coder *coder, uint32_t position) |
| 297 { |
| 298 const uint32_t pos_state = position & coder->pos_mask; |
| 299 rc_bit(&coder->rc, &coder->is_match[coder->state][pos_state], 1); |
| 300 rc_bit(&coder->rc, &coder->is_rep[coder->state], 0); |
| 301 match(coder, pos_state, UINT32_MAX, MATCH_LEN_MIN); |
| 302 } |
| 303 |
| 304 |
| 305 /// Number of bytes that a single encoding loop in lzma_lzma_encode() can |
| 306 /// consume from the dictionary. This limit comes from lzma_lzma_optimum() |
| 307 /// and may need to be updated if that function is significantly modified. |
| 308 #define LOOP_INPUT_MAX (OPTS + 1) |
| 309 |
| 310 |
| 311 extern lzma_ret |
| 312 lzma_lzma_encode(lzma_coder *restrict coder, lzma_mf *restrict mf, |
| 313 uint8_t *restrict out, size_t *restrict out_pos, |
| 314 size_t out_size, uint32_t limit) |
| 315 { |
| 316 // Initialize the stream if no data has been encoded yet. |
| 317 if (!coder->is_initialized && !encode_init(coder, mf)) |
| 318 return LZMA_OK; |
| 319 |
| 320 // Get the lowest bits of the uncompressed offset from the LZ layer. |
| 321 uint32_t position = mf_position(mf); |
| 322 |
| 323 while (true) { |
| 324 // Encode pending bits, if any. Calling this before encoding |
| 325 // the next symbol is needed only with plain LZMA, since |
| 326 // LZMA2 always provides big enough buffer to flush |
| 327 // everything out from the range encoder. For the same reason, |
| 328 // rc_encode() never returns true when this function is used |
| 329 // as part of LZMA2 encoder. |
| 330 if (rc_encode(&coder->rc, out, out_pos, out_size)) { |
| 331 assert(limit == UINT32_MAX); |
| 332 return LZMA_OK; |
| 333 } |
| 334 |
| 335 // With LZMA2 we need to take care that compressed size of |
| 336 // a chunk doesn't get too big. |
| 337 // TODO |
| 338 if (limit != UINT32_MAX |
| 339 && (mf->read_pos - mf->read_ahead >= limit |
| 340 || *out_pos + rc_pending(&coder->rc) |
| 341 >= LZMA2_CHUNK_MAX |
| 342 - LOOP_INPUT_MAX)) |
| 343 break; |
| 344 |
| 345 // Check that there is some input to process. |
| 346 if (mf->read_pos >= mf->read_limit) { |
| 347 if (mf->action == LZMA_RUN) |
| 348 return LZMA_OK; |
| 349 |
| 350 if (mf->read_ahead == 0) |
| 351 break; |
| 352 } |
| 353 |
| 354 // Get optimal match (repeat position and length). |
| 355 // Value ranges for pos: |
| 356 // - [0, REP_DISTANCES): repeated match |
| 357 // - [REP_DISTANCES, UINT32_MAX): |
| 358 // match at (pos - REP_DISTANCES) |
| 359 // - UINT32_MAX: not a match but a literal |
| 360 // Value ranges for len: |
| 361 // - [MATCH_LEN_MIN, MATCH_LEN_MAX] |
| 362 uint32_t len; |
| 363 uint32_t back; |
| 364 |
| 365 if (coder->fast_mode) |
| 366 lzma_lzma_optimum_fast(coder, mf, &back, &len); |
| 367 else |
| 368 lzma_lzma_optimum_normal( |
| 369 coder, mf, &back, &len, position); |
| 370 |
| 371 encode_symbol(coder, mf, back, len, position); |
| 372 |
| 373 position += len; |
| 374 } |
| 375 |
| 376 if (!coder->is_flushed) { |
| 377 coder->is_flushed = true; |
| 378 |
| 379 // We don't support encoding plain LZMA streams without EOPM, |
| 380 // and LZMA2 doesn't use EOPM at LZMA level. |
| 381 if (limit == UINT32_MAX) |
| 382 encode_eopm(coder, position); |
| 383 |
| 384 // Flush the remaining bytes from the range encoder. |
| 385 rc_flush(&coder->rc); |
| 386 |
| 387 // Copy the remaining bytes to the output buffer. If there |
| 388 // isn't enough output space, we will copy out the remaining |
| 389 // bytes on the next call to this function by using |
| 390 // the rc_encode() call in the encoding loop above. |
| 391 if (rc_encode(&coder->rc, out, out_pos, out_size)) { |
| 392 assert(limit == UINT32_MAX); |
| 393 return LZMA_OK; |
| 394 } |
| 395 } |
| 396 |
| 397 // Make it ready for the next LZMA2 chunk. |
| 398 coder->is_flushed = false; |
| 399 |
| 400 return LZMA_STREAM_END; |
| 401 } |
| 402 |
| 403 |
| 404 static lzma_ret |
| 405 lzma_encode(lzma_coder *restrict coder, lzma_mf *restrict mf, |
| 406 uint8_t *restrict out, size_t *restrict out_pos, |
| 407 size_t out_size) |
| 408 { |
| 409 // Plain LZMA has no support for sync-flushing. |
| 410 if (unlikely(mf->action == LZMA_SYNC_FLUSH)) |
| 411 return LZMA_OPTIONS_ERROR; |
| 412 |
| 413 return lzma_lzma_encode(coder, mf, out, out_pos, out_size, UINT32_MAX); |
| 414 } |
| 415 |
| 416 |
| 417 //////////////////// |
| 418 // Initialization // |
| 419 //////////////////// |
| 420 |
| 421 static bool |
| 422 is_options_valid(const lzma_options_lzma *options) |
| 423 { |
| 424 // Validate some of the options. LZ encoder validates nice_len too |
| 425 // but we need a valid value here earlier. |
| 426 return is_lclppb_valid(options) |
| 427 && options->nice_len >= MATCH_LEN_MIN |
| 428 && options->nice_len <= MATCH_LEN_MAX |
| 429 && (options->mode == LZMA_MODE_FAST |
| 430 || options->mode == LZMA_MODE_NORMAL); |
| 431 } |
| 432 |
| 433 |
| 434 static void |
| 435 set_lz_options(lzma_lz_options *lz_options, const lzma_options_lzma *options) |
| 436 { |
| 437 // LZ encoder initialization does the validation for these so we |
| 438 // don't need to validate here. |
| 439 lz_options->before_size = OPTS; |
| 440 lz_options->dict_size = options->dict_size; |
| 441 lz_options->after_size = LOOP_INPUT_MAX; |
| 442 lz_options->match_len_max = MATCH_LEN_MAX; |
| 443 lz_options->nice_len = options->nice_len; |
| 444 lz_options->match_finder = options->mf; |
| 445 lz_options->depth = options->depth; |
| 446 lz_options->preset_dict = options->preset_dict; |
| 447 lz_options->preset_dict_size = options->preset_dict_size; |
| 448 return; |
| 449 } |
| 450 |
| 451 |
| 452 static void |
| 453 length_encoder_reset(lzma_length_encoder *lencoder, |
| 454 const uint32_t num_pos_states, const bool fast_mode) |
| 455 { |
| 456 bit_reset(lencoder->choice); |
| 457 bit_reset(lencoder->choice2); |
| 458 |
| 459 for (size_t pos_state = 0; pos_state < num_pos_states; ++pos_state) { |
| 460 bittree_reset(lencoder->low[pos_state], LEN_LOW_BITS); |
| 461 bittree_reset(lencoder->mid[pos_state], LEN_MID_BITS); |
| 462 } |
| 463 |
| 464 bittree_reset(lencoder->high, LEN_HIGH_BITS); |
| 465 |
| 466 if (!fast_mode) |
| 467 for (size_t pos_state = 0; pos_state < num_pos_states; |
| 468 ++pos_state) |
| 469 length_update_prices(lencoder, pos_state); |
| 470 |
| 471 return; |
| 472 } |
| 473 |
| 474 |
| 475 extern lzma_ret |
| 476 lzma_lzma_encoder_reset(lzma_coder *coder, const lzma_options_lzma *options) |
| 477 { |
| 478 if (!is_options_valid(options)) |
| 479 return LZMA_OPTIONS_ERROR; |
| 480 |
| 481 coder->pos_mask = (1U << options->pb) - 1; |
| 482 coder->literal_context_bits = options->lc; |
| 483 coder->literal_pos_mask = (1U << options->lp) - 1; |
| 484 |
| 485 // Range coder |
| 486 rc_reset(&coder->rc); |
| 487 |
| 488 // State |
| 489 coder->state = STATE_LIT_LIT; |
| 490 for (size_t i = 0; i < REP_DISTANCES; ++i) |
| 491 coder->reps[i] = 0; |
| 492 |
| 493 literal_init(coder->literal, options->lc, options->lp); |
| 494 |
| 495 // Bit encoders |
| 496 for (size_t i = 0; i < STATES; ++i) { |
| 497 for (size_t j = 0; j <= coder->pos_mask; ++j) { |
| 498 bit_reset(coder->is_match[i][j]); |
| 499 bit_reset(coder->is_rep0_long[i][j]); |
| 500 } |
| 501 |
| 502 bit_reset(coder->is_rep[i]); |
| 503 bit_reset(coder->is_rep0[i]); |
| 504 bit_reset(coder->is_rep1[i]); |
| 505 bit_reset(coder->is_rep2[i]); |
| 506 } |
| 507 |
| 508 for (size_t i = 0; i < FULL_DISTANCES - END_POS_MODEL_INDEX; ++i) |
| 509 bit_reset(coder->pos_special[i]); |
| 510 |
| 511 // Bit tree encoders |
| 512 for (size_t i = 0; i < LEN_TO_POS_STATES; ++i) |
| 513 bittree_reset(coder->pos_slot[i], POS_SLOT_BITS); |
| 514 |
| 515 bittree_reset(coder->pos_align, ALIGN_BITS); |
| 516 |
| 517 // Length encoders |
| 518 length_encoder_reset(&coder->match_len_encoder, |
| 519 1U << options->pb, coder->fast_mode); |
| 520 |
| 521 length_encoder_reset(&coder->rep_len_encoder, |
| 522 1U << options->pb, coder->fast_mode); |
| 523 |
| 524 // Price counts are incremented every time appropriate probabilities |
| 525 // are changed. price counts are set to zero when the price tables |
| 526 // are updated, which is done when the appropriate price counts have |
| 527 // big enough value, and lzma_mf.read_ahead == 0 which happens at |
| 528 // least every OPTS (a few thousand) possible price count increments. |
| 529 // |
| 530 // By resetting price counts to UINT32_MAX / 2, we make sure that the |
| 531 // price tables will be initialized before they will be used (since |
| 532 // the value is definitely big enough), and that it is OK to increment |
| 533 // price counts without risk of integer overflow (since UINT32_MAX / 2 |
| 534 // is small enough). The current code doesn't increment price counts |
| 535 // before initializing price tables, but it maybe done in future if |
| 536 // we add support for saving the state between LZMA2 chunks. |
| 537 coder->match_price_count = UINT32_MAX / 2; |
| 538 coder->align_price_count = UINT32_MAX / 2; |
| 539 |
| 540 coder->opts_end_index = 0; |
| 541 coder->opts_current_index = 0; |
| 542 |
| 543 return LZMA_OK; |
| 544 } |
| 545 |
| 546 |
| 547 extern lzma_ret |
| 548 lzma_lzma_encoder_create(lzma_coder **coder_ptr, lzma_allocator *allocator, |
| 549 const lzma_options_lzma *options, lzma_lz_options *lz_options) |
| 550 { |
| 551 // Allocate lzma_coder if it wasn't already allocated. |
| 552 if (*coder_ptr == NULL) { |
| 553 *coder_ptr = lzma_alloc(sizeof(lzma_coder), allocator); |
| 554 if (*coder_ptr == NULL) |
| 555 return LZMA_MEM_ERROR; |
| 556 } |
| 557 |
| 558 lzma_coder *coder = *coder_ptr; |
| 559 |
| 560 // Set compression mode. We haven't validates the options yet, |
| 561 // but it's OK here, since nothing bad happens with invalid |
| 562 // options in the code below, and they will get rejected by |
| 563 // lzma_lzma_encoder_reset() call at the end of this function. |
| 564 switch (options->mode) { |
| 565 case LZMA_MODE_FAST: |
| 566 coder->fast_mode = true; |
| 567 break; |
| 568 |
| 569 case LZMA_MODE_NORMAL: { |
| 570 coder->fast_mode = false; |
| 571 |
| 572 // Set dist_table_size. |
| 573 // Round the dictionary size up to next 2^n. |
| 574 uint32_t log_size = 0; |
| 575 while ((UINT32_C(1) << log_size) < options->dict_size) |
| 576 ++log_size; |
| 577 |
| 578 coder->dist_table_size = log_size * 2; |
| 579 |
| 580 // Length encoders' price table size |
| 581 coder->match_len_encoder.table_size |
| 582 = options->nice_len + 1 - MATCH_LEN_MIN; |
| 583 coder->rep_len_encoder.table_size |
| 584 = options->nice_len + 1 - MATCH_LEN_MIN; |
| 585 break; |
| 586 } |
| 587 |
| 588 default: |
| 589 return LZMA_OPTIONS_ERROR; |
| 590 } |
| 591 |
| 592 // We don't need to write the first byte as literal if there is |
| 593 // a non-empty preset dictionary. encode_init() wouldn't even work |
| 594 // if there is a non-empty preset dictionary, because encode_init() |
| 595 // assumes that position is zero and previous byte is also zero. |
| 596 coder->is_initialized = options->preset_dict != NULL |
| 597 && options->preset_dict_size > 0; |
| 598 coder->is_flushed = false; |
| 599 |
| 600 set_lz_options(lz_options, options); |
| 601 |
| 602 return lzma_lzma_encoder_reset(coder, options); |
| 603 } |
| 604 |
| 605 |
| 606 static lzma_ret |
| 607 lzma_encoder_init(lzma_lz_encoder *lz, lzma_allocator *allocator, |
| 608 const void *options, lzma_lz_options *lz_options) |
| 609 { |
| 610 lz->code = &lzma_encode; |
| 611 return lzma_lzma_encoder_create( |
| 612 &lz->coder, allocator, options, lz_options); |
| 613 } |
| 614 |
| 615 |
| 616 extern lzma_ret |
| 617 lzma_lzma_encoder_init(lzma_next_coder *next, lzma_allocator *allocator, |
| 618 const lzma_filter_info *filters) |
| 619 { |
| 620 return lzma_lz_encoder_init( |
| 621 next, allocator, filters, &lzma_encoder_init); |
| 622 } |
| 623 |
| 624 |
| 625 extern uint64_t |
| 626 lzma_lzma_encoder_memusage(const void *options) |
| 627 { |
| 628 if (!is_options_valid(options)) |
| 629 return UINT64_MAX; |
| 630 |
| 631 lzma_lz_options lz_options; |
| 632 set_lz_options(&lz_options, options); |
| 633 |
| 634 const uint64_t lz_memusage = lzma_lz_encoder_memusage(&lz_options); |
| 635 if (lz_memusage == UINT64_MAX) |
| 636 return UINT64_MAX; |
| 637 |
| 638 return (uint64_t)(sizeof(lzma_coder)) + lz_memusage; |
| 639 } |
| 640 |
| 641 |
| 642 extern bool |
| 643 lzma_lzma_lclppb_encode(const lzma_options_lzma *options, uint8_t *byte) |
| 644 { |
| 645 if (!is_lclppb_valid(options)) |
| 646 return true; |
| 647 |
| 648 *byte = (options->pb * 5 + options->lp) * 9 + options->lc; |
| 649 assert(*byte <= (4 * 5 + 4) * 9 + 8); |
| 650 |
| 651 return false; |
| 652 } |
| 653 |
| 654 |
| 655 #ifdef HAVE_ENCODER_LZMA1 |
| 656 extern lzma_ret |
| 657 lzma_lzma_props_encode(const void *options, uint8_t *out) |
| 658 { |
| 659 const lzma_options_lzma *const opt = options; |
| 660 |
| 661 if (lzma_lzma_lclppb_encode(opt, out)) |
| 662 return LZMA_PROG_ERROR; |
| 663 |
| 664 unaligned_write32le(out + 1, opt->dict_size); |
| 665 |
| 666 return LZMA_OK; |
| 667 } |
| 668 #endif |
| 669 |
| 670 |
| 671 extern LZMA_API(lzma_bool) |
| 672 lzma_mode_is_supported(lzma_mode mode) |
| 673 { |
| 674 return mode == LZMA_MODE_FAST || mode == LZMA_MODE_NORMAL; |
| 675 } |
OLD | NEW |